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On plane dendroids and their end points
in the classical sense

by
A. Lelek (Wroctaw)

§ 1. Dendroids. A continuum X (ie. a compact connected metric
gpace) is called a dendroid (1) if it is avcwise connected and hereditarily
unicoherent, i.e. if every two distinct points of it are joined by an arc
contained in X and every subcontinuum of X (as well as whole X) is
unicoherent (see [4], p. 104).

As has recently been proved by J. Charatonik (in a paper which
is now being prepared for publication) the condition for X to he a den-
droid is equivalent, among others, to each of the following ones:

(i) every two distinct points of X are joined by exactly one irreducible
continuum contained in X, namely by an arc,

(il) X s an arcwise connected, homologically acyclic and 1-dimensional
continuum (or a single point).

By (ii) every non-degenerate dendroid is a unicoherent 1-dimensional
continuum; therefore (see [4], p. 338) every locally conmected dendroid is
a dendrite. This means that dendroids constitute a generalization of
dendrites. In this character they are found in literature. For instance
in 1954 Borsuk [2] proved that dendroids have the fixed point property.
This was generalized in 1958 by Ward [8], who was copsidering more
abstract spaces, namely without the requirement that X be a metrizable
space. Let us mention also paper [9] of Ward, where some additional
references are given.

I was encouraged to study dendroids by Professor B. Knaster.
I express my gratitude to him.

§ 2. End points in the classieal sense. I say that a point =
of an arewise connected continuum X is an end point of X in the classical
sense if @ is an end point of every arc contained in X and containing .
Tt is well-known (see [4], p. 203) that if X is & locally conmnected con-

(1) This term was proposed by B. Knaster and became usnal in hiz Seminar in
Wroctaw.
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tinuum, then the above definition of end point is equivalent to the
usual definition adopted according to Menger in the ordinary topological
curve theory, ie. to the condition ord,X =1 (see [4], p. 200). But,
as can easily be seen on very simple examples, if X is not locally con-
nected, these notions of end point are different.

T use the term “classical sense’”, because it seems to me that this
definition of end point is nearest to the original intuitive notion of end
point (see for instance [1], p. 584), which was later refined for the
purposes of various theories, e.g. the theory of locally connected continua.

The set of all end points of X in the classical sense will be denoted
by X° to distinguish it from the set X" — {w: ordy X = 1}. It is known
(see [4], p. 204) that the set X™ is always a Gs-set (in X). We shall
show in §10 that there exists an arcwise connected plane continuum,
even & dendroid, D such that D® i3 not of the 1-st Borel clags (in D).
Similarly the proposition that X™ is always a 0-dimensional set (see [4],
P 217) is not true for X®: we shall construct in § 9 a plane dendroid D
such that D° is & 1-dimensional set. This shows that the sets X° and
XM have essentially dissimilar structures and that one of X° seems to
be more complicated.

All end points considered in the present paper are taken in the
clagsical sense. We shall thus omit the words “in the classical sense’.

The following theorem is due to J. Charatonik:

2.1. If D s a dendroid, then D° does mot contain o non-degenerate,
confinuum,.

Proof. Suppose on the contrary that there exists a non-degenerate
continuum € contained in D% Tet p, g ¢ ¢ and P # q. There exigts in €
a continuum irreducible between p and ¢ (see [4], p. 132) which is not
an arc by the inclusion ¢ C D°, contrary to the condition (i) in § 1.

If 4 is an are with end points p and ¢, then we write 4 = pg.
The following statements are consequences of (i), § 1:

2.2. If D is a dendroid, p, ge D and P - ¢, then the arc pg is uniquely
determined by its end poinis p ond ¢.

2.3. If D is a dendroid, OC D is a continuum, p, qe C and p # q,
then $g C C.

If p and g are points of the Euclidean §pace, then by pg we denote
the straight line segment with end points p and g.

§ 3. Two lemmas. The following lemmas of a more general
topological character will be needed:

31l IfXisa hereditarily unicoherent continuum and C is an arbitrary
family of subcontinua of X such that every two elements of C have a point
in common, then all elements of C have a point in common.
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Proof. According to the theorem of F. Riesz (see [4], p. 5), itl is
sufficient to show that every finite number of elements of'C have a ‘pomt
in common, i.e. that proposition 3.1 is true for an arbitrary family C
having » elements (» = 2,3, ...).

Tor » = 2 this is a tantology. _ /

Suppose that 7 > 2 and 3.1 is true for C having » elements. Then

y i 1 elements.
we shall prove 3.1 for C having n+. .

Indeed, let €= {Cy, ..., Opya}. Since C;n Crpa ¢_0 for i=1, s My
the sets C;w Cn41 ave continua, and thus also unicoherent COI%tanf«%,
X being heveditarily unicoherent. This imples that K;=0C;~ Cpya 18
a continuum for ¢ =1, ..., % . . ,

Moreover, the set C;w € Cnyy 18 also a continuum for ew’ery
4i,§ =1, .., n, because it is a union of non-disjoint continua. Thus C;v
\_i Civ (,)n+1 are unicoherent continua, whence (see [5], p. 511) we halwe
0 ;é?C- Oy Oy = K;~ K; for every i,j =1, ..., Therefore appI}:-

¢ .
ing 3.1 for the family {&,,.., K,} we obtain 0 #EKin..n Ky
=0y~ Oy . ' -
3.9. If ACX and f: A—f(4) is a conbvnuous mappinyg, then for
every BC f(A) we have (%)

FrfYB)Cf (FrB)w Fr4.

