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There also exists a g e G(8) defined as follows:

g(@) = file(w) for all 4 and all z ¢ P(R),
g(z) = f(x) elsewhere.

Now suppose © ¢ F(RY). Then f(s)e F(R¥) and gf (@) e F(RP); on the
other hand, §(z) ¢ F(RY) and fg(z) ¢ F(R{). Hence (i) holds.
CoroLLARY 3. If 8 is an ordering relation and if G(8) is non-Abelian,
then
z(G(S)) > 9N,

Proof. By Theorem 2, S is representable in the form (22) above.
For each function % on the set of integers to {0, 1} we use (22) above
to define an automorphism f; of §:

fuw) = @ for w e F(Th) © F(T,),

flw) = 1§ (@) for all j and all o e F(UD,

ful@) = 1% (@) for all j and all &« F(VY),

fal@) = 3 w) for all ¢, and all & e F(RY).
Clearly, f; 5= fr for h # h'.

We note in conclusion that every non-Abelian G(8) has as a subgroup
the automorphism group of a relation of type (w*+ w)2
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On the imbedding of a regular ring in a regular ring
with identity
by
L. Fuchs (Budapest) and I. Halperin (Kingston)

1. Introduction. Throughout this note we shall suppose that R
is an associative ring, regular in the sense of von Neumann (this means
that for every a ¢ R, ata = a for some # ¢ R). We shall prove the following
theorem:

THEOREM 1. 4 regular ving is isomorphic to a two-sided ideal of a reqular
ring with identity. .

A special case of this theorem has been established previously by
Kohls [3]. Also, Johnson [2] has shown that, for a certain class of rings
which includes all regular rings, each of the rings is isomorphic to a subring
of a regular ring with identity.

In this note we shall not require familiarity with the theory of regular
rings.

Owr procedure is to imbed the regular ring R in the ring of all pairs
(@, o) with @ ¢ R and o from a suitable commutative regular ring M with
identity such that R is an algebra over M. If every non-zero element
of R hag the same additive order, necessarily a prime or infinity, then
we can choose M as the prime field of the corresponding characteristic
(and begin our proof with section 4). In the most general case we shall
need the following result:

THEOREM 2. There exisls a commutative regular ving M with identity
such that every regular ving R is an algebra over M.

First we shall construet this ring M and then turn each regular
ring into an algebra over M. Finally, we verify the main vesult, ie.
Theorem 1.

2. Construction of M. Let p,,..,7:, .. be the set of rational
primes in some order, and K, the prime field of characteristic p;. Define
K as the complete direct sum of the Ky,:

K= Z* Km ’
i
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that is, K consists of all vectors (g, ..., i, ...) Wwith pg;eK,, where
equality, addition and multiplication are defined componentwise. K is
obviously a ring (moreover, a regular ring) with the identity (1, ..., 1, ...)
where 1, denotes the identity of K.

Define M as consisting of all ¢ = (gy, -.-; 01, ...) ¢ K such that, for
some pairs of integers s, with {> 0, we have

(1) to; = 81y, for almost all (*) ps.

The number s/t is uniquely determined by ¢. In fact, if ¢, ¢; = s;1,,
for almost all p; for some rational number sft;, then (Is;—?,8)0; =0
for almost all ¢. Hence either ts;,—#s = 0 (modp;) for infinitely many
P, in which case ts, —1,8 = 0, s/t = s,ft;; or g; = 0 for almost all 4, in which
case pils, s, for almost all 4 and s = 0 = ;. Thus we may associate with
0 € M the rational number s/i:

If oe M, 0e M, and ¢(p) = 8/t, ¢(c) = s'/t’, then gt o ¢ M and
pleto) = % i% =plo)xelo), @leo) = -si:— =¢(0)9(a).
For, if toi=slp, and t'o; = s'1y, for almost all py, then (gt o;) =
(st' £ 18")1y, and 11 04) = (s8')1p, for almost all p,. Obviously, 1 = (1,,,, ...,
Ipis -.) € M with (1) = 1 is the identity in M. Thus M is a subring of K
{containing the discrete direct sum of the prime fields) with identity
and ¢ is a ring homomorphism (?) of M into the rational number field K,.
{Moreover, ¢ is surjective. For, if s/t ¢ K,, then ¢ =& 0 (modpy) for almost
all p; and for these p; there exist solutions & = 01 € Ky, of the equations
16 = sly,. If we choose arbitrarily the remaining o, then manifestly
€= (01 -y 01, -..) ¢ M with ¢(p) = sft.)

We claim that M is regular. If ¢ = (g, ..., g1, ...) ¢ M and ¢(p) = s/t,
then define oi= ¢i* or =0 according as g; %0 or =0. In this case
0 = (01, «uny Oiy ...) € M. For, if s = 0, then almost all o: = 0 and almost
all o3 =0. If s 5 0, then almost all g; satisfy fg; = sl,,, and therefore
almost all o; will satisfy 11, = so;. Furthermore, (go): is 0 or 1, according
a8 i =0 or not; thus gogp = (g, ..., 0ty -..) = ¢, and M is regular.

Thus the M we have constructed is a commutative regular ring
with identity.

