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On faithful representations of free products of groups
by
S. Balcerzyk (Toruf) and Jan Mycielski (Wroclaw)

1. Oy denotes the group of real oxthogonal matrices, with dotoer-
minant equal to 1, acting on ®5. ‘W denotes the group of substitutions
w = (ag--b)/(ce-+-d) with real a, b, ¢, d and ad—be = 1.

Our chief result is the following (*):

Tuporzy 1. If & (teT) is a system of groups such that each Gy 18
isomorphic to o subgroup of O or each Gy is isomorphic to a subgroup of
M, G < 2% for cach teT and T < 2% then the free product zllv* Gy s iso-

€34

morphic to @ subgroup of Oy or N, respectively.

This theorem (in the case of ;) was conjectured by J. de Groot
([11]). Tt is a finalisation of a long list of results: F. Hauscortt ([12]) has
proved that the free product Z, % Z, (Zn denotes the cyelie group of order
n < oo) is isomorphic to a subgroup of Os. Therefore the free group

oo
[T Z is isomorphic to a subgroup of Op (by the elementary fact that

ne=1

o
each group of the form G % H contains & subgroup isomorphic to I 2,
ne=l

except in the case when @ or H is the unity group, or G He2 Z,). W. Sier-
pingki ([20] Lemme 1) has proved that the free group 11 ‘!: Zw of poteney
E\‘
9% ig igomorphic to a subgroup of O,. All these results were obtained
for the purpose of the s.c. paradoxical decompositions. J. de Groot (11}
has studied the problem for himself and has given a simple proof and
gome improvements of the result of Sierpinski. Th. J. Dekker ([9]) has
proved that nL Z: t];:' Zn 18 isomorphic to a subgroup of Oy (*).
€

(*) The main results of this paper were announced without prool in [L]. Theorem 1
wag then known to us in a somewhat weaker form improved now by the application
of a result of 8. Swierczkowski (see footnote (7). Another result announced in [1],
gection 3, concerning the representations of free products by permutation groups will
not be studied here since it has been independently obtained and refined by N. G. de
Bruijn ([4], [6], [6])-

(%) Tor other investigations related to our subject see [3], [7], [8], [18].
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Concerning the group W it is known that Z, ¥ Z; iy isomorphie to
the subgroup of substitutions in which a, b, ¢, d are integers (3).

All these results were obtained without the use of the axiom of choice.
Our theorem which generalises of course all of them is obtained by a diffe-
rent method and applies the axiom of choice. It should be mentioned that
the continnwum hypothesis is not applied, due to a method. developed in [2].

It seems plausible that Theorem 1 holds if (O or W is replaced by
any simple connected Lie group §.

In Section 2 we give some gencral results reducing this problem
to the proof of a lemma L(§) which we have been able to establish only
for Oy and . The proof of L((;) and L(W) follows in Soction 3. In
Section 4 we prove other results on O, solving another problem of J, de
Groot ([11]).

2. ¢ denotes any group (the group operations are written multi-
plicatively and the unity is denoted by 1).

For every set K C G we denote by [K] the subgroup of @ gen-
erated by K.

For a system of groups G (teT)(%) we denote by []*@ the free
tel
product of this system, that is the group gemerated by the set of all
ordered pairs (g, t) with te T, g @y determined by the relations
g, t>—1 =g, 15,
Gy 1> Gy B> = {18, 1,
<11 4y = <17 298
If we have a sy_stem of homomorphisms Ay G;—6, then the natural
homomorphism h: t{ lv* Gt%[‘q‘hg(at)] is determined by k(<g,t>) = hy(g).
In*partimﬂar, if 4C @G and a,e¢@ (teT) then the natural homomorphism
‘]JT G,-»[tg‘wt(hw? 1 is determined by <g, t)—mga;
Let us consider the following proposition

L(@). For any ay, ..., ay ¢ G\(1) and any integers By vony b different
from 0 (m=1,2,..) the function of the variable x e G

(1 . @ By ., @, pkn
i8 not identically equal to 1.
g denotes any connected Lie group.

see [8], [10], [11], [13], [19].