Proof. Since A—ACX-~A4CX—4, we have

Frf(B) = (B)n X —f'(B) = (B)n[X—4v A: (B
— (B~ X—A]o(B) A~ A= (B,

whence we obtain 3.2 by the following formulas (see [37, p. 17 and T4):

B AX—ACA~X—A=Fr4,
B A AnA—fB)YCITHB)~A nifw(A)—f'l(B) -
UB) ~A [ {fA)—B) CFHB) ~ A~ B)

=f"
=B~ fA)=B) =f(FrB).

§ 4. Crossed ares. The arcs A, and 4, lying in the plage a;‘;
said to be crossed (see [6]) if, for every two simple closed cur;l es 1*10.;1@
O, lying in the plane and such that 4,C ¢, and 4,C C,, the 11

of C, intersects that of C,.

in X,
(%) If 4 is a subset of the space X, we denote by Fr4 the boundary of 4 in
ie. the set Frd — L~ X—d, where A is the closure of 4 in X.
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The following proposition is & simple consequence of the definition:
4.1, If the‘ arcs Ay, Ay lying in the plane E? are crossed, them A, is
not the topological limit (%) of arcs contained im B2—A,. ’ ’
The crossing being obviously a symmetric relati i
€ elation, 4.1
for 4, instead of 4,. p &1 s trme also
Now let us observe that

4.2. If A4, ..., .A;, are arcs lying in the plane such that the intersection
14.1 A mfis contains @t least two points g and r, the sum A;o...u 4
s a defzdmte and Py, ..., s, being end points of 4, w...u A afre ;Z'ésti ;
end points of A, ..., A; respectively, then there ewist am inc;aa <8 mil
an arc AC Ay ... v Ay such that A; and A are crossed. o

Proof. Let se<gr and g7 s % r. Therefore the arc §; contains q

or r for every i =1, ..., 5. Hence at least o i
. ‘ ey B ne of point 7 i i
in the intersection of three of the P # 0TS contaed

arcs §p;. We may assume that Alp)  Agfp) Aip)

ge s:'p?l ~ §P; ~ §Ps (see fig, 1). Tt is
obwoug that we can distinguish an
en.d point, for example p,, of the
oriented dendrite §p; v §p, v &P,
a(p)
fl . q;(P}
g
q
3
P 123 Dy
Fig. 1 Fig. 2

;IL? tjat Dy lies between two other end points, 7, and p, (compare fig. 1)
g 3 and P;ps are crossed ares, and it is enough to put j = 2, 4 = 171_1%
N , A= .

o d§ % i?l;:gu?:ar fﬁnd pqints. I say that the end point p of den-
porat b, & gen » f(se(f, fig. 2) th.ere exist an arc 4 (p)C D with end
e ji gD etla o pomts. g(p) (i=1,32,..) of A(p) and a sequence

i(p) Wwith end points ¢i(p) respectively (i = 1,2,..) such that

(*) By the topological limi i
pological limit I‘_‘_,uf,[: A: of a sequence of sets A5, A, ... we under-

" . S
stand the set g:cso_i; provided that it coincides with Li A;. For the definitions of all
limits Lim, Li and Ls see [3], p. 241-245. o
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() p = limg(p),
(i) {gdp)} = Adp) ~n Alp) for i=1,2,..,
(iit) A(p) = Li{.gAi(p) .

The set of all singular end poiuts of dendroid .D will be denoted by Di-
Tt is not difficult to see that condition (iil) in shove definition can
be replaced by the following one (*):

(iv) 0 << d[Adp)] for +=1,2,..

Tt follows immediately from 4.1 and (i)-(iii) that

8.1. If p is a singular end point of plane dendroid D and A CD is
an are, then A(p) and A are not crossed.

We shall gshow that

5.2. If Py, oy P arve distinet singular end points of plane dendroid D
and the set A(p) A ... ~ Alpn) contains ai least two points, then n < B.

Proof, Suppose n > 5. Then the set Alp) v v Alpg) isa dendrite
(see §1) having the points p;, .., Ps as end points. Applying 4.2 for
A; = A(p), where i=1;...,5, we obtain an index §j <5 and an arc
ACA(pP) w .. v A(ps) CD such that A(p;) and A are crossed, which
contradicts 5.1.

5.8. If D is a plane dendroid, po e PC DG and Ko< P, then there
exists p’ e P such that A(py) ~ Alp') = 0.

Proof. Suppose on the contrary that

@) Alp) ~nA(p)#£0 for peP.

Evidently, among the points of P only p, and, perhaps, another
end point ¢ of 4(p,) can belong to A (po). Let P’ = P—{py, ¢} Hence
%, < P’ and p ¢ A(p,) for p ¢ P'. Let A’'(p) be an arc with end point p
(p ¢ P') such that

(2) A'(p)CA(p) and Alpgy ~n A'(p) =0  for peP.