3. Proof of Theorem 2. Let R be an arbitrary regular ring.
For the element§ a of R and for all g ¢ M we shall define a multiplication
ea 80 that B will be an algebra over M ; that is,

(*) Almost all means all with a finite number of exceptions.
(*) The kernel of @ is the discrete direct sum of the prime fields.
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)
) e(a+Db) = ga+ob,
¢) (o+o0)a = pa+oa,
) (e0)a = ¢(oa),

)

for all g, 0 e M and a,b eR.

If » is an integer >1, R, will denote the set of a ¢ R satisfying
na = a-+..+a=0 (n addenda), and R, will denote the set of beR
satistying b = ne for some c¢eR. Obviously, R, and R, are two-sided
ideals of R and, if m is a divisor of w, then Ry DR, and B, D R,.

LeMMA 1 (%). Let R be a regular ring. Then

A. R = R,@®R, for every n (4);

B. Run = Bm ~ By for all integers m, n;

C. By = Bn@® B if m and n are rvelatively prime integers;

D. By = Rp,®... ® Ry, if Py, ..., P& are the distinet prime factors of n;

E. if t =1, then for each a < By there is one and only one b ¢ By such
that a = tb (this unique b will be denoted by t "o a).

A. Suppose that a e R. Then for some x ¢ R, na = (na)z(na). Set

Uy = @—NAXA ,  Gp = NATG .

We have a = ap-+Gy, where a,e Ry, since na, = no—narna = 0, and
obviously @, ¢ B,. Thus R, and B, generate E. Suppose that b e By n By.
Then b = ne for some ¢ e R. Hence, for some y ¢ R, b= byb = (ne¢)yb
= ¢ (nb) = 0. This proves A. Henceforth we shall denote the components
of ¢ in Ry, B, by au, @u, respectively.

B. Clearly, By C Ry ~ By On the other hand, if @ € By~ By, then
& = mb = nc for some b, ¢ € B. Hence, for some z € R, a = ava = (mb)z(ne)
= mn (bxe), 50 @& € Rpn. This proves B.

C. Since RynC Ry, A gives By = (Byr Run) ®Bun. We show that
Ry~ Run = Rm. For suitable integers u#,v we have wm-ton = 1; If
@ € Ry then a = (win+vn)a = n(va) € By thus Ry C Ry and 80 B C Ban
A~ Ron. If b e By ~ Rpn then by = b—bp € By and by € Bn imply, in view
of B, that by € Bm~ Ry = By, Hence by = b—by € Ry implies by = 0
and b = by € Ryp. This proves C. _ _

D. By A, for every 1> 1, R = Ry @Ry = Rp@® Rpi. By B, Bpt = Ry,
and 50 RpC Ry implies Ry = Bp. A repeated application of C yields
for n = pi‘ pfc’"'

B =EBn®.. @Rp;f@m =R,®..®R, ® R,.
This, together with R, C R, and A, gives D.

(*) Most of this lemma could be omitted by making use of the description of
additive groups of regular rings (see [1], Theorem 74.2).
(*) We write R = A@B if the ring R is the direct sum of its idealy 4 and B.
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E. If a< B, then for some #,y <R we have a = ir = (tv)y (iv); so
a =1b with b =#(xyz) ¢ B;. On the other hand, if ¢ =’ with b’ ¢ &,
then b—b'e Rj~n By =0 and b =1b'.

This completes the proof of Lemma 1.

Now we have come to the definition of ga. We write explicitly
0 = (@1 -y 01, --.) and choose s,? so that (1) holds. Then we select an
arbitrary finite set of primes p,, ..., px with the proviso that among them
all the primes occur for which (1) fails to hold. By A and D of Lemma 1
we may write
(2) Q= Qp+ oo+ Uy + Cpypy
and we define

(3) 00 = 010p, + oo Okl + 1 o(5Tpy .1y -

First of all observe that R, is evidently a vector space over the
prime field K, of characteristic p, and therefore in (3) the product
oiay, has a well-defined meaning. Because of E, the last addend in (3)
is defined (if s % 0, ¢ has all its prime factors included in P1y -y Pr)y and
it is clear that oa, as defined in (3), belongs to R. We need to show that
in definition (3):
() the choice of the finite set of primes is irrelevant,

() the value of ga is not changed through the use of a different
pair s, % in place of s,¢ (provided s,/t, = sji).

If we take a new prime py.; then by C of Lemma 1 we have Gy, ...pp

= “fk+1+a'm...mm+1- Since fgr41 = sly,, we have 8Tp,...pp = 0k+1 sy +
+ 8y, ...ppprsr s WhenCE

~1 rem -1 o
U o (Slpypp) = Qi1 Oy, +17 10 (8Bpy...oimpsn) 5

since division by ¢ in Ry, ,,(C Ey) is unique by E. Repetition of this
argument shows (s). To prove (), choose the set P1y -y P& t0 include
all primes for which (1) fails to hold for either s, or 8,%, and
let . m =py...pr. Then ts; =t;5 implies 1s,d@y, = 4,50y, 5,3 = 17" o (£, )
=1t o (s34)), and hence & o (s,@,) = 170 (s@n) [here we use the fact
that if be R, then for any integer r, 7b ¢ K, and 17 (1B) = (£ o))

We need to verify (a)-(e). Given o, o ¢ M, choose the set p,, ..., pr
sufficiently large to include all primes for which neither ¢ nor o satisfies (1).
Taking the corresponding decompositions (2) for ¢ and b ¢ B, we may
prove (a)-(e) componentwise. This, being a straightforward computation,
will be omitted. This establishes Theorem 2.

