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Independence in algebras of sets and Boolean algebras
by
E. Marczewski (Wroctaw)

The following notion of set-theoretical independence has been in-
troduced by G. Fichtenholz and L. Kantorovitch [4], p. 78: the sets
E,, ..., By ave called independent if none of their atoms (for the definition
of atom see below § 2) is empty. This notion, as well as some of its variants,
has interesting applications in measure theory, probability theory, and
functional analysis and has been treated by several authors. (See e. g.
Fichtenholz and Kantoroviteh [4], Tarski [15], p. 53, Marezewski [6]
and [7], Banach [1], Sikorski [11] and [12].)

A related condition was considered by S. Mazurkiewicz ([93, p. 86):
none of the sets Ky, ..., B, is contained in the union of the remaining
ones. This condition is weaker than the preceding one.

A dual condition. to that of Mazurkiewiez is the following: none of
sets B, ..., B, containg the intersection of the remaining ones. This is
of course, the set-theoretical formulation of logical independence (in-.
dependence of axioms, independence of conditions, independence of
equations, ete.).

The principal aim of this paper is to prove that the notions listed
above fall under the same algebraic scheme, presented in § 1. The cor-
responding theorems are: 4 (i), 5 (i) and 5 (ili). The main results presented
here have been given without proof in my paper [8], which includes
other examples, from various branches of mathematics, of the notions
called independence, which also fall under the scheme of § 1 (1).

1. Independence in abstract algebras. Let % = (4; F) be an
absiract algebra (see, e. g., Birkhoff [2], p. vii), i.e. a set A of elements
and a class F of fundamental operations. Every feF is a function of
several variables which associates with each sequence (z,,..,2) of
elements of 4 an element (@, ..., %) ¢ 4. We denote by A™(), or
briefly by A("), the class of all algebraic operations (cf. McKinsey and

{*) For other investigations concerning that scheme see Swierezkowski [13]
and [14].
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Tarski [10], p. 160) of » variables, i.e. the smallest class of functiong
containing » “identity functions”:

@y ey @) = g, B=1,2,.,%0,

(defined for @; ¢ A) and closed under the composition with the fandamental
operations. The set of all values of all constant algebraic operations
(called algebraic constants) will be demoted by A9y or A9,

A set N C A will be called a set of independent elements (*), whenever,
for each sequence a,..,a, of different elements of N and each pair
f,q €A™, i f(ay, ey Gn) = g{y, ..., an) then f and g arve identical in A4,

Every fundamental operation f of k vaviables may be treated as
a function which associates with % algebraic operation fy, ..., fre A™ an
algebraic operation g = J(f;, ..., fx) defined by the formula

G @1y ery &) = f(fl(mla s @n)y ooy FHl@ry ey 05‘7,,)) .

Consequently the clags of all algebraic operations of n variables
forms @ new algebra: (4™; F).

2. Atoms and their unions. Let B(X), or briefly B, denote the
class of all subsets of a non-empty set X (or, more generally, the class
of all elements of a non-trivial Boolean algebra, i. e. consisting of ab
least two elements).

If X is fixed, it will be called a space and denoted by 1. Further,
let us denote by 0 the empty set, and by v, ~, ’, %, and -~ the elementary
set operations: union, intersection, complementation, subtraction and
symmetric subtraction. In accordance to the preceding paragraph, the
same symbols will denote operations on set-valued functions.

The following notation will be very useful in the seguel:

1) B=F and E'=E for FeB.

In the whole paper the letters ¢ and § will be used as indices running
over 0 and 1 only. Thus we have

) z"'={° A
1 if 4=
The set
(3) Ao\ Bry oy Ba) = (B X

=1

(*) The notion of independence can be considered as a case of the notion of free

algebra, defined by G. Birkhoff. Cf. Birkhoff [2], p. viii and McKinsey-Tarski [10],
p. 170.

Independence 137

will be called the atom of the sequence E, ..., By, corregponding to the
sequence of indices ¢y, ..., 4. ‘
Obviously o
(4) Ay Bry ey Bn) ~ Ay, (B, ...', Ey) - o 5 v
B (fisengy i) 7 (s ooy ) -
For a fixed sequence i, ...,%,, formula (3) determines a function
Atgyipy OF 1 set-variables By, ..., B,. It follows, from (2). :that

. 0 H (dy ey fn) # (ayeeydn)s
O vl i ={ ] B 2,
Bty e 1 i (4, ﬂ_n) = (Jyy ey In) -
Let us denote by T™ the set of all sequences (i, ..., i) and let us
set for every non-empty J C T™: S

() Ad By s By = U A in(By, ey Ba).

