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he left, presents three formulations of the theory of propositional types, one of which
is based upon equivalence. A proof of completeness is given. However, the systems
differ from ours in various ways, principally-in a rule of definition allowing the intro-
duction of names for arbitrary elements of the hierarchy of propositional types.
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A reduction of the axioms
for the theory of propositional types

by
P. Andrews* (Princeton, N.J.)

Throughout this paper we shall follow the notation used by Henkin
in his paper 4 theory of propositional types (this Volume, pp. 323-342),
hereafter referred to as [H]. Reference numbers followed by ‘H’ refer to
gections of that paper. (*)

Henkin’s paper is of particular interest in that it takes symbols
for the identity relation as the sole primitive constants. That there is
ample historical precedent for special interest in such a system is attested
by the following passage from Ramsey’s article, The Foundations of
Mathematics:

“The preceding and other considerations led Wittgenstein to the
view that mathematics does not consist of tautologies, but of what he
called ‘equations’, for which I should prefer to substitute “identities’. ...
(It) is interesting to see whether a theory of mathematics could not be
constructed with identities for its foundation. I have spent a lot of time
developing such a theory, and found that it was faced with what seemed
to me insuperable difficulties.” (%)

The full beauty of Henkin’s theory of propositional tiypes can perhaps
best be appreciated when the system of axioms in gection 5.1H is simpli-
fied somewhat. Therefore let us replace this system of axioms by the
following

AXIOMS.

(1) (oo T™ A goo ™) == V0o Jontko) -

Graduate Fellowship while working on this paper.
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(¢) F. P. Ramsey, The Foundations of Mathematics, Proceedings of the London
Mathematical Society, series 2, 25 (1926), p. 350.
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(39)  (Vaplfuss = Yaptts)) = (Jap = Gep)-

(4) ((AX;Ba) 45) = Cu, Where O, is obtained from B, by Iiep.la,cing
each free occurrence of X in Bs by an occurrence of Ag, providing no
such occurrence of X is within a part of B, which is a formula begin-
ning ‘(AY,” where ¥, is a variable free in 4. .

Wote that our Axiom (4) is Axiom 7 of [H], while our Axioms (1), (2),
and (3) are closely related to Axioms 4, 5.1, and 6, respectively, of [H].

We next show that each axiom. of [H] can be derived from the above
systerm of axioms with Rule B (5.2H) as the sole rule of inference.

(5) THEOREM SCHEMA. A4, = Aq, where A, is any formula.
Proof.
(3.1) H{Anda)z, = A
(5.2) H(Ampdo)to = 4o DY Axiom (4).
(5.3) A= 4, by Rule R, (5.1), (5.2).
This is Axiom Schema 1 of [H].
(6) TEROREM. - T"AT™
Proof.
(6.1) —(AgoolgooT™ A gooF™) (AyeT™)
E(zguo(goolm/\ goan)) (A T™)
(6.2) l‘(lgm(vmn(goowo)))(lyolm)
= (lgoo(ng"/\ng“))(lyoT"‘) by Rule R, Axiom (1), (6.1).
(6.3) V(Ao T™)20) = - (yeT™) T A (g T") F"
by Rule R, Axiom (4), (6.2).
(6.4) FVx, " =.T"AT" by Rule R, Axiom (4), (6.3).
(6.5) Va,I™ by (5), since by definition of V (4.6H), Va,I" is
(A, T™) = Ay T™).
(6.6) —T"AT™ Dby Rule R, (6.4), (6.5).
(7) THEOREM SCHEMA. (4o =T") = A,, where Ao is any formula.
Proof. Let X, be any variable not oceurring in A,.
(11) }—(Moo(foolm = Tn)) = (lfoo(fuolm))
by Rule R, Axiom (4), (6), definition of A (4.4H).
(7.2) f*(ﬁuo(foulm = Tn)) (AX,dy) = (Moo(foﬂ-Tn = -Tn)) (AXo4,) by (8)-
(7.3) }‘(}*foo(fuoTn = TI)) (AXp4,y) = (Moo(fou—’lm)) (AXo4,)
by Rule R, (7.1), (7.2).
(7.4) (4, = T") =4, by Rule R, Axiom (4), (7.3), econdition on Xy.
This is Axiom Schema 2 of [HJ.

by Axiom (4).

by (5).
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Remark: Tt is now easy to check that sections 7.1H-7.8H apply
to our system as well as to [H], so we are free to use the theorems and
derived rules of inference in these sections.

