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3()=1 (aed, beB)baw. (bei Satz 2) 7(a)=1,8(0) <1 (sed, beB).
Wir konstruieren @ komponentenweise. K sei also eine Komponente von &,

Da ¢, v @, bel 4 gesdittigh ist, gibt es keine ¢ e A mit y(a) = 0. Fiir
ein a, aus K gelte y(ao) = 1. An q, liege eine Kante von ¢, (0.B.d.A.).
Gibt es nun ein ¢, in K, woran keine Kante aus ¢, st68t, so erschopft
ein Weg von a, nach a; alle Ecken und Kanten von K; also ist die Zahl
der @ in K groBer als die der b in K, somit ¢, v ¢, nicht geséittigt bei 4.
An jedes @ von K stoBt also eine Kante von ¢;. An jedes b von X stoBt
eine Kante von ¢, da ein Weg von @, nach b eine ungerade Zahl von
Kanten enthilt, die abwechselnd zu ¢, bzw. @, gehoren. Die Kanten
in K von g, bilden also einen Faktor der Bedingung.

Fir jedes o von K gelte y(a) = 2. Ist fiir ein b von K d(b) = 0, so
besteht K nur aus dieser Ecke, und ¢, v ¢, ist nicht gesittigt bei B.
In K gebe es zwei Ecken b, 7 b, mit 6(b;) = d(b,) = 1. Ein Weg von b,
nach b, erschopft alle Ecken und Kanten von K. Wie oben (fiir A) folgt,
daB ¢; v ¢, nicht bei B gesiittigt ist. Im Fall von Satz 2 bilden die Kanten
von ¢, in K einen Faktor der Bedingung. Gilt fiir alle b von K 8(b) = 2,
so definieren die Kanten von ¢, in K einen Faktor der Bedingung. SchlieB-
lich gebe es genau ein by e B in K mit y(b,) = 1. An b, stoBe eine Kante
aus ¢ (0.B.d.A.). Die Kanten von ¢, in K bilden dann einen Faktor
der Bedingung. Damit sind Satz 1 und Satz 2 bewiesen.
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On regular extensions of operator systems

by
W. M. Zawadowski (Warszawa)

The aim of this note is to propose a slightly improved version of
the extension theorem given by W. Stowikowski in this journal, [8].

L. An operator system is an ordered pair (S, X), where

a. § is a semigroup with the unit element,

b. X is a commutative group,

¢. with each element A ¢S there is associated a subgroup G4C X,
and with each pair 4 €S, # ¢ G4 there is associated an element y e X,
which is called the composition of A and @, y = Aw», and

the map 4d: G4—~X is a homomorphism of G4 onto the whole
group X.

We do not assume the cancellation law for S.

An operator system (S, X) is linear, if X is a linear space, and
# ¢ G4 implies Az e G4, and A(Ax) = A4z for every scalar A.

We may always reduce the theory of linear operator systems (S, X)
to the theory of ordinary operator systems considering X a group, and
enlarging S to include all the operators of multlphoatlon by a scalar.

An operator system is regular, if

1. G4=X for every 4 S, and

2. A(Bx)= (AB)#x, which means that if either member of this
equality makes sense then the other does too and both are equal.

In regular operator systems composition is always feasible, and the
semigroup operation iy compatible with the operation of superposition
of the maps 4: G4—~X.

The notion of operator system was first introduced by Stowikowski
in [6] and then described in detail in [8], but it lurks in all the papers
cited. We follow the terminology of Stowikowski, but we do not require
here a priori that the semigroup S be commutative, and we do not as-
sume a priori that the semigroup operation in S is identical with the
superposition of its elements considered as maps 4: G4—~X, as it is done
in [5]. Dropping these two requirements we avoid some inconvenient
conditions on domains G4. An important example of a linear operator
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system is described in [1]. It is (D), C), where C is the space of all real
continuous functions x(f) defined for real ¢, and (D) is the semigroup
of formal differential operators generated by D = d/df. The domain Gy is
the set of functions with continuous k-th derivates. This operator system
is not regular. The smallest regular operator system containing it is
(D), Y), where Y is the linear space of distributions of finite order.
Likewise, in abstract theory of the operator systems, one can develop
a theory of extensions to regular operator systems. This is the main
point of all the papers cited. We shall state here one more extension
theorem, which we claim is still more handy.

II. Let (§,X) be an operator system. An ideal (or a regularizer)
of this operator system is a function § which associates every element
A €8S with a subgroup J(4)CX, so that

&8 3(B)C3(4B),

@) I(AB) ~» A7(X)= 471 (3(B)),
) S(AB)=S(BA).

