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that in general y; takes (K,—Kir) onto (§—Cuy)y Lo onto A, and Epu
onto Dppe if 27 <2 The Lmit of the /s is the required extension

taking @ onto itself.
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Recu par la Rédaction le 12.5. 1963

On a special metric and dimension *
by
J. Nagata (Warszawa)

Once we have characterized [3] a metric space of covering dimen-
gsion <» by means of a special metric as follows:
A metrie space B has dim < »n if and only if we can introduce a met-
ric p in R which satisfies the following condition:
For every e > 0 and for every n-—3 poinds Z,¥q, ..., Yn+2 0of R safis-
Tying
o(Sal®), ) <&, i=1,.,0+2()
there is a pair of indices i,] such that
ey, y)) <e  (i5#7]).
For separable metric spaces, this theorem was simplified by J. de
Groot [2] as follows:
A separable metric space R has dim < n if and only if we can intro-
duce a totally bounded metric ¢ in R which satisfies the following condition:
For every n—3 points &, Yy, ..., Yz th R, there is a triplet of indices
4,7,k such that
ey, ¥i) < elm,ye)  (1#]).

~ The former theorem is not so smart though it is valid for every
metric space. The problem of generalizing the latter theorem, omitting
the condition of totally boundedness, to general metric spaces still re-
mains unanswered. However, we can characterize the dimension of a gen-
eral metric space by a metric satisfying a stronger condition as follows.

THEOREM. 4 metric space R has dim < n 4f and only if we can tntro-
duce a metric o in R which satisfies the following condition:

For every n-+3 points Xy¥y, ..., Yuss it R, there is a pair of indices 1, ]
such that

elye, y)) < olry ) (E1]).

* The content of this paper is a development in detail of our brief note On & spe-
cial meiric characterizing a metric space of dim < n, Proc. of Japan Acad. 39 (1963).
(*) Sea(x) = {y| e, y) < &2}
Fundamenta Mathematicae, T. LV 13
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Proof. Sufficiency. We shall prove that the following weaker
condition is sufficient for B to have dim < #.

We can introduce a metric o in R such that for a definite number
8> 0 and for every n-+3 points @, Yy, --., Ynse in R with o(x, y5) < 4,
j=1,..,2+2, there is a pair of indices i, such that

o(ys, ys) < olw, y5) » (2 #7)-

For » = 0, the condition for p implies that we can introduce a non-
Archimedean metric in R. Hence, by de Groot’s theoremx [1], R has
dim < 0.

To prove our assertion by induction with respect to the number #
we assume its validity and suppose o is a metric satisfying the condition
for 6 and for every -4 points ®, ¥y, ..., Yass in E. Let F be a given
closed set of R; then for an arbitrary positive number ¢ < § we consider
the open neighborhood S,(F) = {S.(p)lp e F} of F. To assert dimRE < n+1
it suffices to show

dim BS(F) < n,

where BS,(F) denotes the boundary of S/(F). For if we can prove the
assertion, then for given disjoint closed sets F, ¢ and for an m, with
1jme < 6

8 = U [SumlF) —Boml @)

m=my

is an open set such that )
FCSCR-G,

B(S)CL U BSumlB v [ U BSm(@)];

m=my m=ng

hence by the sum-theorem we obtain dimB(S) < » proving dim B < » +1.
If we denied the assertion, then by the inductive assumption there would
be n+3 points x, ¥y, ..., Yn+e in BS(F) such that

o(m y) <&, ey, y1) > o(@, ¥s)

for every pair 4¢,j with 7 = j. We choose a small neighborhood U(x)
of # such that for every point #' of U(x),

o',y < e
and
ey, y1) > oo’ 1), 5],
hold. Then there exists a point y,.; of F satisfying

Sclynrs) A~ U(x) 0.
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Take a point &' e 8{(Yn+s) ~ U(x); then

o(@'yys) <e <,

e, y3) > o(@'; 93),
oY1, Yn+s) = &> 0(Z', Ynas),
o (Ynss, Y1) = &> o(&', ¥y),

i=1,..,mn+3,
17, 1<, j<nt+2,
i=1,..,n+2,

j=1,..,04+2.
But this contradicts the property of g. Therefore we can conclude that

dim BS(F) <
and accordingly
dimR<n+1.

