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Topologies induced by groups of characters
by
W. W. Comfort and K. A. Ross * (Rochester)

It is a consequence of the Pontryagin duality theorem that a dense
subgroup H of a compact Abelian group @ cairies the topology induced
by the continuous characters on H. By a theorem of Weil (see 1.1 and 1.2
below), a topological group is a dense subgroup of a compact group if
and only if it is totally bounded. In section 1 we exploit these observations;
that is, by studying groups of continuous characters we derive a number
of results about totally bounded Abelian groups. Similaxities between
compact and totally bounded Abelian groups arve to be expected; the
differences recorded in 1.6 and 1.7 are striking.

Our point of view allows us to give in seetion 2 a simplified proof
of a slight generalization of the following theorem, proved in [6] by
Kertész and Szele. Every infinite Abelian group can be topologized
in such a way that it is a first countable (equivalently, metrizable)
topological group. In section 3, we use the techniques of section 1
to study and characterize the totally bounded group topologies on the
integers.

For another investigation of non locally compact topological Abelian
groups and their homomorphisms, we refer the reader to Hejeman [3].

1. Totally bounded groups. The topological groups (@,%B) to
be considered in this paper will be Abelian and Hausdorff. A subset B
of G is said to be bounded if for each neighborhood V of the identity there
is a finite subset F' of @ for which B C | J a¥. The group (&, B) is said

xell
to be locally bounded provided that @ contains a bounded nonvoid open

set and totally bounded (1) if @ itself is bounded.

* The authors were supported in part by the National Science Foundation, under
contract NSF-G23799.

(*) The group (@, B), if not compact, necessarily admits varvious distinet com-
patible uniformities. We resirict our attention here to the so-called left uniformity,
consisting of all sets {(v,y) ¢Gx G:a7lye U} (UeB). Expressions like <totally
bounded” and ““Cauchy net”, when they occur in this paper, always refer to this uni-
formity (which, because G is Abelian, coincides with the right uniformity for G).
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Evidently every subgroup of a compact (resp. locally compact)
group is totally bounded (resp. locally bounded). That no other such
groups exist is the content of the following theorem of A. Weil.

1.1. TEEoREM (Weil [7]). Bvery locally bounded group G is topologically
isomorphic with a dense subgroup of a locally compact group @, which s
unique up to a topological isomorphism leaving G fiwed pointwise. If @ is
totally bounded, then G is compact.

Tt is a well-known theorem (see, for example, 22.17 of [4]) that the
family of continuous characters on a loeally compact Abelian group
separates points. We note in passing that from Weil’s theorem it fol-
lows that the same assertion is true for a locally bounded Abelian
group. For an even more extensive class of topological groups with suf-
ficiently many continuous characters, the reader is referred to [1].

Notation. The group of continuous characters on the topological
group (@, 8) will be denoted by the symbol (&, B)". The symbol Gq
will denote the group @ endowed with the discrete topology; thus (Ga)”
consists of all characters on .

For any point-separating subgroup ¥ of (Ga)”, we let ‘6’3@ be the
topology induced on G by Je. It is easy to see that (G, Bye) is a topolog'le,d
group. A Dasis at the identity consists of all sets

U(F,6) = {we@: [ylo)—1] <e for all zeF},

where ¢ > 0 and F is a finite subset of K.

1.2. THEOREM. Leét (G, B) be an Abelian topological group and let

= (@, B)". Then the following assertions are equivalent:

(a) (@, B) is totally bounded;

(b) (@, B) can be embedded in a compact group G;

(e) =Ty

Proof. (a)=-(b). This is 1.1.

(b) =(c). Each element in ¥ is the restriction to G of exactly one
element of (&) ". By Pontryagin’s duality theorem (24.3 in [4]), the topology
on the compact group @ is that induced by the family (&)". Hence the
topology € on G is that induced by .

(¢)=(a). To show that (&, By) is totally bounded, we choose a basic
open set U(F, &) in G- Let F = {g1, ..., ym} and find an integer N for
which |e#I1¥ —1| < &/2. For each m-tuple a= (K, ..., km) of integers
(0 £ &y < N—1), consider the set

Xy = {m e G |ylw)—e™HIN| < gf2 for T <j<m}.

Whenever X, is nonvoid, we choose a point @, in X,. Then it is easy to
see thab
GCl 0, U(F, 8)
o
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In fact, for each y in &, there is an m-tuple « = (ky, ..., bn) for which

[2a(y) — N} < g2 (1< j<m).