We ghall prove that
(3) among every five distinct points pi, ..., Ps belonging to P’ there
existy a pair p;, ps such that A'(pg) A'(pg) = 0.
In fact, suppose on the contrary that every two of the sets
A'(p), ..., A’(ps) have a point in common. Then we have

Ap) . nA'(ps) =0

(*) For a subset 4 of the metric space X with the distance ¢ the symbol §(4)

denotes the diameter of A, i.e. 5(d)= sup olm, &)
ay,05€4
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according to 3.1. Let a ¢ A'(py) A ... ~ A'(p;). Therefore

(4) aed(p)n..nA(p) and  a¢A(p,)

by virtue of (2).

But we infer from (1) and (4) that also every two of the sets
A(po), A(p1), --.; 4(p;) have a point in common. Thus, by 8.1, all these
sets have a point b in common. Hence b e A(p,) and (4) implies that
@, bed(p) ...~ A(p) and e #Db, contrary to 5.2. Therefore (3) 1is
proved.

Applying the Dushnik-Miller theorem (see [7], for instance) for the
relation R in the set P’ defined as follows:

DiRp. =[4'(p)) ~ A'(ps) = 0] for D1y Pae P,

we obtain from (3) that there exists a subset P C P’ such that 8y < B7
and A'(p,) ~ A'(p;) = 0 for every p,, p, e P, p, # p,.

It follows from (i) and (2) that for every p € P’ at least one of the
points g;(p), we denote it by ¢, (p), is an interior point of the are A'(p).
Hence (ii) implies that the set A'lp) v A;,(p) is a triod with the pith
A’(p) (see [6]). The sets A'(p) being disjoint for p ¢ P, we conclude that
there exist two distinet points p, ¢ e P such that the ares 4 (p) and
A’(q) are crossed (see [6]). Thus the arcs A;(p) and A(g) are also crossed
by (2), and 44,(p)C D. This contradicts 5.1.

5.4. THEOREM. If D is a plane dendroid, then D5 is at most _countable.

Proof. Let us suppose the contrary: x, < D;, ie. 8, <D Let R
be a symmetric relation in the set D defined as follows:

s Rsy=[A(8;)~A(s)) =0] for 81, Sy e Di.

We infer from 5.3 that for every ¥ C Df such that % < ¥ and for

every y ¢ ¥ the set of all elements p of ¥ satisfying 4 non Rp is at most
countable, i.e.

{p: peX, ymon Rpy <w,.

Therefore therve exists (see [7]) a set ZC .D; such that &, < Z and
the conditions 2 £ 2, 2,2, ¢ Z imply 2, Rz,, i.e. the family of sets A (2),
where 2 ¢ Z, is a family of disjoint sets.

It follows from (i) that for every zeZ at least one of the points
4:(2), we denote it by ¢:,(2), is an interior point of the arc 4.(z). Hence (ii)
implies that {4 (2) U 4i(2)},ez is a family of triods lying in the plane
and having disjoint piths 4 () (see [6]). Thus there exist at least two

distinct points z, #' € Z such that the ares d.(z) and A(z') are crossed
(see [6]). This contradicts 5.1.
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§ 6. A valuation of the Borel class of b*, when D is
a plane dendroid. It is given by the following

TamorEM. If D is @ plane dendroid, then D° is a Gy-set.

Proof. Let for 4,7,k =1,2,.. Gy be the set of point-s'p of D
such that there exists a subset UC D satisfying the following four
conditions (5):

{5) pel,

6) UCQ(p, 1i),

'(7) FrUCQ(p,l/i)—Q(p,l/j),
{8) S(Fr Uy < 1/k.

By (5) and (7) the point p belongs to the i.nterior of U (in D).
Consequently, Gy is an open set (in D) for 4,4,k=1,2,.. Hence,
by 5.4, the following formula:

=] = o3
e _ T Gosre
@) Dr=Div ] A%
gives the desired valuation.
To prove (9), let
(10) p e D°— D

and let 4 be an arbitrary natural nmumber. We shall show that t}l{)le;i:

exists a natural number j such that for every k=1,2,.. there exists

a set U satisfying (5)-(8). } -
It DCQ(p,1/i), then we put U =D, and (5)-(8) hold fo‘r ex.esltj;;

natural § and k, since FrD = 0. Thus we may assume thathi';hzleﬂei ts

a point ¢ ¢ D such that g(p, ¢) = 1/24 and pg C @(p, 1/i). Le‘;‘I t [T, be tgz

be a homeomorphism such that h(0) =17 .and hl) = q: ff oo

set of t [0, 1] such that there exists a point ¢; ¢ D safisfying

ditions .

(1) Gh(®) ~pg = {h(t)}  and  e(p,q) =1/

= inf ¢ == 0, points
If there are no such ¢, we put T = {1}. If we had tlen'_r , D

4neT would be chosen such that limi,=0. Whence, putting o(P)

00

— hitn), A(p)=pg and Au(p) = g, h(i), we should obtain ii_g%(P)
= , .
— 1(0) = p and {ga(p)} = An(p) N A(D) for n =1, 2, ... according to (11).