(8) THEOREM. (T"AF™) =F".

Proof.

(8.1) 1"((}»?/01'/0) Tn/\(}*?/o?/n)Fﬂ) = V24(AYoYo) %o

by Rule Sub (7.6H), Axiom (1).

(8.2) H(T"AF™) =Vz2, by Rule R, Axiom (4), (8.1).

(8.3) H(I"AF™ =F" from (8.2) by definitions of V (4.6H) and F"
(4.2H); indeed, Vayz, is (At,%) = (Az,T™), which is F™.

‘We thus obtain Axiom 3 of [H].

(9) Lemwva. Let X, be any variable of type B, let Ay be any formula
in which X does not ocour, and let B, be the result of substituting Xp for @
at all free occurrences of my in Ay. Then \—(Axpd,) = (AXpB,).

Proof (essentially as in 7.21H).

(9.1) —Vag. Ay =4, by Rule G (7.4H), (5).

(9.2) Vs, (Ampdy)mp = (AXpB,) @

by Rule R, E-Rules (7.2H), Axiom (4), (9.1).

(9.3) = Vap((Ampdo) s = (AXpBy) @) = . (Ampdo) = (AX,By)

by Rule Sub (7.6H), Axiom (3%).

(9.4) \~(AmpA,) = (AXsB,) by Rule R, (9.3), (9.2).

(10) THEOREM. (g™ Agool™) = (VXs(go0Xo))-

Proof. This is obtained from Axiom (1) by the use of lemma (9),
Rule R, and the definition of V (4.6H).

This is Axiom Schema 4 of [H].

Remark. It is now easy to see that sections 7.9H-7.12H also apply
to our system.

(11) TEEOREM SCHEEMA. (44A4,) = 4, where A, is any formula.
Proof.
(11.1) P—((M’omn) = (MoTn))”*-(lyw-?/an)(Mu%)

= (Moo Yoo ") (A5, T") by Rule Sub (7.6H), Axiom (2%).
(11.2) +((Amgzo) = (A, T™) >.F" = T" by Rule R, Axiom (4), (11.1)
(11.3) —F"—F" by Rule R, (7), (11.2), definition of F» (4.2H).
(11.4) —(F"AF™) ="

by Rule R, Axiom (4), (11.3), definition of — (4.5H).

(11.8) (maA®y) = 2o by Rule of Cases (7.9H), (7.7H), (11.4).
(11.6) (4oA4y) =4, by Rule Sub (7.6H), (11.5).
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(12) THEOREM. |—(fo=

Proof.

(12.1) ((Aafa) = (A20a)) = (Moo haaltucto)) (A20fa)
= (Huo- BoalFaotto)) (A0 g)

by Rule Sub (7.6H), Axiom (2°).

(12.2) +((%20fs) = (A20fa)) > hoafa = Noafla
by Rule R, Axiom (4), (12.1).
(}*zoga)mo) = . (Mofa) = (A%0fa)
by Rule Sub (7.6H), Axiom (3%).

;‘-zoga)
by Rule R, Axiom (4),

92) T (Mol fa = ga)) F")= Vo (Mo(fa = ) @0
by Rule Sub (7.6H), Axiom (1).
Vg fo =g
by Rule R, Axiom (4), (12.5).

(12.8) + Vag|(Azefa) @ =

(12.4) FVofa = go) = - (32f2)
(12.3).

(12.5) F([(Holfe =

(12.6) ((fo = gu) Ao = 6)) =

(12.7) +((eofa) = }*zoga) =.fa=ta
by E-Rules (7.2H), (12.4), (12.6), (11).
(12.8) F(fo = a) > hoafu = hoafa

by Rule R, (12.7), (12.2).

Remark. Axiom (2%) seems to be necessary for the proof of theo-
rem (11), which is used in the proof of (12.7) above. However, it is clear
that any finite number of instances of our Axiom Schema (2) other than (2°0)
may be deleted from our list of axioms, and then derived by the method
used in our proof of theorem (12). Indeed, certain infinite sets of instances
of Axiom Schema (2) might be deleted from the list of axioms; for ex-
ample, it would suffice to take only those instances of Axiom Schema (2)
of the forms (2%®) or (2¢0) ag axioms.