The theorem above is a statement about peint-separating groups
of characters of the form (&,TG)", where (¢, B) is a totally bounded
topological group. The following theorem shows that, in fact, every point-
separating group of characters has this form.

1.3. THEOREM. If G is an Abelian group and 38 is any point-separating
group of characiers on @, then (G, Bye)” = J.

Proof. It is clear that J€C (G, Bye)”.

Consider a character ¥ in (G, Byp)”.
of @ into the torus 7% defined by (x( ) = g (@). Since Je separates points,
the function = is one-to-one. Hence the function @ on (@) defined by

Ofz(z) = ¥(x)

is well defined. A routine argument shows that @ is a continuous character
on 7(@). Being therefore uniformly continuous, the character @ can be
extended to a continuous character on [r(G)]_ This character, in turn,
can be extended to a continuous character on 7% (see 24.12 of [4]), which
we again denote by 6. By 23.21 of [4] there are elements yi, ..., yu oOf
J and continuous characters 6y, ...,6, on T such that

t)) = [ ] 6aity)
k=1

For each k=1, ..,n there iy an integer my such that 6x(f) = ™ for
each t in 7. Hence for each z in & we have

= 0((x(a))) = n(’kﬂc

=1

Let = be the homomorphism

whenever (1,) e 7%

) = [ [ alon™ .

=1
Thus ¥ = H 7%*, so that ¥ belongs to J.

1.4, CorOLLARY. Let G be an Abelian group and let X, and 3¢, be point-
separating subgroups of (Ga)”. If Bz, C By, then 3, C ¥y if Bzo, = Bie,»
then I8, = 3¢,. )

1.5. CoROLLARY. If 3 48 a poini-separating group of characters on
an Abelian group G, then (G, By) is totally bounded.

Proof. Use 1.3 and the implication (¢)=-(a) of 1.2.
The following theorem has an analogue valid for general uniform

spaces. We treat the special case to which our techniques are readily
adapted.
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1.6. THEOREM. Let {Bulees be a family of topologies on an Abelian
group G, for each of which (G, T.) is a totally bounded topological group.
If © is the smallest topology conlaining each G,, then (G,B) is a iotally
bounded topological group.

Proof. The straightforward proof that (&, B) is a topological group
is omitted.

For each a in 4, we set ¥, = (¢, B.)". Letting 3 be the subgroup
of (G4)" generated by | )., one may easily verify that 6= TBgp. The
conclusion now follows fal'om 1.5.

1.7. TaroREM. For any infinite Abelian group @, there is a unique
(nondiscrete) totally bounded group topology G such that every homomorphism
of G into a totally bounded group is continuous. In facl, B = Gy where
Je = (Gq)".

Proof. Let X = (G)" and B = Byp. We first show that a homo-
morphism f from (@, B) into an arbitrary totally bounded group H is
continuous. For every continuous character. ¥y on H, it is obvious that
the character yxof is continuous on (&, ). The continuity of f now
follows from the fact that the topology on H is that induced by its con-
tinuous characters.

To establish the unigueness of B, we consider any totally bounded
group topology B on ¢ different from B. Then T GG, so the identity
map is a discontinwous homomorphism from (&, 8’) onto (&, B).

1.8. Discussion. If in 1.6 the words ‘““totally bounded” are replaced
throughout by the word ‘‘compaet”, then (except in the trivial case in
which the B,’s all coincide) the conclusion must fail. For otherwise the
compact topology G would properly contain some Hausdorff topology B.,
which is impossible.

Theorem 1.7 also gives rise to a distinction between totally bounded
and compact groups. Indeed, every infinite compact Abelian group (@, 5)
admits a discontinuous homomorphism into the circle group; that is,
(G,"G)*g(Gd)‘. To see this, we recall from [5] Kakutani’s identity
card (Gg)” = 2P Applying this identity also to the discrete group
(G,B)" we obtain the inequalities

card (@, B)" < card(G) < card(Ga)” .

In corollary 1.4 we gave a one-to-one order-preserving correspondence
between totally bounded group topologies for an arbitrary (Abelian)
group G and point-separating subgroups of (G4)”. We now characterize
these subgroups of (Ga)".

1.9. THEOREM. Let @ be an Abelian group and let J} be a subgroup
of (Ga)". Then X is point-separating if and only if 3 is dense in the compact
group (Ga)”.
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Proof. For a family & of characters, we set
A(F)={re@G: Y@ =1 for each ¥ in F}.
Theorem 24.10 of [4] states that
= (e (@) (A7) =1]).