(Epsuesty)ed

We may complete this definition in. the case of the empty set,
putting

(1) AyByy ey Ba) =0.
Definition (6) implies Voo

(8) APy, ..., By =1,
It follows easily from (5), (6) and (7) that °
, . 0 . i (fiyenyin)ed,
9 A =
9 {1y -eey ) {1. (g, g Gu) €

Among the functions A4, there are all identity functions: denoting
by I{” the set of all sequences (i, ..,i,) with 4 =1, we have ‘

(10) Agm = €.
Definitions (6) and (7) and formulas (4) and (8) n:nply for every
J,CI™ and J,C 1™ - h s
'AJI A AJ2 = ‘AJIUJzi

A.Jl m AJ2 = AJL”-TZ ]

{11) ArNAr, = Araa, s
AJ;“.‘-AJz:AJﬁJM oo .
() = Az, :

where obviously J' denotes T™\J.

Fundamenta Mathematicae, T. XLVIIL, 10
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Let us notice finally that
(12) Ay =4y, if and only it J,=J,.

In faet, in view of (9), the relation 4; = 0 is equivalent to the
relation J = 0. Consequently, the relation A; — 4, is equivalent sue-
cessively to the following omes: Ay, ~ Ay =0, dj.g, = 0, Jy=dy =0,
Jy=d,.

8. Operations in algebras of sets. We congider the following
five algebras:

B=(B;u,’),
SB1=(B§V7\)1 %2=(B§U"")7
By = (B; ), By = (B;~).

(i) 0 and 1 are algebraic comstants in B (°). Intersection and sub-
Iraction. are algebraic operations in B.

In fact,

0=(EVEY, 1=BJE,
EnF=EuFY, I\F=# JuFy.

(ii) 0 is an algebraic constant in B, (1), Intersection is an algebraic
operation in B,.

In fact,

0=EE, E~F= EN(E\F).

Propositions (i) and (ii) imply that

(iil) Every algebraic operation in B, or in B, is algebraic in B,. Bvery
operation algebraic in B, is algebraic in B,. Bvery operation algebraic
in B, is algebraic in B.

The following well-known theorem (ef. e.g. Birkhoff-Me Lane [3],
D- 322) concerns the algebraic operations in B, called by several authors
Boolean polynomials:

(iv) A function is an algebraic operation in B if and only if it is of
the form A;.

It follows from (i) that every function 4; is algebraic in B. To prove
the converse relation it suffices to remark that the clags of all tunctions
of the form 4; with J C 7™ containg all identity functions of m variables

(see (10)) and that it is closed under union and complementation (in
view of (11)).

(*) It follows from (9) and 3 (iv) that there exist no other algebraic eonstants in .
(*) It follows from (9) and 3 (v) that there exist no other algebraic constants in 9,.
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(v) A function of n set-variables is an algebraic operation in B, if
and only if it is of the form Ay where J does mot contain the n-tuple
(0,0,...,0).

Let us consider Ay ..., where not all the indices vanish. Then
we have

(*) Zkl“—'%k’:: . =’lkm=1, 7'112”3= "‘=7:1,;..,,,= 0

where k&, and I, are two increasing sequences, the first of which is non-
empty (whereas the second may be empty). Thus

n i m n—m
(#%)  Agip(Bry ey Bn) = QlEsa = QlEk" A OlEi,
n n—m , m n—m
=N Ee,~ (U B) = NEN U B,
=1 =1 8=1 8=1

whence, in view of (ii), Ag,..1y 18 an algebraic operation in B,. Con-
sequently, if
(0,0,..,0)¢J %0,

then the operation 4, is algebraic. In the case of J — 0 the operation
Ay is also algebraie, in view of (7) and (ii).

In order to prove the converse implication it suffices to prove that
the class of all operations A; with (0,0, ...,0)¢J contains all identity
functions (see (10)) and that it is closed under union and subtraction
(in view of (11)).

(vi) Hvery algebraic operation in B, s of the form Az, where
{0,0,...,0)¢J and (1,1,..,1)ed.

It follows from (iii), (iv) and (v), that every algebraic operation
in B, is of the form 4; with (0,0, ..., 0)¢J.

Since the class of all functions f of n variables fulfilling the condition

f(Byy oy Ba) D () B

contains all identity functions of » variables and is closed under unjon
and intersection, every algebraic operation in 9B, satisfies this condition.
Consequently, if 4 is an algebraic operation in B,, then

4,1,1,..,1) =1,

whence, in view of (9), (1,1,...,1)ed, q.e. d.

Theorem (vi) does not give a complete characterization of algebraic
operations in B,. We formulate such a characterization (without prootf),
but it will be not used in the sequel:

10*


Artur


140 E. Marczewski im

(vi') A function is an algebraic operation in' B, if and only if it is
of the form A, where J is a non-empty set which does not contain (0,...,0)
and satisfies the following condition: if (i, ..., Ty 0y iy onvy ) € J, then
(’il, ey ?:k—ly 1, ’L.k+1, sy in) ed.