(*) A simple proof is given by K. A. Hirsch [13]. Fox other results and references
(‘) We do not suppose that b # ty implies G4, % Gy, ‘
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TusoreMm 2. If L(§) holds and G is a subgroup of G with & < 2%,
then there exists such an elément x € G, which is of infinite order, and such
that the navural homomorphism G %[(%)]—[G v (#)] is an isomorphism (5).

Proof. Let us consider the class M of all subsets of ¢ having one
of the following forms

(@) o ot=1}, k=1,2,..
(3) {@: apahr ., qpatn =1}  (ag, % and m as in (1)).

Tt is clear that M < G- &, < 2%, Moreover, each set A ¢M is an analytic
surface in ¢} (in the sense of [2]). In fact, for sets of the form (2) this is
clear and for sets of the form (3) this follows from L(¢) (*). Therefore,
by a theorem of [2], the set (] 4 is a border set in ¢ (i.e. its complement
dem
is dense in ¢). It follows that there exigts an element v e\ | 4. Olearly,
dem

a satisfies the conclusion of Theorem 2; g.e.d.

then there ewists an ® e such that the natural homomorphism ¢ % H
—[G v xHa™] is an isomorphism.

Proof. By Theorem 2 there exists an # ¢ such that the natural
homornorphism [G v H] % [(z)]—[G v H v (2)] is an isomorphism. It is
clear that for such an # the conclugion of Lemma 1 holds; ¢.e.d.

THROREM 3. If L(G), v T, and G; (te 1) is a sysiem of subgroups
of Q with Gy< 2% for any ¢ ¢ T and T < 2%, then there eaists a system, (wy)yemC Q
with @, = 1, such that the natural homomorphism | * Gy->[ Uw Gy '] s an
tel' tel
480MOrPhisim.
Proof. The set T can be well ordered in a sequence (f:)sc. such
that = =t, and

——

24 Gy<2%  for any a<x (7).
i<a

Then by means of a simple induction on the basis of Lemma 1 we find

@ sequence (#y,)<,C ¢ for which the conclugion of Theorem 3 holdy; q.e.d.

(") A% B denotes the free product ol the groups A and B. This theorom was
conjectured ([17]) for ¢/ locally compact connected and simple. Of coumso wueh o () in
a Lie group (by the approximation theorem of II. Yamabe-—sce [14], p. 175). This
problem remains open.

(°) Bince the mapping % -—aaki..awxkn is analytie, which is well known -
see e.g. [15], proof of Lemma 2.

(") "This follows from [16], Lemma 2 (a result of 8. Swievezkowski). 1t ix intoresting
that this result replaces in some sense the regularity of the cardinal 2%, which belongs
of course to the classical conjectures of set theory.

Fundamenta Mathematicae, T. L (1961) [}
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Remark 1. In Lemma 1 and Theorem 3, a supposition L'(¢) weaker
than L(Q) would be sufficient. L'(§) is obtained by replacing (1) in Z(¢)) by

0y 0b, B0, 0by 8t .. an@bpe™t With @y, Dye O\(1) and n>=1

ProprEM. Does L(Q) or L'(Q) hold true for every comnecled simple
Lie group §@%

Proof of Theorem 1. The statements L((0;) and L(M) will be
proved in Section 3; therefore Theorem 1 follows from Theorem 3.

Remark 2. One can obtain results analogous to Thoorem 2 and 3
for any connected locally compact group ¢ supposing L(() holds if one

uses the continnum hypothesis or if one supposes tho stronger inequalities

< Noy G, < », for any teT and T 8;. The proofs of such theorems
are analogous: one has to use the theorem of Baire on the sets of the
first category instead of the theorem of [2], and the only point to be
completed is to prove that all sets of the form (2) or (3) are nowhere dense
in Q. But this clearly follows on account of .L(§) from [15], Theorem. 1,
and the approximation theorem (l.c. (5)).

