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Distributivity and representability
by
R. Sikorski (Warszawa)

The main theorem of this paper is theorem 3.2 on the representa-
tion of Boolean algebras as factor algebras §'% where § is an m-field
of sets and J is an m-ideal (1). Some necessary and sufficient conditions
for the existence of such a representation were given by Chang [1],[2](2).
A sufficient condition formulated as a distributivity property was given
by Smith [9], who has proved that his condition is also necessary if
mt= 1 for all cardinals n < m. The necessity of Smith’s condition for
regular cardinals is equivalent to the generalized continuum hypothesis.

In this paper I shall give a condition both necessary and sufficient
(see 3.2 (r;), (ry)) which is a simple modification of Smith’s condition
but omits the additional hypothesis on m. This condition has a very
simple topological interpretation (3) (see 3.2 (1), (r,)). For completeness I
also quote Chang’s conditions (3.2 (r;), (rf)). Combining (r,) with Chang’s
condition (r;) I obtain a new condition (r;). Conditions (rj) and (rl) are
topologieal interpretations of (rj).

The fundamental conditions (r;), (r,) have the character of a dis-.

tributivity property. To underline the analogy between the representa-
tion problem and the distributivity, § 1 and § 2 on distributivity have
been added (some of the theorems in §§ 1, 2 are known),
. Recently Kelley [4] has given a simple topological condition for
a Boolean o¢-algebra satisfying the o-chain condition to be weakly
o-distributive (see 4.2) (*). To explain the topological character of the
m-chain condition, theorem 4.1 has been added. '

(!) We use the abbrevations: m-algebra, m-field, m-ideal, m-filter for: m-com-
plete algebra, m-complete field, m-complete ideal, m-complete filter respectively.
m always denotes an infinite cardinal.

(*) A simple proof of the mnecessity and suificiency of Chang’s [1] condition
(see 3.2 (r;)) has been communicated to me by A. Bialynicki-Birula before Chang’s [2]
proof was published. The proof of the implication (r,)—(r{) on p. 100-101 is a slight
modification of a part of Bialynicki’s proof.

(?) During the print of this paper I observed that the topological interpretation
was also given by Pierce [6].

(%) o is the cardinal of the set of all integers.
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In the main theorems 1.1, 2.1, 3.2, 4.1 no hypotheses of a higher
completeness of Boolean algebras are necessary. In theorem 3.2 we assume
the following definition of m-filters (m -ideals) in. arbitrary (not necessarily
m-complete) Boolean algebras:

A filter 5 (an ideal J) is said to be an m-filter (an m-ideal) provided,
for every indexed set 4;e3J (4:e3J), te T, T'<m, there exists an elemont
Ael (4e3JI) such that ACA4; (4,CA) for every tel.

To express topological interpretations of some distributivity pro-
perties, it is convepient to introduce the notions of m-closed and m-open
sets, of m-nowhere dense sets, of sets of m-category and of closed sety
of character m. The definitions of these notions are given below (see
p. 93).

Terminology and notation. § and 7 always denote some non-
empty sets. 87 denotes the set of all mappings f from T into §.

Boolean algebras are denoted by letters 2, B (with indexes, if
necessary), fields of sets by &, ideals by J and filters by . Flements
of Boolean algebras or fields of sets are denoted by 4, B, ...

We use the symbols v, |J, n, (M) both for set-theoretical operations
and for the corresponding Boolean operations. Semetimes we write
U, ﬂ” instead of | J and (M respectively in order to underline then
the (infinite) Boolean joins and meets under consideration are taken
relative to the Boolean algebra 2. The sign — denotes complementation
and subtraction. The sign C denotes both the set-theoretical inclusion
and the Boolean ordering relation. The sign \/ denotes the unit element
of the Boolean algebra in question. The sign A denotes both the zero
element of a Boolean algebra and the empty set. [A] denotes the element
(of a Boolean factor algebra W or A/S) determined by 4 <.

4 filter J (an ideal J) in a Boolean algebra U is said to preserve
a given join A = (Jiir 4, or meet B = ML, B, provided [A] = Uteal44]
or [B] = Meer[By) in WS (in W).