If in addition

(4) J(I) = {0},

then the ideal J is called an ewtensor (cf. [8], p. 254). In the special case
of the operator system ((D), C) defined above, the function which asso-
ciates D¥ with the set on which D* vanishes is an extensor.

We distinguish a speecial class of operator systems (S,X) which
satisfy the following condition:

(*) For every A,BeS and seX B A 7'0)~(4B)'w~ (BA) w£0.

This condition amounts to saying that for every 4,BeS and #eX
there exists 4 e Gar~ Gpga ~ G4 such that

@ = (AB)u = (BA)u = B(4u).

Lesma I. If (S, X) is an operator system sabisfying (x) and if S is
an extensor for (S, X), then

A(Bu)—B(4v) =0 implies u—veJ(AB).

Proof. Suppose that 4(Bu)= B(4v) = y. It follows from (+) that
there exist elements s, ¢, w such that

= (AB)s = (BA)s
y=(4B)t= A(Bt),
y = (BA)w= B(4w).
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We have
A(Bu)—A(Bt)=0 implies B(u—1t)eJ(4) and u—1eJ(4),
B(Aw)—B(4Av)=0 implies A (w~—v)eJ(B) and w—veJ(4B),
(AB)t—(AB)s =0 implies t—seJ(4B),
(BA)s—(BA)w=0 implies s—weJ(4B).

Therefore 14— = (%—1) -+ (f—8) 4 (s — w) + (w—12) e J(AB), which is what
we wanted to prove.

The main point of this paper is

Tee BXTENSION THEOREM. Let (S, X) be an_operator system satisfy-
ing (%), and let 3 be an extensor. Then there ewists a unique regular oper-
ator system (D,Y) such that

a. X is a subgroup of Y,

b. D is a commutative semigroup of endomorphisms for which the do-
mains are the entire group Y,

c. For each A €S there ewists an A e D such that the map A: G4~X
is contained in the map A: Y=Y, and the map: A—~A makes D a homo-
morphic image of S,

d. For every 4 ¢ Y there exist A ¢S and © X such that y = Aw,

e. A7M0) A X =S5(4).

Proof. We consider the Cartesian product §x X and a relation
of equivalence in it:

(4,8)~(B,y) itf there are u,veX such that = Bu, y= Av
and u—v e J(4.B).

‘We shall show that this relation is really a relation of equivalence,
ie. that it is reflexive, symmetric, and transitive. The first two prop-
erties hold, it is trivial. We shall only prove that ~ is transitive. Sup-
pose that

(4, 2)~(B,y), (Byy)~(0,2).
There exist %, v such that @ = Bu, y = Av, and 4—v e J(4B), and there
exist o', w such that y = Cv’, 2= Bw, and v —w ¢ J(BO).

We set # = Cs and z = A%, and then we have

Os—Bu =0,
Av—0Ov' =0,
At—Dw=0.

Again, setting
8= Bs*, u=~C0u* v =dov"™,
t=DBt* v=~0%  w=Aw*
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we have

|

C(Bs*)—B(Cu*) =
A(Cv*)—C(do™) =
A (Bt*)—B(Aw*) =

and

Cu*—*) e J(4B), A@@™*—w*)eJ(BC).
By Lemma I it follows that
s*—u* e J(BO) C J(4BC),
*—v* e J(AC)C J(4ABO),

*—u* e J(AB)CJ(4BC),
and that
w*—v*eJ(ABC), v*—uw*eJ(ABO).

We have therefore
gt = (uF — %) — (w*— 1) — (0% — ™) — (W — v%) — (0" — w¥) e3(4B0),
t—s = B(t*—s*) e ¥(40);

this last equality means that (4, x)~(0, 2), which is what we wanted
to prove.
YWe have also

1. (4,a)~(I, Ax) provided Az exists,
2. (4,3)~(B,y) implies (C4, «)~(CB, y),
3. (4B, x)~(BA, 2).
We shall prove, for instance, 2. Suppose that (4, z)~(B, y). This
neans that there are u,v ¢X such that
#=DBu, y=Av, and w—veJ(4B).
Moreover, it follows from (x) that there are %, % ¢ X such that
= (04)u= (AC)u= A(Cw),
2 =(0B)% = (BC)% = B((%).

Hence
A{(CD—») =0 % —) =
and hence { ) and B(Cd—u)=0,
‘ CT— v eJ(4)CI(AB),
Cai—
and hence U-ueI(BICI(A4B),

O(ii—%) = 0li— 0% = (Cli—u)— (0¥ —0) +u—0 « J(4B).

Therefore, %—% ¢ 3 (4B0)C 3(CAOB), and thus (04, #)~(0B, y), which
was to be proved.
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We consider the family of equivalence classes. We observe that:

Levma 1L Any two classes [(4, )], [(B, )] can always be repre-
sented by pairs with the same first term AB:

(A, 2)~(AB,2) and (B,y)~(4dB,s)

for some 2,5 eX.