8. The statement L(GO,) visibly follows from the following

LEMMA 2. If Ky, ..., ko are integers different from 0, ay, ..., Gn € Oy,
and @, € Oy (0 < @ < 27) where g is the rotation angle of @, and all x, have
a common rotation axis L and alL) = L for s = 2, ..., n then the malrie

k: Je,
(4) almq,‘agwo, e An 5"

is a non constant function of .

Proof. We can suppose from now on without loss of generality
that a; =1 and that we have chosen in 93 a coordinate system, such
that the third coordinate axis is the line L.

Now we need some auxiliary statements.

(A) The following conditions are equivalent (for a e Oy)

(i) a(L) # L;
(if) L # (awis of a) and, if the rotation angle of & is =, then also L 4s not

perpendioular to the amis of a;

({il) @ = (@y)ijm1,08 and

(B~ o # 0 0F G-y % 0) and (Gyy+ oy 7 0 0F thyy— gy # 0) .

The equivalences (i)« (ii) and (i)« (iil) ave clementary.

(B) For any linear transformation & = (ay);jm1q of the plane ‘K2 we
have ,

a(2) = Az Bz (8),

(*) We identify the point (£, 75) ¢ ¥ with the compl
» plex number 2 == £--4n, and
the point (&, —7) e R* with 2= £— 1. e
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where 4 »
() A = 3+ ) 4 8 (01— @33)]
B = }[(ay,— tu) + 4 (tgp + am)]
and
(i) 0y =Re(4d+B), ap=—Im(4d—B),

ay =Im(4d+B), an=Re(d—DB).

This is elementary.

(C) AWl the functions cos™p and sinpcoste (n==10,1,2,..) arc in-
dependent, i.e. a finite linear form formed of them vanishes if and only if
all the coefficients vanish.

This follows by independence of cowtp (n==0,1,2,..) and the
fact that cosme are even functions and singeowtp are odd functions.

cosp —osing 0
(D) af =2""cos™ g | osing  cosp 0 |+b, (b=, :2,..),
0 0 0
where ¢ = sgnk and b is a matriz with elements of the form
1k =2 | —1
E a, sinpcos e + 3 Brcosqr.

r=0 1‘=<0

This follows from the known formulae

(5) cosnp = 2" eos"p -+ Py,
sinng = sing(2" " cos” o+ Py),
(where P, resp. P, are polynomials in cose of degree << n resp. n—1)
and from the equality
cosky -—sinke O
w’j, sinkp  coskep O
0 o 1
For any matrix a = (ay);j-1,25 We take the notation
a* = (G )i g2 -

(B) (i) The elements of the matriz (4) can be represented unigquely
in the form

d=1 da

i % ’
E ¥ sinpeos”p -+ }J fleos™p  (4,§=1,2,3),
=0 Pl

where @ = ||+ ... +|Fn|.
(ii) The elements of the matriw

co8p —ogRing
0 = (Cip)tj=1,2 = : i )
og8ing  cosg

fikd
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where o, = sgnlks, can be represented wuniguely in the form

n—1 n
05 = 2 v singeos”p + 2 oTcos"p (5,5 ==1,92).
r=0 r=0

(i) of =27, and B7 =201 (5,5 =1,2).

The statements (i) and (i) can be easily proved by induction on =
if one applies (C), the formulae (5) and sin?p = 1 --cos?p. Tho statement
(iif) follows in the same way from (C) and (D).

Now, by (0) and (B) (i), for proving Lemma 2 it i enough to show
that one of the terms of ;singeos™ g7 cosy (i,]==1,2,3) does
ngt vanish. By (B) (ifi) it is enough to prove that one of the terms
v sinpeos™ o+ 6 cos™p (4,1 = 1,2) doos not vanish.

We have

a(e) =z, o) =%,
and we put
aj(e) = Agz4-BeE (s =2,3,..,m),
¢(#) = Oe+D7.