An indexed set {d;}jcr of elements of a Boolean algebra 9 is said -

to be an m-indexed set provided T < m. The same
for_doubly indexed sets:
if T<m and 8 <m.

A homomorphism (isomorphism) % of a Boolean algebra A into
another Boolean algebra 9’ is said to be an - homomorphism (i -iso-
morphism) of A into A’ provided, for every m-indexed sof {Aher of
elements in U, if | Jj.z4, exists, then Uterh(4y) also oxists and

h(Uiesd) = Uph(4y) .

By th'e de Morgan formulas, we obiain an equivalent definition by
replacing everywhere U by N A necessary and sufficient eondition for

terminology is used
{Aiohier,ses 18 said to bo an mi-indesed sef
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# homomorphism (an isomorphism) % to be an m-homomorphism (an
m-~isomorphism) is that

Niezds= A  imply Nierh(4y) = A
for every m-indexed set {d;her of elements in 9L
A subalgebra B of a Boolean algebra 9[ is said to be an - regular
subalgebra provided the identity mapping of B into %A is an m-isomorphism

(i.e. if, for every m-indexed set {d;yer of elements in B, | JErd,
exists, then UﬁTA, exists also and

Ukerd = Ul rd:;
and the same holds for meets). For instance, if & is an m-isomorphizm
of 9 into another Boolean algebra %', then the set h(%) is an m-regular
subalgebra of A,
The Stone space X of a Boolean algebra 9 is the set of all maximal
filters in 20. The mapping #,:

ho(A) = the set of all §e X such that AelJ (Ae)

is the Stone isomorphism of 9 onto the field &o of both open and closed
subsets of X.

A subset B of X is said to be m-open (m-closed) provided it is the
union (the intersection) of at most m sets in §F,.

A subset B of X is said to be m-nowhere dense provided it is a subseb
of a nowhere dense mt-closed set. For instance, for any m-indexed
sef {ds}ter of elements in A, if 4 = UfﬁTA,, then the set

ho(A) —Urezho(4i)
(where | J denotes the set-theoretical union) iz m-closed and nowhere

dense, and therefore it is m-nowhere dense. Similarly, if A = ﬂ?‘sTA,
(T <m), then the set
Mitezhol ds)—Ro(4)

is m-closed and nowhere dense, and therefore it is m-nowhere dense.
Conversely, for every m-nowhere dense set B there exists an m-indexed
set {4d;}er of elements in A such that

Nierde= A BC(MiexhyAs).

A subset B of X is said to be of the mm-cafegory if it is the union
of at most m sets m-nowhere dense in X.

A closed subset B of X is said to be of the characier m if for every
m-indexed set {B}.r of sets in §,, such that B C B, for every te T,
the interior of the intersection of all B, contains B. A closed set BC X
is of the character m if and only if the class of all elements 4 « % such
that BChy(4) is an m-filter (see the definition on p. 92).

and
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§1. The m-distributivity. A Boolean algebra 2 is said to be
m - distributive if
1) ﬂtsTUsESAt,s:: UiES”'mteTAt.fﬂ)

for every m-indexed seb {Ashier,ses of elements in U such that

(2) all the joins UsesAss (t€ T) and the meet [Vrerl JsegAis €Xist,
and . .
29 all the meets [Nz Aurn (feS8") exist.

1.1. The jollowing three conditions are equivalent (°) for any Boolean

algebra U: o
(d) A 4s m-distributive; L )
(dy) for every m-indeved set {Aishter,ues satisfying (2), if

(3) MierUses Ars # N
then there exists a mapping feST such that (%)
{4) Nierdogn # N i

(ds) for every m-indewed set {Aisher,ses satisfying (2), if
(5) MterUsesdes= V,
then, for every A # A, there exists & mapping f e 8% such that
(6) A~ (Verdigm # N -

{d) implies (d,) since (1) and (3) implies (4).