(5) It p « D and & > 0, we denote by Q(p, &) the open ball with centre p and ra-
dius ¢, ie. Q(p,e) = {w: weD, g(p,2) < e}
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This would give conditions (i) and (i) from § 5. Furthermore, we should
find a natural number ! such that ¢(p, h(ts)) < 1/26 for #> I, whence

0(Gts Bltn) > 0(4u, 2)— 0(p; B(tn) > 1fi—1/26 = 1/24
for n > 1, by (11). Thus we should have
0 < 1/2¢ < 5[ da(p)]

for » > 1, and condition (iv) from § 5 would also .be satistied. Hence

we should have p e D;, contrary to (10). Therefore 0 < infi.
tel
Setting » = h(inft), we obtain p % 7 ¢ Q(p, 1/i) and
tel

(12) it weD and 1/i < g(p, %), then ¢ pi .

We take a natural number j such that 1/f < o{p, r)/2. Tt follows
that # GQ(pr 1/7/)—Q(237 1/?)

Now let %k be an arbitrary natural number. Choosing & number
e>0 such that (8)

N

& <min {1/27‘77 9[/"7 FI(Q(p, 1/)—Q(p, l/f'))” )

we have

(18) Q(r, e)CQ(p, 1) —Qlp, 1fj)
and

(14) o[Q(r, e)] =2e < 1k .

Let A = D—Q(r, &). Since 4 is a compact set, there exists (see [4],
_ p. 122) a continuous function f: 4-—-C into the Cantor 0-dimensional
set C, such that the sets f~'(y), where yef(4), coincide with the com-
ponents of 4. Let 4, be the sum of all components of 4 which are
contained in @(p, 1/i). Therefore

(15) 17H4o) = 4,CQ(p, 1/i).

Since @(p,1/i) is an open set and 7t is an upper semicontinuous
function (see [4], p. 42), F(4,) is an open set in f(4) (see [4], p. 85).
It is obvious that p e An@(p,1fi). Let C be the component of p
in 4. Suppose that C—@Q(p, 1/i) 5 0 and choose z e C—Q(p,1/i). Thus
we have 1/i < ¢(p, ) and $zC ¢ according to 2.3. Hence pi C 4 C D—{r},

contrary to (12). Therefore CCQ(p, 1/é), i.e. OCA4,. It follows that
p € Ay, whence 7(p) € (4,).

() ¢(4,B) = inf Be(au BY;  olx, 4) = g({z}, 4).

aed, be
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But since F(4)C C iz a 0-dimensional set and f(d4,) ig an open
neighbourhood of f(p) in f(A), there exists a B such that B is an open
get in f(A), f(p)eB, BCf(4,) and FrB =0, w}}ere B anﬁi FrB are
the closure and the boundary of B in f(A) respectively. Putting X =D,
we infer from 3.2 that Frf Y(B)CFrA = FrQ(r, ). .

We et U=F"B). Thus peU, TCiYBCF (4 CQp,1/i) by
(15), Fx U CFrQ(r, ) CQ0, 9 C Q(p, 1))~ @(p, 1) by (18), and S(Fx )
< 8[Q(r, )] = 8[Q(r, &)] < 1/k by (14). Hence all conditions (5)-(8) hold.

Therefore (10) inaplies p e () U 1) G, whence

il fmal k=l

D‘CDguﬁ G M G -

i=1 j=1 k=l
To finish the proof of (9), we must only show that if pe D— D% then
_ [=+] 0 oQ G” )
pel 191 j!l kD:L ik

In fact, for such p there exist two points ¢, 7 ¢ D such that ¢ 7= p =7
and pegr. Let ¢ be a natural number such that

1fi < min{e (p, @), e(®, ")}
Then for every j =1, 2, ... conditions (8), (6) and (7) imply
[pa—Q(p, YN AFeU #0 = [57—Q(p, )]~ FrU,

whence (°) : R ‘ ‘
0 < olFg—Q(p, i), 77 —Q(p, YD1 <6(Fr T).
Tt follows that inequality (8) cannot be satisfied for every F=1,2,..
§ 7. Some conditions for D° to be a Gyset, I.Jet A !:;e
a family of arcs lying in the topological space X. I say that 4 is a family

with straightness if a real-valued function o: A—F* (ca,lleq % straightness)
exists such that o(4)> 0 for every A ¢4 and the conditions:

peedgied for i=1,2,..,
limp;=p, limz=u2, limy; =¥,
-0 100 o0

e#p#y and O<e<olmg:) for i=1,2,..

imply that the point p is contained in the interior of an arc gy ed
satisfying the conditions:

@Cﬂi@’ e < o(dy).
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An are A contained in the #-dimensional Euclidean space E" ig
said to be a polygonal line if it is the sum of a finite number of straight
line segments. Let us denote by A™ the family of all polygonal lines
contained in E".

