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Collections of convex sets which cover a Banach space
by
H. H. Corson (Washington, Wash.)

1. Introduaction. It is a well known theorem of A. H. Stone ([3],
p. 160) that each open cover of a metric space has a locally finite refine-
ment (). However, an example has recently been found [4] of a metrie
space 3 with a base 93 such that there is an open cover of M which does
not have a locally finite refinement consisting of elements in 93. This
example suggested the theorem which is the subject of this paper.

THEOREM. For any cover U of a reflexive, infinite dimensional Banach
space B, where U consists of bounded convex sels, there is a point x in B
such that each neighborhood of © meets infinitely many elements of U. That
is, U s not locally finite.

In the proof of the Theorem which iy given in section 3, the fact
that each closed, convex set which does not contain 0 lies on one side
of a hyper-space is used to reduce the problem to & finite dimensional
one. A rather technical consequence of Brouwer’s fixed point-theorem,
which is proved in section 2, completes the proof.

For convenience, only real Banach spaces will be considered.

2, Lemma 1 and notation. The subject of this section is a lemma
which is similar to ([2], Proposition IV LD), but as will be noted, more
information is required about a situation which is slightly different from
that treated in this result. ‘

First, some notation. Let {#: ¢=1,2,...} be a countable collection
of linearly independent points of a Banach space. For each integer s > 0,
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let: I® be the set of those elements of the form Z a;w; with 0 < a; <1 for
1

4=1,2,..,s Of comse, I° is homeomorphic to an s-dimensional cube.
Tet =0 and I '=@. Let C;={wel% a; =0} and C}= {wel”
a;=1}. If U is a cover of I%, let WUy={U e U: U~ I' £ @, but U™~ I
= @} where the closure of a subset A of I° is written 47,

() A eollection <V of subsets of a topological space X is a locally finite refinement
of a cover 9 of X, if U is a cover for X, if each ¥V ¢ is contained in some U e Y, and
if for each @ ¢ X there is a neighborhood N of # such that N intersects only finitely
many elements of 9.
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LevmA 1. Let U be a finite open cover of I° such that (a) of U
and U~ C".- 7 B, then U~ Ci =0, and (b) if U Uy, then U™~ Q; =0
Then there is @ Uy Uy for i==0,1,...,5 such that (N{U; : z‘=0,1,_,,,s}¢g.

Proof. Since each U e%; bas the propert
. y that U~ Copy £ 0
then Uy, # @. Define fx) to be the point in I* whose coordiu;sles a,ré
the same as those of #, except for the 4th coordinate. The ith coordinate

of fw) is @+ dle, bdry (U W), i @ e\ JWUiny; if w¢ JQU%—1, the ith
coordinate of fi(z) is #;—min{d(xz, I'), d(z, bdry (UUs—1))}. It is easily
seen that f; is a continnous function from I° to I°. Let ¢ = Folfama(ene (F) o)

Suppose that 2 = (#, 2, ..., %) is a fixed point of ¢. (Of coursé, this
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notation means z = s « i i i .
;‘ #;w;.) Then 2 is a fixed point of each f;. However,

# is a fixed point of f; if and only if 2 e bdry ((JW;_,) or # = 0. Suppose
o= 0 for some 1< n < s. Bince z ¢ 0, implies that 2 ¢ bdry (I Un) by
virtue of (b), it follows that 2,., = 0 because 2 is a fixed point fornf

Hen‘ce suppose that 2 has the form (z,#2,,...,2,,0,...,0) where z;;zl(i
f01j 'L§ p. It follows that ze U for U ¢ U, at least for some 4 < p. For
tl‘ns €, f{2) # 2. Hence 2;5% 0 for any 4, and ze¢bdry (| Uy) for O\<;'<n
Since there is a U ¢, such that 2 ¢ U, the Lemma follows. - .

8. Proof of the Theorem. The proof is by contradiction. It will
be .assu'med that U is a locally finite collection of bounded, convex sets
.W]l'l(',h‘ cover B. One may even assume that each U ¢ Qf is 0’13611 since (a)
it suffices to prove the theorem for separable B, (b) for separable B, Y must
be countable, and (¢) the ith member of U may by expa,ndeci by 1/4
and the resulting collection is a locally finite cover with open, bounded}
convex sets. Using this, a countable number of linearly in’dependem;
points Byy By . will be chosen such that the intersections of members
of ‘Z{f W‘lth I” form a collection which satisfies the conditions of Temma 1.
This will complete the proof, as the following argument shows. Suppose
that tl'xe #; haive been chosen in the manner indicated. Let U, ¢ = 0, 1
be defined as m section 2, except we are interested only in ’that p;rt’ of
e?,ch U \ylneh Les in {J{I°: 8 =1,2,...}. Bach U; is a finite collection
sm(;e .Qf I locally finite. A collection Uy, Uy, ..., Us will be said to be
:hgra.m it U; F‘Zli_and ﬂ{U,-_:_ 1=10,1,..,8 # 0. Lemma 1 states that

9 are arbitrarily long chains, Hence, since 9/; is finite, a standard
argument shows that there is an infinite chain Uy, Uy, U;, ..., that is,

for this collection N{U7: i=0,1,...,5} %@ for s ~0,1,... Because

eac}; U..~ is convesx, U; is weakly closed ([1], p. 2), and hence weakly com-
Pact, since U; is bounded and B is reflexive ([11, p. 56). Therefore, there

iBanwe{U;: i=0,1,..}, and thi i mpti
it oo ﬁnize. . § contradicts the assumption that 9
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All that remains is to ehoose the ;. Let Uy={UeU: 0T }.
Pick an #, ¢ B such that [|2,]| > max [diameter (U): U € U,]. Obviously
Yy v Uy has the required property with respect to I'. Suppose that
@y, @y -y Bs 18 chosen such that {UAI: UeW¥ and Un~I° £0} is
a collection of Lemma 1. Also assume that for each 1 <4< s there is
an infinite dimensional subspace B; such that B, D B;D..0 B, and
(U™~ (Biga+I ') = 0. Here, B +I°* means the set of all ze¢B
such that ® = u+4v, we By and ve I, Suppose that B; is chosen such
that @; ¢ B; for j < i, but suppose that x; B, T=2,3,.,8

Let us show how By is chosen. By the definition of Uy
(UUsy "~ I =@. Let o be the natural projection of B°+I°"" onto B,.
Then 0¢x ({\JUs~(Bs +I°""T7); hence for U ¢ U, there is a hyper-space
hy in B, such that hy~ a{{U ~ Bs+I°""7) = @ [1]. Define By to be
M {hy: U €Uy} Sinee x, ¢ some U in W, 25§ Bgyyi. Choose @z to be
an element of Beys such that [wsr.] > max[diameter(T): U e U{Us
i=1,2,..,8} .

T4 can now De shown easily that the conditions of Lemma 1 are’ sat-
isfied, and hence the theorem follows as we have seen.

Remarks. A slightly stronger result hag been proved than was
claimed. Tt has been shown that there is a s-dimensional cube I°C B
such that infinitiely many members of U meet I®. T do not know if s may
be always chosen to be 0. That is, is there a point in infinitely many mem-
bers of U? ’

Moreover, it is easy to see that the same approach establishes the
analogous result for a covering of an arbitrary infinite-dimensional normed
linear space by open convex sets, if the family ¥ of their closures has
the following property. Whenever a subfaniily of % has the finite inter-
section property, then it has a nonempty intersection.
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