(18) THEOREM. |- (&g = Yp) > (fup = Fup) > (fop®s = Jap¥p)-

Proof.

(13.1) (25 = yp) > ()»zﬁ((fu.e = fop) > (fupp = gaﬁf’/ﬁ)))mﬂ
= (225((fap = Gop) > (fans = aps))) ¥
by Rule Sub (7.6H), (12).
- (fapp = Gupyp))
Tap¥p = gap¥s))
by Rule R, Axiom (4), (13.1).

- {fup¥s = Gop¥p) = (9epYp = Gupp)
by Rule Sub (7.6H), (12), Rule R, Axiom (4).

(13.2) (5 = yp) . ((faﬂ = (up)
= ((fop = Gap) > (

(13.8) +(fur = up)

o) ~> - hgafa = hoalla, Where o 48 any type symbol.

icm°®
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(18.4) 1 (fop = Gop) > (fap¥s = Jaslp)
from (13.3) by (5), Rule T (7.3H), Rule R, (7).

(13.8) (w5 = ¥p) = (fap = Gop) > (fos = GapYs)
by Rule T (7.3H), (13.4), Rule R, (7), (13.2).
This is Axiom 5 of [H].
Remark. It is now easy to see that sections
apply to our system.

7.13H-7.20H also

(14) THEOREM. - (VXj(fosXp = JosXp)) >{fop = Gen)-
Proof.
(14.1) }—(VXﬁ(fuﬂXﬁ = guﬁXﬁ)) = (fop = gop) from Axiom (3%) by

lemma (9), Rule B, and the definition of V (4.6H).
(14.2) = {(VXalfopXp = 0 X)) = oo = os))
> (VXp(fos X5 = 9o X5)) >{for = Gos)
by 7.20H, since this is a tautological formula.

(14.3) 1 (VX p(forXp = gusX5)) >

f af = gaﬂ)
by Rule MP (7.12H), (14£.1), (14.2).

This is Axiom Schema 6 of [H]. We have thus completed the task
of showing that each axiom of [H] can be derived from our axioms.

We remark that the entire theory of propositional types can be
developed from our axioms without making any use of the definition
of A (4.4H), and so any definition could De used which did not render
the system inconsistent. (For example, we could, if we wished, define A
as 2y Ao (ool JoooToYo)) = (Agoon(FonoT™T™).) To see this, we remark that
the only place the definition of A is used in [H] is in the proof of 7 JTH

- (T"AT") = T", and the only place the definition of A is used in the
present paper is in the proof of theorem (7): (4, = I") = 4,. To prove
these theorems without using the definition of A one may proceed along
the following lines:

First show that by using Rule R, 7.21H, and Axiom (4) one can
put any formula into A-normal form, that is a form in which it contains
no well-formed parts of the form ((AXﬁB )Ag). Next show that if 4,
then the A-normal form of A, has the form B, = C,. One then sees that
Rule Sub can be proved essentially as in 7.4H-7.6H without using Rule T.
One substitutes (AYoYa) 0T fuu a1d gop in Axiom (3*) and uses theorem (5)
to prove | Vo,(a. == z,), from which one proceeds as in 7 .5H to prove
(B, = B,) = T™ Hence one easily proves Rule T.

One applies Rule T to our theorem (6) to obtain H(T"AT") =

 and combines this with theorem (8) via Rule of Cases and Rule Sub to

obtain —(T™A4,) = Ag. One readily proves —(I"=1") =
rem (3) and Rule T, so to prove (4, = I")
Rule Sub it suffices to prove —(F" = 1"

= T" by theo-
= 4, by Rule of Cases and
= F" This is done as follows:

23*
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Use Axiom (1) to prove ((T"=T")A(F" = T") = Vay(w, = T,
and hence (—(F" = T") = Viuy(w, = T"). Then substitute (Amw,) for f,
and (Az,T") for gy in Axiom (3%) and use the definition of F" to obtain
- Vag(w = 1) = F™

Henkin remarks at the end of [H] that when one passes from the
theory of propositional types to the full theory of finite types, it becomes
necessary to add a constant i) to denote a descriptor function, and an
appropriate axiom involving this constant. We note that for this axiom
it suffices to take the simple formula

‘1(01)(M1(m1 = .7/1)) =y
from which the formula

(! @1) (for 20) > Fon{tacony for)

can be derived without difficulty.