7.1. A™ is @ Jamily with straightness.

Proof. Let 4 €A™, Then A is the sum of & straight line segments
Ly, ..., Ly such that the common part L; ~ Ly, is an end point of I; and
that of Ly, for é=1,..., k—1. Let ¢; ({ =1, ..., k—1) denote the angle,
less than =, formed by L; and L, and put o = = It is not difficult to
verify that a straightness o: 4™ —E' can be defined as follows (compare
footnotes (4) and (8)):

o(4) =ig1ink{1/k, @y 6(La), 1/6(La)y o(Le, U Ly)}.
=141 004 fl=_lj,‘>,{..

7.2. If all arves contained in the dendxoid D form a family with
straightness, then D° is a Gs-set.

Proof. Let ¢ be a straightness. If p ¢ D— D% then p is an interior
point of some arc gy CD. Let F; (j = 1, 2, ...) be a set of points p ¢ D—D°
such that p is an interior point of an arc £y C D satisfying the condition:

1/j <min{o(p, z), e(p, ), ol@y)}.

oo
Therefore D— D°= \UF; and it is easy to see that F; is a closed
j=1

subset of D for j =1,2, ... Hence D—D° is a F,-set, i.e. D®is a Gs-set.
T say that the dendroid D is siraightenable if there exist a natural
number # and a homeomorphism #: D—E" guch that every two points
of h(D) are joined in 2(D) by a polygonal line, i.e. &y e« A™ for every
2,9 e h(D), x # y. We shall show in § 8 that there exists a plane dendroid
which is not straightenable.
We infer from 7.1 and 7.2 that

7.8. If D is a straightenable dendroid, then D® is a Gj-set.

Now, understanding by a triod any set composed of three arcs such
that the common part of every two of them is the same single point,
called a vertex of the triod, let us denote by X’ the set of vertices of all
triods contained in X.

7.4. If D s a dendroid and D° ~ Dis a @Qs-set, then D° is a Gs-set.

Proof. Since D' is a closed set, there exist for every point

2 (D—D—D' two points x,y <D such that p is an interior point
of the arc &y and &y ~ D’ = 0. Therefore we obtain the decomposition:

(D"—De)—ﬁ = 1QFJ.7
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where F; (j = 1,2, ...) is the set of all points p e (D——D”)—_ﬁ for which
there exist points @,y ¢ D such that p e 4y and

1) < minfe(@, 53), oy, 8), o(@y, D)} .

We shall show that every F; is a closed set. Indeed, let p = limp;,

p;eFy for ¢=1,2,.., and let x;,y; be points corresponding to p;.
By the compactness of D we can assume that lima; = 2 and limy; = .

i—00 00
Since Ls ]’)717, is @ continuum (see [4], p. 111) and contains p and y, we
00

infer by 2.3 that Fy C Ls pa;. Thus the inequalities 1/j < ol@:, Paye)
for i=1,2,.. give 1/ < o(z, §7). Similarly 1/j < oly, p%). Moreover,

the inequalities 1/j < o(Zis DY for i =1,2, ... imply that 1/j < o($% w
u ﬁ/,—ﬁ), whenece (& uj@)nDi =0 and the union fz v py does not
contain a triod. It follows that §& .y = #y. Therefore p < Fy, i.e. F;is
a closed set.

But since

DD = (D—D°~ D)o ) Fy
i=1

and D° A D' is a Gg-set, D—D° is a Fo-set and 7.4 is proved.
Evidently we always have X°~ X' =0, Hence 7.4 implies
7.5. If D is a dendrotd and D' is a closed set, then D® is o Gs-sel.
I say that the continuum X is a ster if it is the union of ares such
that the common part of every two of them is the same single point p.
Obviously every star X is a dendroid and X' = {p}. Thus 7.5 imples
that the set of end points of every siar is a Gs-set (the last staterment has
been suggested by K. Borsuk).

§ 8. The plane dendroid D for which D° is not a Gs-set.
‘We proceed to the construction of the plane dendroid D having the
following properties:

(i) D is not straightenable,

(ii) D° is dense in D,

(iii) D° is a F,-set,

(iv) D° is mot a Qs-set.

Tet us observe that (iv) implies (i) by 7.3. Hence we shall show
only (ii), (iii) and (iv).

We denote by J the closed interval 0 <z < 1 and by C the Cantor
digcontinuum in J. Let 7, 7s, ... be the sequence of all rational numbers
of the open interval J— {0}— {1} and let 6, 05, ... be the sequence of
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all (left and right) end points of component intervals of the set H'—C.
In particular 0 = 6; and 1 = 6; for some natural 1, §.