Then by (A), the supposition as(L) # L of the Lemma 2 and (B) (i) we have
(6) Ag#0#ADBy,  (3=2,3,..,n).
By the definition ((B) (ii)) of the matrix ¢ we have

0= 2 Oy O+ ko)

D= 2 -D%a,---,”n ef(ﬂﬁvngo-g-k...-I~nna,,)q;,

()

where the sums are running over all SOQUONCOS #y, wuvy %y With 2 == -1
and Oy, and D, . are products of some of the numbers Ay and
B, and their conjugates. Clearly, by (6) all the numbers Crgrnpn a0
D, are different from 0. In each of the sums (7) there u; ;a;metly
one tfarm in whieh oy4-%,054 ...+ wpon == oym (since this holds if and
only if #; = ¢y0,). Hence O and D contain one term Kelune gnd Leiome
respectively with K 7 0 s« L. Therefore by (B) (i) we have

o= Rele"me(K L) 4-1,], 0= —Im [otexne(I— L) - t]
O = Im[efmo(K L)+ 1y], 0= Re[etoma( [ L) -],
where %; are trigonometrical sums of degree < n.

Then one of the ¢, ‘when represented in the form () (ii), contains

; sy . 7o — i
gr:(?fn vanishing term y;_;singcos™ g4 85 cos™p, which concludes the
. 1
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LEMMA 3. L{M) holds.
Proof. The mapping

@ b)_}az—[«b
¢ d cz+d

is & homomorphism of the unimodular group of matrices onto <M cor-
regponding to the identification of matrices of opposite sign. Keeping
in mind this fact we can work with matrices.

We shall prove that the matrix (all matrices considered are uni-
modular)

w
. (e Bs 10 _
[I agwhs, where a,= (Vs 53) # 4 (0 1) (8 =1, ..,m)

8=1

(ks are integers different from 0, » > 1), depends on the matrix 2.

We can suppose without loss of generality that y; # 0for s =1, ..., n
(using an inner automorphism of the group). Let us verify under this
agsumption that the matrix

- 1
(745(8)) 2 =I_11 a2,  where 9:;:(0 ;),
ol

depends on £. Clearly
anis = (as aglst+ ﬂs)
o Vs Vs AR N

By an eagy induetion on n we verify that
Top(t) = Py oon Yuoy o Fnl” + P,
where P is a polynomial in ¢ of degree < m; g.e.d.

4. In this section we give some more special results on Oz which
are easy consequences of Lemma 2.

ToEoREM 4. Let G be a subgroup of Oy and ¢ o fived angle with
0 < < 2n and ¢ # 7, end Q an axis (a plane) in R® containing the origin
o and such that a(Q) # @ for every a e G\(1). Thén every rotation r e Oy with
awis @ (with awis contained in @ and rotation angle @), evcept a set of G+Ry
such rotations, is such that the natural homomorphism G%[(r)]—[G w (r}]
8 an isomorphism.

Proof. The first case clearly follows from the Lemma 2 since every

function
kL@ rke Lo g v

(k; integers different from 0 and a; e G\(1), n >1) is analytical and
depends on the rotation angle of » the axis being Q.
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In the second case we congider the product

1 1

(8) aywb® s g w7 anabrpt

where b is a fixed rotation with axis contained in @ and angle ¢, and g
is a rotation with axis perpendicular to @ and variable angle. Putting
7 = abw we obtain rotations with axis in @ and angle ¢. Then we obtain
the conclusion since, by Lemma 2, (8) depends essentially and. analytically
on the rotation angle of .

Remark 3. Theorem 4 is a refinement of Theorem 2 for ¢} = (j,.

TemormM 5. If @, and y, are rotations with fived different awes and
variable common rotation angle @, then with the exoeption of an at most
denumerable set of p-s w, and ¥y, are free generators of free group (v).

Proof. It is visible that there exist an @ ¢ (), such that Yp == Ay
for all ¢-s. Therefore, by Lemma 2, the function

Fy b Yon  In 3 7,

%y, o = % o1 Ko
Do Yp o Yp oo By Yy = Wy ATy v

Iy, ~1
By’ AL

"
v Tt AG

depend essentially and analytically on ¢, and the Theorem 5 follows.
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