The following lemma concerning the algebraic operations in B, will
be used in the sequel.

(vii) If (iyy --ry In) 18 & S6Quence of non-identical terms, then the function
Ag,,..ip 15 the symmetric difference of two different algebraic operations
in Bs.

The assumption implies the existence of two non-empty increasing
gequences k, and I, satisfying (x). Modifying (xx), we obtain

m m n—m
'A‘(’fy---,fn)('Eli ey Eﬂ) = m E"s’;( m Eks ~ U Ela) ¢
§=1 8=1 §==1

Putting for every sequence FEi, ..., By,

m m kand
[@yy B = (\ B, and (B, B) = (\ Byn U By,
= g==1

8=l
we obtain

A(ip---,i,,)(Ely ey Bn) = {(By, ..., Bp) ~ g(El; weey Bn)

where, of course, f and g are two different algebraic operations in %2..

4. Independence in algebras of sets: B, B,, B,.

(i) The seis Fy, ..., Fy are independent in B if and only if every atom
of this sequence is mon-empty (5).

Let us suppose that an atom of Fy, .., Fy is void:

(+) Ayiy( Ty oy Fn) = 0.

different, because, by (5),
'A'(‘l'l_.--.,in)(il, ery 7/%) =1,

Thus, formula (+) expresses the equality for I, ..,JF, of two

different algebraic operations in B, or, in other words, the dependence
of Fy,...,H, in B,

) Le‘t us notice that the so-called denumerable independence of sets (cf. e. g.
Ma;rczc?wsln [7]‘, . 123) could also be treated as the independence in an algebra (with
eperations of infinitely many variables)
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Let us suppose, conversely, that no atom of F,, ..., F, is veid. If we
have for two algebraic operations AJl and A,,z: :

'A"J]_(Fli "')Fn) = AJ,(FI) ---;-Fn) 3
then .
Ay (Fry oy Fa) = A5 (Fyy oo Fo) = 0
and, by (11),
Agwg By oy Fy) =0,

Since, for every non-void J,
AfFy, o, o) #£0,

we obtain Jy ~J, =0, or else J, =J,. Thus F;, ..., ¥, are independent
in B, q.e.d.

(ii) The sets Fy, ..., Py are independent in B, if and only if each atom
Ay Ty ey Fu) with indices i which are not all vanishing is non-empty.

Let us suppose that there exists a sequence %, ..., %,, Wwith terms
which are not all vanishing, such that (+).

As in the preceding proof, we may treat Ay, and 0 as two
different algebraic functions in B, (in view of 3 (v)). Thus Fy, ..., Fy are
dependent in B, .

The second part of proof is also analogous to the case of the
algebra B. In order to apply the same argument to B, it suffices to
remark that if (0,0, ..., 0) éJ, and, simultaneously, (0,0,...,0)¢J,, then
(0,0,..,0)¢J; —ds.

(iil) The seis F., ..., Fy are independent in B, if and only if each atom

Let us suppose that there exists a sequence iy, .., s, with indices
that are not all identical, such that (+). By lemma 3 (vii) there exist
two different operations f and g which are algebraic in B, and such
that Ag,..ip =f = g. Therefore

FFry ey Ia) = g (B, ey Bu)y

whence Fy, ..., n are dependent in B,.

The second paxt of the proof is analogous to the cases of B and B,.
In order to apply the same argument to B, it suffices to remark that
i (0,..,0) ¢, and (1,..,1) ey for k=1,2, then (0, ..., 0)¢dy~d,
and (1,..,1)é¢J; =J,.

(iv) In the class B of all subsets of a space there ewist m sets which
are independent in B, B, or B, if and only if the space contains af least
o™ 9" —1 or 2"—2 elements respectively.
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Let Xy, .., Fs be independent sets in 8. It follows from (i) that
all 2™ atoms of this sequence are non-empty. Since the atoms are disjoint,
the space contains at least 2" elements. Analogously we infer from (ii)
or (iif) that it Fy,...,#n are independent in B; or B,, then the space
containg at most 2"—1 or 2"—2 elements.

In order to prove the converse implications, let us use the notation
of § 2 and put

X=Ta, Y=T\{0,0,..,0}, Z=17T\{0,..,0),(1, N )

Therefore X, ¥ and Z have 2", 2"—1 and 2"—2 elements respectively
and it follows directly from the equality

A(il,...,i,a(I§n)’ ey 17(1")) = {<i17 seey 'Ln)}
that the sets

e, . 1P,
PAY, IPAY, .., DAY,
IPAZ, IPAZ, .., IPA~Z

are independent in the algebras

;B=(B(X))U3I)7 23lz(B(Y)’V’\\)’ and §82=(B(Z)7U7”.)
respectively.

Theorems 3 (iii) and 4 (iv) imply that

(v) The independence in B implies the independence in B, and the
independence in B, implies the independence in By, but not conversely.