Since A(J€T) = A () and (Ga)” separates points, we have & = (Gq)”
if and only if A4 (JC) contains only the identity element of @, a condition
equivalent to the condition that JC separates points.

1.10. CoroLLARY. If the Abelian group G admils a finite point-
separating growp JC of characiers, then G is finite and is isomorphic with J.

Proof. By 1.9, we have J€ = Jt™ = (Gy)". Since the character group
of a finite group is isomorphic to the group itself, we infer that @ is
isomorphic with J€.

1.11. THEOREM. Let G be an Abelian group and let ¥ be a point-
separating subgroup of (Ga)™. Then (G, Bge) is first countable if and only
if J is countable.

Proof. If J& is countable, then the family of sets U(F, 1/n),
where F is a finite subset of ¥ and % > 0, is a countable base at
the identity of @.

If there is a countable base at the identity, we may suppose thatb
it has the form {U(Fn, &n)}me1. Let J& be the subgroup of ¥ generated

by the set G Fn; clearly Je, is countable. Since each U (Fu, en) is Ty -open,
n=1

we have By C By, Thus 1.4 implies that J6C 3¢, and hence J€ is

countable.

Weil’s space G mentioned in 1.1 is the completion of G with respect
to the uniformity referred to in footnote 1. It is obtained by the a,iijunction
to @ of enough points to ensure the convergence (to a point in G) of each
Cauchy net in @. The fact that the group operation (=, y)—>zy~* from
@ x @ into @ admits o continuous extension to @ x @ results from the
fact that on @ x G the function is uniformly continuous into the complete
space G.

Weil’s construction of @, couched entively in the vecabulary ?f
uniform spaces, is of necessity topological in nature; the group~1:hef>re:t10
properties of G are, so to speak, ignored as long as possible. Restricting
our attention to the case in which @ is totally_bounded, we offer in theo-
rem 1.12 below another characterization of G. _

We emphasize that our theorem does not replace or reprove We.ll’s
result. Indeed, our proof depends directly upon the “existence” portion
of Weil’s theorem.
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1.12. THEOREM. Let (G, B) be o totally bounded Abelian group and
lot €= (G,7C)". Let v be the mapping from @ into (35)" defined as follows:

v(w)(y) = x(x) for x in 3.

Then v is @ topological isomorphism of G onto a dense subgroup of (Jeg)”.

Proof. It is obvious that » is an algebraic isomorphism. Since »(@)
is & point-separating group of characters on 3, it follows from 1.9 that
»(@) is dense in (). The topology B is by 1.2 the topology induced
on @ by X. Since the topology on (3;)" is also induced by J, » is a topo-
logical isomorphism.

2. On a theorem of Kertész and Szele. The generalization of
the Kertész-Szele theorem promised in the introduction is 2.2 below.

2.1. Lemua. If G is a topological group and H is a dense subgroup
of G having a base at the identity of cardinality v, then G itself has a base
at the identity of cardinality n. In particular, if H is metrizable, then G
is metrizable.

Proof. This is a special case of the following elementary result:
It ¥ is a dense subspace of a regular topological space X, and if B is
a local base in ¥ for the point p ¢ ¥, then {intxclxU: UeB} is a local
base in X for p.

2.2. TEEOREM. Any dinfinite Abelian group @G is algebraically iso-
morphic with a dense nondiscrete subgroup of a metrizable locally compact
group G.

Proof. Let H be a countably infinite subgroup of @. Clearly there
exists a countably infinite point-separating group Je of characters on H.
The nondiscrete totally bounded group (H s Gge) is first countable by 1.11.
We now make @ into a topological group (G, B) by decreeing that
Bge-open neighborhoods of the identity e in J¢ are a base ab ¢ in G
Then 'H is G-open in G and (&,8) is a nondiscrete locally bounded

metrizable group. The locally compact completion G of (G,B) given
by 1.1 is metrizable by 2.1.

We note that if & is countable, then the group H of the proof
above may be taken as G itself, in which case @ is compact.

3. Locally bounded topologies on the integers. We have
already identified, at least in principle, all totally bounded group topol-
ogies on an arbitrary Abelian group H: They are the topolegies of the
form By, where € is a dense subgroup of (Hj)". For each such 3, B is
the topology that H receives when the isomorphism » given in 1.12 from H
into (Rg)" is declared a homeomorphism. Another way to obtain all
totally bounded group topologies on H is to determine all compact groups
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containing a dense subgroup algebraically isomorphic with H. Sometimes
such a compact group will contain many isomorphs of H thap are not
topologically isomorphic. The followil?g theorem, an lmme:dlafce c<-m-
sequence of 1.1, is an aid in determining to what extent this situation
may hold.