To carry out the proof of necessity we need the following termi-
nology which is a slight modification of the concept ‘rank’ of a collection
of sets established in [5] or [6].

DrrFINITION. Let © be a collection of subsets of R. We call the Rank
of © not greater than n and denote it by

RankS < n

if & has the following property:

If

Uyy oo UG, ﬁln...r\l_]z?'—g,
U; ¢ U; for every pair 4,j with 4 %7,

then I << n.

Incidentally, we call a collection {U,, ..., U} of subsets or the sub-
sets themselves independent if U; ¢ U; for every pair 4,7 with 4 # j.

Proof of necessity Let R be a metric space of dim < n; then
we shall explain how to define a metric ¢ of R which satisfies the desired
condition. By use of the decomposition theorem we decompose E as

n+1

R =2_L;j1_A¢

for 0-dimensional spaces 4, ¢ =1,..,n+1
The point of the proof is to define a sequence

1) B> B> B> B> ... (%)
of locally finite open coverings such that
(2) mesh By, = sup{8(V)|V e B} <1/m

(%) As for terminologies and notations about coverings, see J. W. Tukey, Con-
vergence and uniformity in topology, Princeton, 1940.
13*
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and a locally finite open covering Gy, = { V)V € By} for
each finite sequence o, ..., mp of integers with 1 < m; << My <<... <my
such that

(3) Gn=Ba (Sw(V)=V for VeBu),
(@) it 2720 127 then Gy, > Sl
6] Rank | {Gmpmpl 1 <y <My < oo <Mpy <n+1.

¥

We shall define, by induction on the number m, locally finite open
coverings By, ..., By and {Goy.mpl 1 <My < ... < My < m} satisfying the
following condition Dbesides (1), (2), (3), (4). If we put, for brevity,

Sl 1 <y < e <y <Y = (S5 oeey S}

then

(6) U, U € S; implies either U U or U=1T",
(7) U, U €S0 ... 0B and US T imiply TC U,
(8) RankS; v ... v Sy < +1,

9 ordpB(S, v ... U Gpuny) <i—1  for peds,

where for a collection & of subsets and a point p of R, B(S) denotes
the collection {B(U)| U ¢S} (®) and ordy & denotes the number of the
members of © which contain p.

For m =1 we construct a locally finite open covering B; = {V,]
a e Al} with

ord®B < n+1, mesh®B <1,

where for a collection B of subsets B denotes the collection {V| ¥ ¢ B}.
Then there is an open covering B;' = {V.'| a ¢ 4;} for which
FaCcv,.
Then, as we have seen in [4], Lemma 2.1, we can construct open sets V',
a e di, such that _
ViCr, 'CV,
ordp (B(V") ae A} <i—1

for ped;.

We choose from {I,''} ae 41} the members ¥,” for which ¥, C¥;"'(fe41)
implies ¥,” = ¥}"" and make a collection B, out of them. Then it is easy
to see that B, = &S] is a locally finite open covering satisfying all the
required conditions. Now, let us assume that we have already defined
By, .y By and (G, ..., Sy} to define B,,., and

{Bkmyz1y vy Crtmen} = {Gmyempl 1 <y < oo <ty = m+1}.

(*) We often call a collection of subsets merely a collection. B(U) denotes the
boundary of U.
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First, we construct a locally finite open covering 8 with

meshB < 1/(m-+1), B*< By,

such that

10y i Uyt T1€By 0 eee U By and Ty~ .. A T; =9, then
ST, B~ e A ST, B) =0,
(11) for each p e R, S3(p, Q) meets only finitely many members of
GSiv e U Brm s
@a2) if U, U eS,u...u Sum and UC U, then AT, B)C T,
(13) if U,0 e u..uBpm and TUpU, then

(U, B)D T .