For each continuous real-valued function f: J—E' and a number
£> 0 we define the following sets:

I{f) = {(=,9): y =@},

Rma=qugﬂmwﬁﬂmﬁM<y<NWL
1uff, &) = It o U s, )2 10m) <9 <10+ i

Therefore I'(f) is an arc and I'-(f, &), I'(f, &) are dendrites; the
sets of their end points are countable and their closures contain I'(j).
Furthermore we evidently have (%)

(16) a[rif) It el <e,
aLr(f), I's(f, e}] <e.
It is not difficult to see that by successive construction we can

find a sequence f, fy, ... of continuous real-valued functions fi: I—B*
and a sequence of positive numbers &, &, ... such that:

17) me=0,
(18) £00) =0, fi{l)=0; for i=1,2,..,

(19) Tm p(fi,, f1,) =0 () provided that lim 6, =lim0;, and
n—00 N0

=00
lim 6;, € C—{6:,62,...},
>0
and the sets
(20) 7y {F_(fi, &) 1:f b; i's a left end point,
I'(f:, &) if 0; is & right end point,

where ¢ =1, 2, ..., satisfy the conditions:

(21) FimF;={0,0} for 4,j=1,2,..;t%7,

(22) Lim I'(f;,) =F% provided that lm 0;,=0, and limi,= oo
n—>oc N0 N0

(see fig. 3).

() d(4, B) denotes the Hausdoxff distance from A to B (see [3], p. 106).
®) elf.9)= mglf(@)-!}(w)l-
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Set
o
(23) D =] F;.
=1

We shall prove that D is a dendroid satisfying (ii), (iii) and (iv).
Since F; are closed sets, the condition

=1

(24) pel)Fim U Fy
=1

implies the existence of a sequence pi, P, ... of points such that
p = lim pn, pn ¢ Fy, and Lim in = co. We have lim ¢, = 0 by (17), whence
Nn—+c0

FiRugsS] . -0
(25) Lim ¥, = Lim I'(f;,)
0 N—>00

by (16) and (20). According to the compactness of € we may assume
that the sequence 0, Oi, ... is
convergent to some point {eC.
If we had ¢ = 6, for some nat-
ural %, the point p would belong
to Fy, according to (22) and (25),
which contradicts (24). Hence
¢ e C— {0y, O, ...}. It follows that
for every sequence 8y, 0, ... such
that lim ;, = ¢ we obtain from con-

n—roo
ditions (18), (19) and (21) that the
sequences of functions f;, and fy,
are uniformly convergent to the
same continuous function fr: - EL
8o I'(f;)=Lim I'(f,), whence p eI'(fr)
00

Fig. 3

by (25), and the function f; is
uniquely determined by the point . Turthermore we obtain from (18)

(26) f(0)=0 and f(l})=¢

for every (e C— {0, 0, .3
Hence (23) gives the decomposition:

(27) I):G.Fiu UT(fe) s

{=1 [4
where ¢ ¢ C—{fy, 0, ...}, l.e. D iz the union of a family of continna
each of which ig a dendrite or an arc. We infer from (21) and from the
definition of funetions f, that the common part of every two distinet
elements of this family is the single point (0, 0). This implies immediately
that D is a dendroid.
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For the same reason each end point of the dendrite F; (1 =1, 2, ...)
is an end point of the dendroid D. Hence I'(f;) C.D° for ¢=1,2,..
by (20), and (ii) follows according to (22) and (23).

The get of the end points of ¥; ({ = 1, 2, ...) is countable and containg
the point (1, 6;) by (18) and (20). Since, furthermore, I'(f;) is an arc
from (0, 0) to (1,%) for each [ e C—{6;, 0,,...} according to (26), we
infer from (27) that D° iz the union of a countable set {¢,e;, ...} and
the compact set U = {(1,y): ¥ ¢ C}. Hence (iil) follows.

The decomposition D*= U u {&} v {6} v ... being a decomposition
into compact frontier sets (in D°) by (ii), the theorem of Baire is not
valid for the space D° Hence (iv) follows (see [3], p. 316 and 320).

§9. The plane dendroid D for which D’ is a 1-dimensional
set. This dendroid, which we are going to construct, has the following
properties:

i) dmD* =1,

(i) D° és dense in D,

{iii) D® is a Gs-sel,

(iv) D® is not a F,-set, _

(v) there exists a point ¢ e D— D° such that D° v {c} is a biconnected
set (%),

(vi) pe is a straight line segment for every pe D—{c}, i.e. pé = pe;
so D s a straightenable dendroid.

Let us observe that (v) implies (i), and (vi) implies (iii) by 7.3.

Furthermore, (i) implies (iv). In fact, suppose on the contrary that
D= GIF" where F; are closed subsets of D for 1=1,2,... Then no

i=
F} contains a non-degenerate continuum by 2.1. Thus F; are 0-dimensional
sets (see [4], p. 130), whence D° is also a 0-dimensional set (see [3], p. 171).
This contradiets (i).

Henece we shall show only (ii), (v) and (vi).

To define D, the following geometrical construction is needed:

By an oriented-triangle T we mean a triangle (i.e. a 2-cell) in which
an ordering < of vertices is distinguished. If @, b, ¢ are vertices of T
and this ordering is just @ <5 < ¢, then we write: T = T(abe).

Let T(abe) be a fixed oriented triangle and let of, b be points of
the side ab such that

(28) ola, ai) = o(e,b)/2¢  and  o(a, b)) = o(a, b)/(20—1)

(*) According to Knaster and Kuratowski a set is said to be biconnected (see [4],

p. 85) if it is connected and is not a sum of any two disjoint non-degenerate connected
subgets.
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for i=1,2,.. Let & be the distance from the point ¢ to the straight
line Lg containing the points a,d, and let #, n,, ... be the sequence of

all rational numbers of the closed interval [0, $].
Finally, let a; and b; be points of the segments cal and ¢b}, respec-
tively, such that
: o(asy L) = o(by, L) =m  for 4=1,2,..