To dedunce (d,) from (d,) it suffices to augment the set T by a new
element t,, to assume d;,= A for all-seS, and to apply (d;) to

i t (5) holds.

{dis}teTogy,ses Under the hypothesis tha : ’

(d,) implies (&). In fact, let {Aszher,ses Satisfy (2) and (2'), and
B = MNterUses41s- Suppose that (1) does not hold, i e. there exists
an element A # A such that

n ACB and [VierdosyCB—A  for every feST.
Augment the set § by a new element s, and write
Bi;,=—B for every tel,
Bigs=B~4;; for every te¢I and every se&.

(*) The equivalence of (d) and (d,} was proved by Smith and Tarski [10;(.

(%) Inequality (4) should be read: either the infinite meet (4) does not exist, or
it exists and is not equal to A. The same remark should be applied to (8), (12), (14),
(19), (21), (22)
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The m-indexed set {Bishier,ssuy Satisfies (5). Applying (dy) to this
indexed set, we infer that there exists an feS87 such that
A ~MNterAizn #= A. This is a contradiction of (7).

1.2. For every Boolean nt-algebra U with at most m generators (%),
the following conditions are equivalent:

() A is m- distributive;
(i) U is atomic;
(iii) A 4s isomorphic to an m-field of sets.
Only the implication (i) (ii) ought to be proved. Assume the notation

A4 i e=1
A= ’
£ { -4 i e=—1,
for every A e
If an m-indexed set {A;}er generates 2, then each element of
the form
(8) . a=Uere(t)- 4y

where &(f) =41 is either the zero element or an atom since, for every
A e, either a~ A = A of aCA. Since

Neer(dio—4)= Vv,

it follows from 1.1 (d,) that every element 4 == /A containg an atom e
of the form (8). Thus U is atomic.

1.3. For every Boolean m-algebra A, the following conditions are
equivalent:

(i) A 4s m- distributive;

(il) every m-subalgebra genémted by at most m elements is atomioc;

(iii) every m-subalgebra generated by at most m elements is isomorphic
to an m-field of sets.

This immediately follows from 1.2 since [ is m- distributive i#f and

only if edch of its m-subalgebras generated by at most m elements is
distributive,

§ 2. The weak m-distributivity. The letters T and § will denote,
a8 previously, non-empty sets of power <. The letber S will denote
in this section the class of all finite subsets of &. According to the
convention assumed on p. 92, ST will denote the set of all functions #
defined on T with values in S, i.e. such that, for every ¢e T, F(t) is

(") This means: The least m-subalgebra containing a given set of generators of

power < m coincides with 2. Conditions (ii) and (ili) in 1.3 should be understood in
a gimilar way.
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i -indexed set of elements
ini set of 8. If {Aysher,seg 18 QLY mM-INd
;ﬁ;l]z‘z)ot:n algebra A, and F e s , then Ayry will denote the element

Aprey = Usero Ass -

A Boolean algebra ¥ is said to be weakly m-distributive (%) if

(9) NierUses e = UrestNier i
for every m-indexed set {Aycher,scs Of elements in U such that |
(10) all the joins UsesAss (feT) and the meet NierUses 4se eXist,
and . . .
(10) - all the meets [Yerdeorn (FeS) exist,
2.1. The following conditions are equivalent for any Boolean algebra A:

i - distributive;
(w) A is weakly m-distrs ; o .
(wy) for every m-indexed set {Aisher,aes satisfying (10) f

(11) MterUses At = A
then there exists an F e ST such that
(12) MNeerArrey = N 3
(Wa) for every m-indewed set {Aysher,ses satisfying (10), if
(13) MNierUsesdes =V,
then for every A = A there ewists an I ST such that
(14) AnNerdiry # A

(w,) 40 the Stone space of A the interior of any intersection of ai
most m dense m-open subsets is dense; . s
(wy) in the Stone space of A every set of the m-category is nowhere dense;
(ws) for every set of infinite joins and meets in A:
= , =,
Uaes{ Ayo=A; where i<<m, tel, T"<m,

15 Tt ¥ 1t e
( ) m;:S;'Bt,a‘:Bt where Sﬁ <m, tel H T <m’

each element A = A contains o subelement B # N\ such that every maximal
filter containing B preserves all the joins and meets (13).