3.1. TueoREM. Let B, and G, be locally compact group topologies for
the Abelian group G. If the subgroups H, anfl th of @ are G,-dense and
Gy-dense, respectively, and if v’ is o iopol?gwal zsomorpm?m of (Hl,_"Gl)
onto (Ha, Gy), then there 4s a unique catension v of ©* that is a topological
isomorphism of (G, B,) onto (G, Gy).

We now show that the hypotheses of 3.1 may arise nontrivially.
Consider the circle group T with its ordinary compact topology G;. Lt_at ¢
be a discontinuous automorphism of I' that leaves the group H = {927.m: ¥
is rational} pointwise fixed, and let B, be the topology on T' .under which o
is a homeomorphism. Then H is G;-dense .and ’G’B—den.se m 4, and.the
identity mapping of (H, ;) onto (H,B,) is a tqpologlcal 1soxl}orph1sm.
Note that the extension = given by 3.1 is not the identity mapping on @;
in fact, 7 = o. »

The non-algebraic analogues of theorem 3.1 and the example above
for uniform spaces are given in 15.0 of [2].

3.2. DeFINITIONS. The element y of the topological group ¢ will
be called a topological generator of G if y genemfies 2 dense subgrou.p
of @ A group possessing a topological generator is called a monothetic
group. ‘ ‘

We denote the group of integers by Z. If y is a topol_ogwal generaFor
of a group @, we write G, for the topology on .Z under which the mapping
n—>y® is a topological isomorphism from Z into G-

3.3. COROLLARY (to 3.1). Let y, and ¥y, be topological. genemtfm of the
compact monothetic group &. Then By, =By, if and only if there is a topo-
logical automorphism v of G mapping Yy, onto Y-

Proof. For k=1, 2, let Hy = {yi: neZ} and apply 3.1.

3.4. THnorEM. Let y and 2 be elements of T having infinite order.
Then 6, C G, if and only if &=y™ for some integer m. Thus B, = By
if and only if y =2 or y =2

Proof. Let J, and Je, be the subgroups of (Zd)“ genfzmted by the
characters whose values at 1 are y and 2, respe.etlvely. It is easy 1jufo seg
that B, = Te, and B, = Bye,. Since the inclusion ¥, C ¥y ]ioids an
only if # = ym for some integer m, the resul‘t follows fro¥n 4. -

Theorem 3.4 above shows that Z Teceives many different totally
bounded group topologies from 7. The compact group 4, of p-adic
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integers (defined, for example, in 10.2 of [4]) is also monothetic, but Z
can receive only one topology from it.

3.5. THEOREM. If y and z are topological generators of Ay, then
Gy = B..

Proof. From 10.16.a and 26.18.¢ of [4] one readily sees that
there is a topological automorphism of 4, mapping ¥ onto z Now
apply 3.3.

The topologies that Z receives from T'and 4, are clearly 0-dimensional.
The following theorem shows that all totally bounded group topologies
on Z are 0-dimensional.

3.6. THEOREM. Hvery totally bounded group topology on an arbitrary
countable Abelian group G is O-dimensional.

Proof. The topology in question has the form By for some point-
separating group J€ of characters on G. For y in X, it is obvious that
%(@) is a countable subgroup of T. Hence there is a sequence {tal2)mer
in Mz(&) such that [1—tu(y)| < 1/n for n=1,2,.. It is easy to see
that each set U({x}, ]1—in(x)J) is open and closed in Bye. Since

U L=tn) C UE,1n)

for auy finite subset F of J& and # > 0, the open and closed sets of the
form ) U({x}, |1 —1ta(y)l) constitute a base at the identity of @ for By.
1EF

Added June 19, 1964. Responding to a question posed in conversation, Adam
Kleppner has pointed out that the existence of non locally bounded group topologies
for Z has been known for many years. The following example was kindly com-
municated to us by Shizuo Kakutani. Let f be any boundet real-valued function
on Z that is not almost periodic and yet for which the set of e-translation numbers
in unbounded for each & > 0. The expression

d(m,n) = eru%) [fm k) — f(n+k)|

defines a metrizable topology of this type. That there are such functions was schown
by Harald Bohr.
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