Since S; v ... U Sy s locally finite, we can choose such a B as follows.
By use of the local finiteness of &, v ... u Sim, we can easily
choose a sufficiently refined B to satisfy (11) and (12) besides mesh
<1/(m-+1) and B** < By
We shall show how to define ¥ to satisfy (10) and (13), too. For
each point p of R, we define a set S(p) by

8(p)=N{R—-Tlpel, TeBu..u Bym};
S = {8(p)lpeR}

is an open eovering since S; v ... w Sy is locally finite. If we choose
B such that B** < S, then B clearly satisfies (10).

For each pair U, U’ € S, u ... U Gy satistying U D U’, we assign
a point

then

p(0,0)YeU-T.
For a definite member U of &; u ... v Sy,
N(O)=R-U{p(T, 0T p U}
is an open neighborhood of U by virtue of the local finiteness of
&, U ... v Syamy. We choose an open neighborhood N'(U) of U such that
N(Oyc ¥,
N={ND)UeB, v ... S} is locally finite.
Now, we can choose B such that
8T, B) = 8T, V) CN'(D)
then B clearly satisties (13). We note that if B satisfies one of (10), (11),

(12) or (13), then every refinement of B also satisfies the same condition.
Thus we can construet B satisfying all the desired conditions.

for every UeS,u ... w Bium ;
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Let B = {V,Jaed}; then we can construet an open covering
W = {W,| a e 4} satisfying -
W.CV,.
Since by (11) each 8(V,, B) meets at most finitely many of Ue & u...u
w Gy, for each of those U we can define an open set V(TU) such that

(14) W.CTV(U)CTV(U)CVq,
(15) if U 5= T, then either ¥,(U) CVLTU’) or V(T)CVo(T),
(16) if UeShymy U eSligy 2™ +owr2 <20 270,

then Vo(U)CTVL(U").
By virtue of (9) we can choose Vo (U) satisfying the following condi-
tion, too,
(17) ordpB(G U e UBmw B) <i—1  for pedy,
where
B ={V(U) aed, UeBru...wuCrmi (.

Suppose that Spy.m(V) = U (V€ Bpm,) is 2 member of S U ... w Sy
then we put

Sgengma(FV) = UVU)] e ed, 8(Ve; B)n U #+07,

G;rll..,mgm-(—l = {S;n-...mpmﬂ(v)l VeBm,).

By (11), G, .mpm+1 is a locally finite open covering.

(18) We choose only those members of &, mpm-1 which are not con-
tained in any other member and denote the collection of those
members also by Gp,.mpmii-

Adding those locally finite open coverings Gi,.mpms1, 1 <ty < ...
< mp < M, to the collection
= {617 weey 6k(m)}
we obtain a new collection
X = {8, ) Grmys Skmys1s - s Srimrn-1} -

Then we can see that this collection X' of coverings satisfies the con-

ditions (6), (7), (8), (9). )

As for (6) we have just altered Spy.mpm-1 80 that X7 satisfies that
condition. To see (7) let

U, U'e Gl (S W G;-(,n+1)_1 and U (=: U,
If
Ue Gk(mh—l e 6k(mrl)—l 3 U G1 e Gk(m) )

(*) See [4], Lemma 2.1.
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then
U= U{Iiu( Z_vﬂ)' a € Av S(raa 93) m Uo #* O}

for some Ug € B, U v Spmy- We shall denote such a set U by S3(U,, B)
in the rest of the proof. Hence

r,crcuw
Therefore it follows from (12) that

TCT,.B)CTU .
If
F € Gl L= PP ) 6];(”:), Z_” € Gl{(m)fl L R ) Gk(m+1)——1 .
then
U = 83 Ti, B)

for some Ufe®;u...w Spom- If we assume that T;) T, then by (13)
SULBDTU,

and hence U’ p U, which is a contradiction. Thus we obtain UC T
which implies
TCUC8T, B)y=1".
If
U: U'e ek(m)fl o U ek(m—,—l)—l 3
then
U =830y, B), U =8Ts, 9B,

for some Uy, Upe®,u ... U Sy with Uy 5= Us. Hence, by (13), we
obtain U, C Tj. I Ty, U; belong to the same covering S, then U and U’
also belong to the same covering which is impossible since UG U". Hence
we suppose that U, and U; belong to the distinet coverings Spy.mp
and &y,.4,, respectively. If