() For some examples of weakly o-distributive Boolean algebras, see e. g. Horn
and Tarski [3].

im Distributivity and representability 97

(w) implies (W), (w;) implies (Wa)y (W,) implies (w). The proof of
these implications is similar to the proof of the implications (d)—(d,),
(d1) ~>(dy) (dy)—>(d) in 1.1.

In the proof of the next implications, h, denotes the isomorphism
(defined on p. 93) of U onto the field o of all both open and closed
subsets of the Stone space X of 9I.

{(w,) implies (w,). For suppose that, for every tel, G is a dense
m-open subset of X, i. e.

Gi= Uaesho(At,s) where U?sbsAi,s =V

(T<m, S<m). Let G be the interior of the intersection of all sets G
{teT) and let G C X be any open non-empty set. There exists a non-zero
element A in U such that hy(4) C G. By (w.), there exists an F € 87 such
that the interior H of the intersection

ho(A) A MNeez ho{ Ay p)

is not empty. Since H is open and HC hy(4d)~ Mtex Gy, we infer that
H C @~ G,. The intersection of G, with any non-empty open set G being
non-empty, the set @, is dense.

{w;) implies (w,) by Passing to complements.

(w,) implies (w;). In fact, the set N of all maximal filters which
do not preserve any of the joins or meets (15) is of the - category
(see p. 93). By (w,), N is nowhere dense. Thus the set ho(A)— N has
& non-empty interior, i. e. there exists an element B# AN (BCA)in U
such that hy(B)Ch(Ad)—N. The element B has all the required properties.

(w;) implies (w,). Suppose that {13) holds and apply (ws) to the joins

(16) UBESAt,s= Vv (lET) .

Since all maximal filters containing B (i. e. belonging to hy(RB)) preserve
all the joins (16), we have .

ho(B) ClUsesho(dss)  for every e,

Since hy(B) is closed and ho(4ys) are open in the compact space X, there
exists a finite set P(¢) C 8 such that

ho(B) C Useri ol Ae) = ho{ A4 )
Sinece

A #BCA4 and BCd4,py for all tel,
(14) holds.

2.2. Bvery m-distributive Boolean algebra is weakly m-distributive.
Fundamenta Mathematicae, T. XT,VIIT.
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2.3. A Boolean m-algebra is weokly m-distributive if and or_zly '1,']‘ et.wk
of its - subalgebras generated by at mosi m elements is wealkly m- distributive,

The easy proof is left to the reader.

§ 3. The m-representable algebras. A Boolean algebra is said
to be m-representable if it is isomorphic 0 an m-regula..r subalgebra,
of a factor algebra §%/J where § is an m-field of sets, gbnd Jis an.m~1deal
(otherwise speaking, if there exists an m-isomorphism of A into F/I
where § and I have the properties mentioned abov"a). L

Thus & Boolean m-algebra is m-representable 1f. and only if it is

isomorphic to a factor algebra F/I where § is an m-field of sets, and J
i -ideal .
K anlt‘{ntlllieze;jelg, A denotes a fixed Boolean algebra, A, is the Stone
isomorphism (defined on p. 93) of % onto the field of all both open z_md
closed subsets of the Stone space X of U, ¥, denotes the least m-.fleld
containing §%,, I is the m-ideal of all sets B e Fy, of the m-category in X,
and §r, is the field of all sets of the form

(Byw B)—B, where B,eF, and By, ByeSn.

By definition, &, is a subfield of ¥, and Fn/Iy is a s.ubalgebra of 3},“/?_;,,..

The factor algebra '3, is called the canonical m-representation
for 9. The following homomorphism 72 of A onto Fin/Im:

h(A) =[ho{4)] for Ae¥U
is called the canonical homomorphism. If h is one-to-one, it is called the
canontical isomorphism. .

Using the above terminology we shall prove the following two
theorems.