Proof. There exists an element % such that # = (4B)u. We have
(A, z)~(AB, Au). Indeed, the element « has the property that (4B)u
=, Au = Au, and v—u ¢ J(42B).

Likewise, there exists an element v such that y = (4B)», and, by
the same argument, (B,y)~(AB, Bv). The lemma is therefore proved.

We can provide the family of equivalence classes with a. group
structure setting

[(4, )]+ (B, y)] = [(AB, Au)]+[(4B, Bv)] = [(4B, Au+Bv)].
We denote this group by Y. We have the natural embedding
X—s>o->[(I,n)]eY.
For every @ S, the map @: [(4, 2)]-[(4Q, #)] is an endomorphism

of Y. The group D of these endomorphisms is commutative, and it is
a homomorphic image of S.

IIL. J. 8. e Silva formulated the following theorem (ef. [2], p. 177).
Let S be a semigroup of homomorphisms A ¢S defined on sub-
groups G4 of a given group X, and mapping onto the entire group,
A(G4) = X for each A, and let S contain the identity map, I eS. For
each A, there is given a subgroup (4)C X. In order that there exist
a group YD X such that each 4 ¢S can be prolonged to an endomor-
phism A4: Y->Y so that
®mAm=y,
(2) AB= B4 = AB,
(3) every element y Y has the form y = d», A eS8, w X,
(4) A7(0) n X = N(4),
it is necessary and sufficient that
(«') R(AB)=N(BA),
(«') R(AB)D B 'R(A),
(") R(AB)D N(B),
(B) for every # eX, (AB) 'w—(BA) 'wC N(4B),
(¥) A7 C N(AB) implies @ ¢ N(B),
(3) /() = {0}.
This extension iy always unique.


GUEST


112 W. M. Zawadowski

One can easily prove that the function 9t: 4 >N (4) is an extensor
for this speeial operator system. Indeed, the conditions 1, 2, 3 are
equivalent to («'), («') and (y), and (a'"'), respectively. The condition (g)
can be formulated as follows

(%) A(Bu)—-B(Av)=10 implies wu-—veN(4B).

This condition imposed on an operator system (S, X) is less convenient
that (%), since it involves the extensor M. At first (++) seems to be
a weaker condition than (x), but that is only apparent. We can prove
the following

Lemva IIL. If S is a semigroup of homowmorphisms, and if (S, X) is
an operator system with an ewtensor N satisfying (xx), then setting

Gi=Gyi+N(4),

and extending every AeS in the obvious way to the new domain G one
gets an operator system that already satisfies (x).

Proof. We assume that an operator system (S,X) satisfies the
condition of Silva (), and we shall prove that the operator system
with the expanded domains G, satisfies condition (x).

Let # be an arbitrary element from X, and 4, B ¢ S. Since 4 and B
map their old domains onto X, there exist 4 ¢ Gz and v e G4 such that

2= A(Bu)= B(4v).
We have # = v+ (4—0). Let us caleulate B(4u) in the system with ex-
panded domains:

B(Au) = B(A v+ (u— v))) ,
and, on the other hand, since u—v e N(4AB),
# = B(4v) = B(40)+(BA)(u—v) = (BA)» +(BA)u—v,
and since v, u—v e Gy, we have u e G4y and
¢ = (BA)v+(BA)(u—0v) = (BA) v+ (u—0v)) = (BA)u.

Therefore & = A (Bu) = (4B)u = (BA)u, condition (+) is satisfied.

It follows immediately from this lemma that our extension theorem
implies the theorem formulated by Silva.
. We know from Lemma I that if (S, X) is an operator gystem satisfy-
ing (*), and if J is an extensor for (S » X), then condition (%) of Silva
is always satisfied. The theorem of Silva however does not imply our
theorem: If we do not assume that (S, X) is operator system such that
the semigroup operation in S is superposition of homomorphisms, then

icm°
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condition (x*) aloune is not enough to prove the extension theorem. It is
enough only if S is a semigroup of homomorphisms with the operation
of superposition.

Our theorem also implies the Fundamental Theorem of Stowikowski
(cf. [5], p- B, and [8], p. 263). Stowikowski assumes a priori that he has
an operator system with a commutative semigroup. In this respect the
difference is that we put the commutativity condition into the extensor.
However, he proves his Fundamental Theorem for operator systems
(S, X) such that S is commutative and the domains satisfy the con-
dition

(&) G4sCGp, B(Gap)CG4, and
*x

(AB)x = A(Bw») for every w#eGup.

The advantage of (x) is obvious.
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