—my | p—m =h )
gmi  poTMe o oh,

then it follows from (16), the loeal finiteness of B and U,C U; that

U= Sg(on B) = U {Vul Uo)i @ ed, 8(Vo, B) U, + 9}
CUTAT acd, 8(Ve,B)~ Us =0} = 8i(T5,8) = T"-

If
oML 427 > o7hy a7l
then by (4) _
U,cT;,cT, for some UeCmy.my-
Hence

U = 83Ty, B)S U = 8(Ts, B)C 8o(U1; B),
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but this contl‘adic&s the definition (18) of Gony..ompm1 -
we can conclude UC U’ proving (7) for X'

Now, to prove (8) for X’ we suppose

Thus in any case

Uiy oy Ui € Gy U o U Crmrny—1,
Uiqg U; it 5.
If we assume
U17 eeey Uh € 61 AR 6];(";) 3
Upsay oee

3 UZ € 6].‘(»1)+1 (SRR 6k(m+l)—1 3
then

Us = Sﬁ( UDS; 513),

s=h+1,...,1

for some Upse Sy ... v Gypy. Since {U1 ..., Uz} is independent, it
follows from (7) for ¥ and (12) that Uty ooy Uny Uay oovy Uy arve also
independent. If we assume that

I-j]f‘\---f\Uhf\ﬁu][_rlr\...(\ﬁglzg,

then we obtain from (10)
Uin..nTC CimnnOyn S Ugps1, BY A oo A —?(Ugl, R)
C8(Uyy By~ v SHTh, BY ~ S3( Ui, By o A S Uy, V) =@ ,
which is a contradiction. We can, therefore, conclude

UimneenOnnlis e n Oy £ 0,

and hence by (8) for X, we obtain I<n+l, ie.

Rank &, v ... v Syuan-s <n+1
proving (8) for XV,
Finally, to prove (9) for X', we suppose

Ppedy,

PeB(U)n..AnB(T),

LTI’ ey Uh € 61 A A 6k(m) 3

Unt1s ooy Ure Gppmysr © i U Sagmey—r »

Us = 83(Tus, B), s=h+1,..,1,

Upse S u... U Siimy -
Since {Vo(Us)| aed} is locally finite, we obtain
B(Us;) CJ {BV.(Uss)| aeA, S8(Va; B) A Ups # B} .
Hence

r EB( U;) fa T ral B( Uh) Ia) BV,,()H.I)( C’VMHI) Ia TN oY BV,,(Z)( Uo[)
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for some distinet members Vop-ny(Ugns1), -y Va(Ta) 0of B’ defined
n (17). Therefore from (17) we obtain 1<i—1, i.e.

Ol'de(el v Gk(m+l)~l) << t—1.

Thus X satisfies all of (6)-(9).

Finally we shall define %B,,., = S),.; = Syu-ry. For the preceding
covering 2B’ defined just before (14) we construct a locally finite open
covering MW such that W < W’ and

(19) Rank S, v ... v Sgmayy—1 v W< +1 .

Sinee X’ satisfies (8) and (9) such a covering MW can be constructed by
a slight modification of the process used in [6], proof of Theorem 2.

In general, let W’ be an open covering and & a locally finite open
covering with Rank@ < # +1 and ord,B(S) < ¢—1 for p e 4;; then we
can assert that there exists a locally finite open covering I satisfying

W< W, RankSuMWLn+1.
Let
By = {p| o1dp,B(B) =k}, k=0,..,0;
then
BrC A v oo v Apys,
and hence we obtain

dimBr < n—=%&

by the decomposition theorem. Since B(&) is locally finite, each By is
a closed set and satisfies By, C Bx. For every point p of By—Bpi1, we
can choose an open neighborhood U(p) of p such that