3.1. The canonical homomorphism h is an wi-homomorphism of U
0 Fm/Im. Consequently, if kb is an isomorphism, then Fp/Im (s an
m-regular subalgebra of Fu/Im.

If W is an m-algebra, then Fn=Fm and consequently Fun/Sm= Fun/Su-

If Niizdi= A (T<m), then the intersection of all sets ho(d;)
belongs to 3, and consequently

Neer (A = [MNiexho(d)] = A .

This proves the first part of 3.1.

Suppose now that U is n-complete. To prove that §, = &, it suffices
to show that Ty is an m-field.

Observe that, by definition, B e§;, if and only if there exists an
element 4 % such that

an hfd)—BeDp and  B—hyd) e .
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Suppose that B; ey, for every te T ( T< m), 1. e.
ho(At) —Bye Sm and .B;—- ho(.Ag) eJnm

for an A; e . Let 4 = U%‘ETA,, and let B the the set-theoretical union
of all B, (teT). We have

ho(4) =B C (ho(4) — Urezho(4y)) v (Urez(ho 4)— B))
and
B—ho(4) CUtex(Bi—hol Ay)

where | Jier denotes the set-theoretical union. This proves that 4 and B
satisfy (17). Hence it follows that B €Fm- Thus J is an nr-field.

3.2. The following conditions are equivalent for every Boolean algebra :

(r) U 45 m-representable;

(ro) the camonical homomorphism is an isomorphism;

(ry) for every m-indexed set {Ays}ter, ces satisfying (2), if
(18) mteTUssS-At,s 56 /\ ’

then there exists am fe ST such that

(19) Uter- Aoy 5= A for every finite set T C T,
(xra) for every m-indexed set {dishen, ses satisfying (2), if
(20) Mterlsesdre=V,
then, for every element A == Ns there exisis an fe ST such that
(21) A Merdogp = A for every finite set  T'CT;
(v3) for every m-indexed set {Aishier,ses satisfying (2), if (20) holds,
then for every proper m-filter J of A there ewists an fe 8T such that

(22) A~ (erdigg = A for every A el and every finite set T'C T,
(v3) in the Stone space of U, any intersection of at most m dense m-open
sets is dense, 1. e. any intersection of at most m dense m-open sets inlersects
every non-empty open set;

(rg) in the Stone space of A, any intersection of at most m dense m-open
sets intersects any non-empty closed set of character wm;

(r4) tn the Stone space of A, every set of the m-category ¢s a boundary
sel, i. e. no open non-empty set is of the 1 - eategory ;

(r3) in the Stone space of A, no non-empty closed set of character m 4s
of the m-category;

n*x
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{rs) for every set (18) of dinfinite joins and meets in W, and for
every A # A there emists o maximal filler containing A and preserving
all the joins and meets (15);

{x5) for every set (1B) of infinite joins and meets in A, and for every
proper m-filier 3 there exists & mamimal filter containing I and preserving
all the joins and meets (15).

(r;) implies (r;). The proof is similar to the proof of the implication
(dy)—+{d,) in 1.1. -

{r) implies (r,). In fact, suppose that, for every t ¢ T (T <m), G, is
a dense m-open subset of X, i. e.

Gi=Usesho(4ss) where Ubesdge=V (8 <m).

Let @ be any non-empty open subset of X. There exists an element 4 s A
such that hy(4) C G. By (1,), there exists an fe 87 such that (21) holds, i. e.

hold) A Mier bl Assin) # /A

for every finite set T'C T. Since all the sets ho(A4), ho(dss) are closed
in the compact space X, we obtain

A Fhol4) A NerholArzn) C G A Nier Gy .

(r3) implies (r,) by passing to complements.

(r,) implies (r5). In fact, the set of all maximal filters which do not
Preserve a join or meet in (15) is of the m-category. By (r,), there exists
a point in h(A) which does not belong to this set of the m-category.
This point is a maximal filter preserving all the joins and meets (18).

(vs) implies (r,). Suppose that (20) holds and apply (r;) to the joins

(23) UseS-At.s: \Y (t € -T) .