4. Proof of Theorem 1. We begin with the following lemmas.

' LeMMA 2. If a is an element of o regular ring R, then there ewisis an
idempotent ¢ € R such that ae = eq — q.

icm
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We have for some 2 ¢ B, a = axa. Put f = ax; then f is an idempotent
and fa = a. There is a y ¢ B such that ¢—af = (a—af)y(a—af). Again,
¢ = y(a—af) is an idempotent, and (a—af)g = a—af, gf = 0. Set e =7+
+g—fg. Then ¢ is an idempotent, since

E=+9—IN[+9—19) =Hi+9—19)+g—fhg=F+g—fg =e.
Furthermore,
ea = (f+g~fg){fa) =fa =a,

a6 = a(f+9—f9) = af +(a—of)g = af +a—af = a.
This proves Lemma 2.

LemMA 3. If a is an element of a regular ring R and o, o are elements
of M (the ring of Theorem 2) such that gog = o, then there exists a be R
satisfying
(4) aba + o (ab 4 ba) + ca® +2p0a + 0% = @ .

Note. If R has an identity 1 and if we write ¢ for g-1, then (4) is
equivalent to (a+ o)(b+o)(a+p) = a+op.

To prove Lemma 3, choose an idempotent ¢ € R such that ea = ae = a;
¢ exists by Lemma 2. Then for some x e R we have (a- pe)z(a+ ge)
= @+ pe. This equation persists if « is replaced by ewe, since (a--ge)e
= g} g6 = e(a-+ pe). We may therefore assume that » = ex = ve. Now
set b =@ —oce. We then have

(a+ oe) (b +oe) (a4 ge) = a+ g6 .

Formula (4) follows since ae=a =ea and be =b = ¢b. The proof of
Lemma 3 is completed.

Now let R be an arbitrary regular ring, and let R* be the set of all
couples (a, ¢) (a e R, o€ M) with equality, addition and multiplication
defined as follows:

(i) (a, o) = (&, @') if and only if & = a’ and ¢ = ¢';

(i) (@, ) +(a, @) = (ata, e+

(ili) (a, @){a’; ¢') = (aa’+ ¢'a+ od', ee)-

By Theorem 2, R is an algebra over M, and therefore the identities

are satisfied which ensure that B* is in fact an associative ring with (0, 1)
ag identity, and

a—>(a, 0)

is an isomorphism of B with a two-sided ideal of R*. The calculation is
straightforward and will therefore be left to the reader. Finally, we need
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to show that R* is a regular ring. Given (a, o) ¢ B*, determine o e M
and beR as in Lemma 3. Then we have

(“7 9)(b7 o)(a, Q) = (a, 9)7

and since (b, o) ¢ R*, R* is in fact |regular. This éompletes the proof of
Theorem 1 (3).
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Skolem-type normal forms for first-order languages
with a generalized quantifier*

by
G. Fuhrken (Minneapolis, Minn.)

Let L be a first-order language with countably many non-logical
constants and let « be an ordinal number. With L and a we associate
a new language L, which is obtained from I by adding to the symbols
of I a new quantifier @ which is read ‘““there are at least x,...”". Let V, be
the get of all sentences of L, which are logically valid (where @ is counted
among the logical symbols).

Mostowski raised the question () whether V, is axiomatizable. For
a =0 he showed that the answer is negative (provided L has a suf-
ficient supply of non-logical constants). One can show (see [3] and [5])
that for the majority of ordinals Mostowski’s proof cannot be adapted.
In fact for a = 1 the answer is positive as shown by Vaught (see [16]).

Another natural question to ask is the following: What is the relation-
ship between the various V’s? (Note that the formation rules for I, are
independent of the particular «.) Here we obtain as partial results:

(1) ¥, C V. for any ordinal o for which &, is regular;

(2) Vo C V, for any ordinal a.

The following negative results are known (assuming that L has
a sufficient supply of non-logical constants):

(3) Vo g_l V. for any ordinal a> 0;

(4) V, $ Ve for any limit ordinal a and any successor ordinel §;

(B) Vqu _¢_ Vs for any ordinals a and B for which s, is reqular and . s
singular;

* The paper is mainly based on §2 of Part I of the author’s Doctoral Disserta-
tion [2]. The main results have been summarized in [6]. The author takes the oppor-
tunity to express his gratitude to his Thesis Advisor Professor Robert L. Vaught and to
Professor William Craig for the stimulation and help received. It was in Professor
William Craig’s Seminar conducted at the University of California in Berkeley in 1961
that the author learned about the problems treated in this paper and obtained the first

results in this direction.
(1) In [10]; see also [11].
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