PRINCETON, N, J.
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O pauazHUecKMX NpoCTpaHcrBax
B. Mouomaper (Mocksa)

1. Ora 3ameTKa NPHMbIKAET K pabore [1].

OrPENENEHME. BrioHe peryispHOe npocTpascrso X HasoBem (wenpu-
600UM0) Ouadureckusm, €CTHL Y HETO CYIECTBYET PacIIBpEHHe X, sBrsmomeecst

(HEIPMBOIIMO) FHaMIUecKrM GrKommarTom (1).

SameryM HperKIe BCETO, UTO BCAKOE IUANAUEcKoe TpocTpancrso X ypope-
TBOpSET OTPHIATENHHOM aKcroMe cueTHOCTH (7. €. B X He CymecTByer HECUETHOH
JMIBIOHKTHON CHCTEMBI OTKDBITBIX MHOIKECTB). IleHCTBUTENBHO, €CIH X ecrs
paCIIHpEHpE TIPOCTPAHCTBA X, ABIAIOMEECH JHATAICCKIM GrecommaxTom, a { Uy}
TMBIOHKTHAA HeCUerHas CHCTEMA OTKPHITBIX MHOMKECTB Ipoctpamcrsa X, To
paccmarppsana cucremy {OU,} OTKPBITEIX B X MHOMECTB, BBHICEKAOIIYIO H3
X pammyio cucremy {U,}, MONyuMM TaKyKe HECUECTHYIO NHSBIOHKTHYIO CHCTEMY
OTKDBITHIX B X MHOYKECTB, 4er0 B JHaJudecKoM Guxomraxte GbITh HE MOMKET
(Teopema 3. Mapuesckoro [2]).

Trorema 1. Juadudeckoe NapaxoMNAKMHOE WPOCHPAHCMEO FUHANLHO-KOM=
naxmuo ().

HoxasaTenscTBO. JIOCTATOYHO JOKA3aTh, UTO BCAKOE INOKPHITHE y HOp-
MATBHOIO IIPOCTPAHCTBA X, YHOBJIETBODSIOMIErO OTPHIATENBHON aKCHOME CUeT-
HOCTH, COJIEpYKAT CUETHOE IOKPEHITHE TOTO-Ke IPOCTPAHCTBA.

TIpenmomaraem, 9TO SJEMEHTHI IOKPBHITHA ) 3AHYMEPOBAHEI TOPAKOBBIMI
yuCcHaMy; T. €. uro y = {I;}, rie

a=1,2,3,.., < w0

TaK Kax y — TOKPLITHE TAPOKOMIAKTHOIO IIPOCTPAHCTEA X, TO CYIIECTBYeT TaKoe

(¥ Kax uspecTHO, GMKOMNAKT X seca v maspiRaeTcs (HENPHBONUMO) OHGOUYECKUM, €CIH
OH SBIAETCA 06pAasoM OBOBIIEHHOTO KAHTOPOBA MUCKOHTHHYymMa DT (T. €. TOMNOJOIHTYECKOTO
IPOMSBENEHNs], T MPOCTPAHCTE, KAKIIOE M3 KOTOPBIX COCTOMT M3 JBYX HS0IUPOBAHHEIX TOYEK)
IIPE HEKOTOPOM (HEPHBO/MMO) HEMPEPLIBHOM OTOGPaKSHYI f: D*—>X. Henpepsisaoe oro6pa-
senue f mpocrpanctsa B Ha mpocrpaHcTBO K/ HAGBIBAETCH HenpusoOuMbim, €CIU JTIA BCAKOTO
samKEyTOro TomMuoskectea A s B mpocrpancrsa B mmeem fA # R

(*) Kax WM3BECTHO, TIPOCTPAHCIBO X HASBIBAETCA (HUHAALHO-KOMNAKMHLLM (o aundené-
o8bLA), €CTI M3 BCSKOIO €I0 OTKPEITOTO TOKPBITHA MOYKHO BEIJCIMTS CYETHOE MHOXKECTBO Sile-
MEHTOB, TaKyKe OGDPA3YIOIMX NOKpBITHE Ipocrpancrea X.


GUEST