Nevertheless

(vi) For an infinite class of sets the notions of independence in B, B,
and B, are equivalent.

I.n view of (v) it is to prove that if an infinite class N is o class of
sets independent in B,, then these sets are independent in $B. Let us
gup'pose t.hat By Fyy ey Fny Py are different elements of N and let
21y by ..y U be an arbitrary sequence of 0’s and 1’s. Putting either 4,4, =0
Or iny1 =1 we obviously obtain a sequence 1y Gyy eey Gy Tnea OF terms
that are not all identical. Since IV is a class of gets independent in B,,
we have by (iii)

Alyesiins Py ooy Froy Fra) # 0
and sinee of course

A(i,,---,f,.)(Fn ey Fn) o] A(z‘l,‘..,i,,,i,H_l)(Fu vy Fﬂ: F'n+1) 3

the atorn A ., WL oy Fa) 18 non void.
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The sequence iy, ..., i, has been arbitrary; therefore, in view of (i),
we obtain the independence in %B. The theorem is thus proved.

Formulas (11) and (12) prove that the correspondence J—A; for J
running over B(I™) is an isomorphism with respect to all elementary
set operations. Consequently

(vil) The algebraic operations Az, ...,A_,m m B are independent in
the algebra (A(")(%); w, ') if and only if the sets J, ..., Jn are independent
in (BI™); 0, ).

Analogous theorems are valid for the algebras B, and B,.

5. Independence in algebras of sets: B; and 3B,.

(i) The sets Iy, ..., Fy are independent in B, if and only if none of
them is contained in the union of the remaining ones.

If the set F is contained in the union of the remaining ones, then

Fu.vB,=Fv. vl v v v,

S0 we see that two different operations algebraic in B, are equal
for Fy, ..., F» and consequently Fy,..,F, are dependent in B,.
In order to prove the converse implication, let us remark that every
algebraic operation of % variables in B, is of the form
By ey By) =Ty v .ow By, where 1<L<..lp<n.

Thus, if Fy, ..., Fy are dependent in B, then there are two different

sequences 1 <l < ... <lp<n and 1 <l <... <lw <7 such that
Fll\J .‘.UFlszl{U...UFz;n,.

There exists of course an index % which appears on one and only

one side -in this equality. If it appears on the left, then we have
FkCFll U U Flm = Fl; [C) Fl;”,CFI VIR VR RN SR EURNRU

Of course,

(i) The sets F., ..., Fn are independent in B, ¢ and only if their
complements are independent in By,
whence

(iii) The sets Fy, ..., Fn are independent in B, if and only if none of
them contains the imtersection of the remaining ones.

Now we ghall prove that

(iv) In the class B of all subsets of a space there exist n independent
sets in B, and B, if and only if the space contains at least n elements.

It there exist 7 independent sets in. B, then, in view of (i), the space
contains at least » points. In view of (i) the existence of n independent
sets in B, implies the same conclugion.
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“Tn order-to prove' the converse nnpheatmns it suffices to state that n
different one-point séts form a’ class of sets independent in B, and their
complements — a ‘clasg of sets mdependent in B,.

Let us also note the foflowing relations, easy to prove:

(v) The mdependence in B, implies the independence in B, and in B,
but not” coowersely N eu‘her of the mdepmdmoes in Bs and By implies the
“other- one. . o

6. Some properties of linear independence. Linear inde-
pendence (e. g. in a vector space) possesses some properties which have
served several authors as the definition of “abstract linear independence”,
‘Tt ig interesting that the algebra1c mdependence of numbers falls under
this notion.

The -condition. congidered by H. Whitney [16] is the following:

(W) If A is-a set containing » independent elements and B — & set
containing #-1 independent elements, then there exists an element
beB\A such that Ay {b} is a. set of. mdependent elements.

The condition considered by 0. Haupt G. Nobeling and C. Paune [5]
is the following: . . o ‘

(H) T o belongs to a set 4 of independent elements, and neither
of the sets Au {b} and A v {c} is a set of independent elements, then
(A\{a}) v {b, ¢} ig not a'set -of independent elements.

We shall prove that the above conditions are not fulfilled by the
independence in B, B,, B,, B; and B,.

Let wus consider the “spaee”, congisting of four elements:
X = {t, u, v, w}, and three sets: U = {u,v,w}, V= {u,v}, W= {u,w}
Then, in the algebra B = (B (X),u, 'y the clags {U} consists of one
independent set, {V, W} is'a class of two independent sets, but {U,V}
and {U, W} are classes of dependent sets since UDV and UD W.

>+ Therefore, the independence. in B does not fulfil condition (W).

The same example shows that the independence in B does not
fulfil condition (H).

.. By the same argument the notions of independence in By, By By
and B, ‘do not fulfil condmons (W) and (H).
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