Tp)nS#0, UPAR-S8 =09
for exactly # members § of & (°). Then
W = {U(p)| p € By—Bpi1}

is a collection which covers By—Bj.; and consists of open sets which
do not intersect By.;.
Now we shall define n-+1 locally finite collections P, £ =0, ..., %
of open sets such that
SBk—l C”B)c < W 3
in_sBk—l < un—k H]

ordPr <k +1,
Pr covers By,

where we put
Uy ={Up)l peBn}; Pa=0.
) In general, if two subsets U and § satisfy this condition, then we call U over-
flows 8.
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To this end we shall show by induction on the number m that for every m
with 0 <m<n we can define m--1 locally finite open collections
Py ..., P such that

PP, CPY < W, ordPr <Ek-+1,
P — Pl <WU,z, Pr covers By, Ek=0,..,m.

For m = 0 we choose, by use of dimB, < 0, an open covering Q of B,
with

ord D <<1, S <U,AW.
Since Q is a locally finite closed collection of order <0 in R, we can
easily see that theve exists a locally finite open collection Py in R
such that )

ord P <1, [< Po< Wun W
Then P is the desired open collection for m = 0.
Now, let us suppose we have defined Bf’, ..., Pm at desire. Let
Pr ={P) e« <apr}, Ek=0,1,...,m.
Since dim B,_p,;1 < m+1, we can choose a locally finite open covering R
of B, m-, satisfying
ordR<m+2, N<Pro Uy, R<W.

Since By_,—; is closed, R is a locally finite closed collection in R of
order <m-+2. Hence we can easily see that there exists a locally finite
open collection M in R such that

ordM<m+2, R<M<ProWy s, MW<W.
Consequently 9 covers B,_p,—,. Then, putting
Po=u{M| Mk, MCP,, M g P; for every g <a},
P =Pl a<opp}, k=0,1,..,m,
Pt =Pu U {M| M ¢ P, for every a < ameq},
we assert that P77, ..., Pmii are the desired locally finite open collec-

tions for # = m +1. The only problem is to show that PP covers Bn_i.

Since Ppii clearly covers By.n,.i, we may assume k<< m. To see this
we note that each element of P, —Pi does not meet B, ., because

gB::_\BT < ltn—k-—l Yo Hn_,n,

and each member of W, ;v ... v U,_,, does not meet B,_;. Further-
more note that each member of U,_,,_; does not meet B,_; either. Let
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p be a given point of B, ; then pe M for some M e M. From the above
note and M < Ppw Uy, it follows that

peMCP
for some P ¢ Py which means by the definition of PR

PelMCP
for some P’ e Pt Hence Pi™' covers Bn_;. Thus we get desired col-
lections By ..., P for every integer m with 0 <<m <.

Putting
PBe=Pi, k=0,1,..,n,

we get the initially desired n+1 collections. We put
Pe = (Pl yelpy, k=0,..,7n.

We note that P, is a locally finite open covering of R. Hence there exists

an open covering
Wy = {W,f y eln}

of R such that W,CP,.
If we put :
%k*:{wyl ?eFk}i E=0,..,n,

then we can easily see that
W, < W, Rank W, < ord MW, <n+1,
ord Wy, < k+1, We—Wieey < Wi
Put I = Wy,; then let us show that
RankS v W< n+1.

Suppose _ o _
pelim . nUpnUpimn Uypsa,
v,q¢U; it i#j,

Uiy U €S, Upsryeors Unsae W
Since )

RankG < n+1, RankW<a+1,
it must be

1<k n+l.

Since

ord Wy r<n—k+1,
at least one of Ugiyy ...y Unso dOes not belong to MW,_r. For example, let

Uk+1 € ﬂBHr—ﬂBl
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for some !> n—k. Then, since

QBHI’“}IBZ < un—l-l )
and each member of U, ;; overflows exactly n—I—1 members of G,
Uryy overflows at most #—1—1 members of &. Since n—1—1 < k-1,
Uj+: overflows at most £ —1 members of . On the other hand, since
Uy ooy Uy Upsy satisfies

UsqqU; it isj.
and

pelimonUen Do,

Urs1 overflows k members Uy,...,Ur of S, which is a contradiction.
Therefore we can conclude that
Rank& o MW << n-+1.