Hence
(29) Ls {ag) =@
and
(30) ola, b)) <ela,d))2 for i=1,2,..

according to (28).
We denote by T (abe) the sequence {T'(a;0;0)}i=1,0,... of oriented
triangles. Therefore

Ty~ Ty={c} for Ty, T,eT(abe), Ty T,.

Now we shall define for every ¢==1,2,.. the countable family
S; of straight line segments and the countable family T; of oriented
triangles such that ¢ is an end point of every segment belonging to
S; and the last vertex of every triangle belonging to T; (i.e. every
TeT; is of the form T = T(a'b’c)), and that (1%):

(31) StavuTE.CSFoTy for 4=1,2,..,
(32) BnB=TAnTy=T,~8 = {c}

for 8y, Spe Sy Toy ToeTsy Si#E Ry Th# Ty, i=1,2, ...
Namely, we put
S, = {ac}, T,="TI(abo)
and
(33) Siy1 = Si v {pe: T(pge) eTs},

Tiyi= U T(pee), where T(pge)eTs,

i=1,2,.. (see fig. 4).
The dendroid D is defined by the formula

D=\ (StuTh.
i=1
Bvidently p ¢ D~ {¢} implies that pe C §f w Tt for every i =1,2, ...,
whence ¢ = pe and (vi) holds. *
We have S;C S} for ¢ <j according to (33), and SfC Sf v T7 for
j < i according to (31). Therefore S}CD for ¢=1,2,.. It follows
from (32) that

(34) it peeS;, then peD°

(1) I 4 is a family of sets, the union of all elements of A i8 denoted by A4*.
21%
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for ¢ =1,2,.. Thus by (29) and (33) we obtain LD_OJS?‘C D°. But it is
iZ1

easy to verify by (30) and (33) that the union CJS?‘ is a dense subset
i=1

of D, i.e.

(35) D=J 8¢,

whence (ii) follows.
To prove (v), first let us observe that no non-degenerate subset
A of D®is connected. Indeed, if p, ¢ « 4 and p # ¢ the points p, ¢ belong
to different elements. of S; o T;
c for some ¢. Therefore there exists,
by (32), a straight line L such
that p and ¢ lie on different sides
of I and L ~ (Sfuv TFH = {c).
Hence L~ D = {¢} by (31). But
it is evident that ¢ is not an end
point of D, and so ¢¢.4, whence
I ~A=0 It follows that 4 is
not connected, its points p and ¢
being separated by L.
Thus, to complete the proof
Pig. 4 of (v), it is enough to prove that
D® U {e} is a connected set. For
this purpose the following lemma will be needed:
. Leava. If T(pge) 45 an oriented triangle and C is a continuum lying
in the same plane as T(pgc) and such that p, c ¢ C, then there exisis a point
¢’ € pq such that p = ¢ and either
(I) C~IntT(pg'c) =10

or

(ITI) some component of the set C ~ T(pq'c) separates T(pg'c) between ¢
and pq’.

Proof of the lemma. Since p ¢ €, a point 7 € pg exists such that
p#r and € ~%r=0. If O~ IntT(pre) =0, the lemma is true for
¢’ =r. We may assume that ¢ ~ IntT(pre) # 0. Let r' be a point such
that +" epr, p # 7 and € ~7'c 3 0. Hence every component of the set
C ~ Int T(pr'c) has a limit point on the boundary of Z'(pr'e). If none
of theieL components have a limit point on the side ¢, then we have
&< p[pe, ¢ ~ Int T (pr'e)] for some ¢ > 0. Hence for a point ¢’ epr’ such
tha.t ? ¢ and e{(p,q) <& we obtain O ~ IntT(pg'c) =0, ie. (1) is
sa,t.lsf}ed. Finally, if some component K of the set €~ IntT(pr'c) has
a limit point on e, then the conditions ¢’ € pr’, p = g, K ~ g'¢ 5 0 imply
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the existence of component K’ of €~ T(pg'c) such that K’ ~ge#0
and K’ ~Pe 0. Then K’ must separate T{(pg'e) between ¢ and ?q,
i.e. (IT) is satisfied. Thus our lemma is proved.

Now let € be an arbitrary plane continuum such that D—C is not
connected. To prove the connectedness of D*u {e}, it is sufficient to
show that

(36) Cn(Duic) #0.

By (34) the end points of every segment of family S;, i=1,2, ...,
belong to D° « {¢}. Therefore if one of them belongs to C, (36) is proved.
Thus we may assume that they do not belong to €. It follows from (33)
that T(pge) e Ty implies pé € S for i=1,2,.., whence p,c¢ C.

Applying the lemma, let us suppose that (I) holds for every T'(pge)
eT;, 1=1,2,.. 80 D~ Int T(pq'c) C D—C for T(pyc) e Ty, i=1,2,..
We infer from (29) that the closure of D~ Int T'(pg'c) contains the side
pe of T'(pg'c). Thus, putting V= {J[D ~Int T(pq'e)], where T{pge) € Ts,

§=1,2,.., we have VCD—0C and GS;"CV by (38), whence D=V
=1

by (35). However, it is easy to verify that the set V is composed of
straight line segments (perhaps without end points) such that the closure
of each of them contains the point ¢ (as its end point). Therefore V v {¢}
is an arcwise connected set dense in D. Furthermore Vo {¢;CD—0
C 75 {er. Tt follows (see [4], p. 83) that D— ( is a connected set, contrary
to the hypothesis concerning C.

Hence (I) does not hold for some T(pge) e T;, and we have (I1) by
virtue of the lemma. We shall define for every bh=1,2,.. an oriented
triangle Ty = Tu(prgre) such thait

(37) DT,
(38) TreTirns

(39) some component of ¢ T, separates Ty between ¢ and Py,
and
(40) o(C, prgr) < 1fk
for k=1,2,..

Namely, it follows from (28), (29) and (II) that there exists
a Typ.a.c) e T(pge) satistying (39) and (40) for & = 1. Since T(pge) e Ty,
we have T, ¢ T;1 according to (33), and (38) holds for k= 1.

Suppose that Ty is given. The existence of Ty belonging to T(pngnc)
and satisfying (39) and (40) for & = n-+1 is a consequence of (28), (29)
and (39) for k = n. Therefore T,ia C Tn by virtue of the definition of
the family T(pagec), and Lot € Tjrns1 DY Vvirtue of (33) and (38) for
b =mn. S0 Tphyy satisfies all conditions (37)-(40) for k= n+1.
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The triangles Ty being defined, let us observe that (30), (83) and (38)
imply -
o{Pra1s Q1) < 0 (Pny G)f2

for k.= 1,2, ... Therefore T, T,, ... form, by (37), a descendent sequence
of triangles each of which is thinner than the preceding one. It follows
that the topological limit %im Prqr of the sides ppg; exists and is an end

point of th-e dendroid D according to (32). However, we conclude from
(40) that {Jig} Pxqi € O, O being a compact set. Hence ¢~ D® 5 0 and (36)

is proved.

Rem{uk. In the dendroid D the set D u {c} is connected by (v), but, as we ha
shown, D° is not a connected set; what is more, it does not contain any nm;-de ener: :6
connected subset. The question of the existence of a plane dendroid 4 such thgat A? "
a connected set can be solved in the affirmative by the following additional construction:j
Let D'= D—ac v {c} and let @ be an open plane connected neighbourhood of c
suc?l that §{Q) < 1/2° and D—@ s 0. Let B,, B, ... be the sequence of component
regions of @ —D. Then by (vi) there exists an end point p; e D (i =1, 2, ...) sucI;:l thnt
pie ~ FrR; # 0. We find a plane homeomgphical image h({D") of D’ su01’1 t];at (D7) mai)
= :h&(ecn)zl ::é? ;R& anit_m(v)_m(p') =piew (DA FrRi) fori=1,2,... Then Di = k(D)
iy nd puw 1\ng o = hi(c) we obtain pf{e, ;) < 1/2° for ¢ = 1, 2, ... Further-

[>2]
D ow U Dy
i=1

is a conn(?cte.d set .between every two points belonging to D° (see [4], p. 89)
fnd Continuing this cons'truction for Dj instead of D and, ¢; instead of ¢, ete., we can
nd sequences of dendroids Dj,..i, and their points e, s, such that ’
0 (Cigniigts Cigdy) < 1/2°
for natural 4, 4 and n, and that the clos i
f s , ure A of the in (5, 0=
is a dendroid. Then, furthermore, voion OEall Do (570 = 1 20.)
D v Digipis)
i

is a connected set between every two points belonging to

(DU Dyl
;
for m =1, 2, ... It follows that ’

oo
S=(Duv U UDiy.i)

ne1 4§

is a connected set betwes i i i
i commorted ¢ en every two of its points. Thus also 4° is a connected set,

o ;]_:16 above const.ructions, presen’ted in a few words and without proper precision,
oo xen y ‘1;101‘('3 con.ll.)hcated and require some other restrictions. I do not know whether
y can be simplified and therefore I only announce their possibility.
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§ 10. The plane dendroid D for which D® is not of the
1-st Borel class. Such a dendroid can be obtained from the examples
of dendroids given in §§ 8 and 9 by identifying their points (0, 0) and ¢
respectively. Conditions (iv) in §§8 and 9 imply that the dendroid D
constructed in this manner is such that D? is neither a Gy-set nor a F-set.
Tt is of the 2-nd Borel class by virtue of conditions (iii) in §§ 8 and 9.

In § 6 we have proved that the set of the end points of every plane
dendroid is of the 3-rd Borel class. The question whether it is always
of the 2-nd Borel class remaing open.

Similarly the valuation of the Borel class of sets D° when D is
wot a plane dendroid or is an arbitrary arcwise connected continuum,

ig unknown.
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