Thus W is the desired covering.
Let W Dbe a given member of W. For every member U of
Elu e U 57;(,,;+1)_1 such that

UPW, U~AW##0,

we assign a point
W, U)e W—U.
Then a(W, U)e v
F(W) = U Gw, )i U2 W, UnW G, UeBu...u 6k(m+l)h1}

is a closed set contained in W, because W meets only finitely many
memb,ers of &, v ... U Gyppen-1 sinee W< W < B. Hence, by use of (9}
for X', we can construct an open set V(W) for every W e I such that

FW)CT(W)CV(W)CW,
0rdp B v ... v Byuy-1) v {BV (W) Wel} <i—1 for
Put
Buutr = Gnsr = Gy = V(W) W e, V(W)CV(W,) (W, e M)
implies V(W) =V (W,)}.

Then it is easy to see from (8), (7) for =’ and (19) that

2= {&,
also satisfies (6), (7), (8), (9).

Since (6) and (9) are clearly satisfied by Z”, we shall only concern
(7) and (8). Let

U, U eS8 v ... U ey

A €A{ (6)

"t Gk(m+1)}

and TEU.

(%) See [4], Lemma 2.1.
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If

Ue Si (’l #* k(’/ﬂ +1)) y U'e Gk(m+1) 3

then U’ C U, for some U,eS;, because
Gk(m+1)<ﬂ)3_<i¥<ﬁ13**<‘3m<6e.

This implies U S U’ C U,, which contradicts (6). Therefore we assume

(1 == k{m +1)).

Ue 6k()ﬂ+l)’ U'eB;

Let

U=V(W) for Wed.

Since U C U’, in view of the process defining V(W) we obtain WC U’
and hence -
vcwcvu
proving (7). To see (8) we suppose
TUine.nl1#0
for independent members Ui, ..., U; of S v ... u Spomen- Let
Uyy ooy Un €Sy U oo U Gppmen-15 Untay ooy Ur€Bpimen 3
then we may assume
Us = V(W)

Since U;C W,

for Wee, s =h+1,..,1.

Ulr\...nﬁhr\ Wh+1r\..<r'\ Wliﬂ.

Besides, Uy, .oy Uny Way1s -, Wy are obviously independent by virtue
of (6) for £’ and the fact that we can suppose, without loss of gener-
ality, 9 also satisfies the condition (6). Therefore from (19) we obtain
I<n+1 proving (8): It is also easily seen that B, ..., B,pe1 and
S, oy Cpmeyy satisfy (1), (2), (3). The validity of (4) is shown by an
argument which is a slight modification of the proof of Theorem 5 of [3]
and omitted here. Thus we have defined By, m =1,2,... and Sy mps
1< my <...<mp which satisfy (1)-(3).

We now introduce a metric ¢ in R by use of the coverings

Shpompy 1 E<m<..<mp and G ={R}
as follows:

Q(’rv .2/) = inf {2_’"1 T eee T 2-—7121,{ Ye S(.(‘, E:ﬂl--.’ﬂp)} .

The proof that p is a metric is a slight modification of the proof of
Theorem 5 of [3]. For that proof, we need, besides the structure of
Sy (F), (1)-(4) and (16). Here we shall only prove that the metric ¢
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satisfies the special condition desired in the theorem. Let @, 9, ..., ¥p1e
be given n -3 points of R. For every >0 we obtain

MYy ey Mpys =1, 0, 2 +2

such that

oz, yy) <27 +27"0 < o(@, y)+e

and

Uf € Gl,nzu.uz;m
such that x, y;e U;. It follows from (5) that there exist U; and U; (¢ # §)
such that U;C Uj;. Therefore

oy, yp) <274 270 < (2, ys) +e.
We take a pair 1, satisfying
o(ye, ¥1) < o(Z, ¥5) +ém
for a sequence {en} of positive numbers converging to 0. Then
oye, 1) < o(@, )

proving the necessity. Thus among the conditions (6), (7), (8), (9) for
Sy -eey Sgeny the condition (8) is essential. The other conditions are needed
only to continue the indunective argument.
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