Let 3, be a maximal filter preserving all the joing (23) and containing A.
By definition, Jehy(4) and Spe Usegho(ds,) for every te 1. Thus
exists an s = f(f) such that Jo € ho(Aspp). Consequently

W(A) A Nier ol Ayjy) = A for every finite set 7I'CT,
i. e. {21) holds.

(rs) implies (rs), (rs) implies (rf), (v;) implies (rf), (rs) implies (ri).
The proof of these implications iy similar to the proof of the implications
(Te)—>(¥s)y (2a)~>(ra)y (ra)—>(r;), (r5)—>(Ty) respectively.

(rz) implies (r3). For suppose that (20) holds but (22) does not hold,

i. e. for every fe¢ 87 there exists o finite set T;C T and, for the set Ty,
there exists an element Ay, e such that

Az~ Niery Ao = A .
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The set of all elements AT, has a power <m (since the class of all finite
subsets of T has a cardinal <m).  being an m-filter, there exists an
element 4«3 such that AC Ay, for every fe8T. We have A A

sinee J is proper. Thus

A Nier Ay = A

for every feS7, i.e. (r,) does not hold.

(rz) implies (r,). (take as S the principal filter generated by .4).

(r,) implies (r,). In fact, if 4 = A, then ho(4) is open and non-empty.
By (ry), hold)¢Bm, i.e. B(A) % A. This proves that the eanonical
homomorphism % is an isomorphism.

(r,) implies (r). Thiz immediately follows from 3.1.

(r) implies (r;). It suffices to prove this implication in the case
where % is an m-regular subalgebra of §/J where § is an m-field of sets
and J is an m-ideal of .

Suppose that (18) holds in ¥. Since ¥ is an m-regular subalgebra
of F/3J, all joins and meets in (18) can be considered. as joins and meets
in §/J. We have

Aps=={[Bys] for some sets Bygef.

Let B be the union of all finite interseetions

) Byg o "By,
which belong to J, and let
Oa=B;;—B.
‘We have
Ay =10,

since Be3J. Moreover, for any finite intersection,
(24) £ Cpenin Cie, # A\, then Cra, e n G €3,
i. e,
-Atl,sl MNoaee N A-l,,,s,, FAN .
By (18), [NMiterUses Cis] # A. Thus the set mtsTUseS C;s contains

a point x. Consequently, for every te 7 there exists an s — f(t} such
that @ e Oy yp. Therefore

Cropgy o> voe 0 Oy # N

This implies (19) on account of (24).
3.3. Bvery weakly m- distributive Boolean algebra: is m-representable:


Artur


102 R. Sikorski

This follows from 3.2 and 2.1 since (w,) implies (rg).

3.4. A Boolean m-algebra is m-representable if and only if each of
its m-subalgebras generated by at most m elements is m-representable,

This follows from 3.2 since U satisfies (ry) if and only if each of its
m-subalgebras generated by at most m elements satisfies (r).

3.5. Every Boolean algebra is o-representable (?).

This follows immediately from 3.2 (r,) since every set of o-category
is a set of the {first category (i. e. the union of a sequence of nowhere
dense sets), and no open non-empty subset of a compact Hausdorff space
is of the first category.

§ 4. The m=chain condition. A Boolean algebra % is said to
satisfy the m-chain condition if every class of disjoint elements in A4 hag
a power << mt.

4.1. A Boolean algebra U satisfies the m-chain condition if and only if,
in its Stone space X, every nowhere dense set is m-nowhere dense.

Let h, be the Stone isomorphism defined on p. 93.

Suppose that N is a nowhere dense subset of X. Let {Asdter be
a maximal elass of non-zero disjoint elements in 9 such that the sets h{.4;)
do not intersect N. Since the class is maximal, the union @ of all sets
ho(4,) is dense in X, i. e. its complement ¥, = X—@& is a nowhere dense
set. We have N C N,. If U satisfies the m-chain condition, then T < 1,
and consequently the set Ny= V;erho(—4;) is m-closed. This Proves
that N is then m-nowhere dense.

Suppose now that every nowhere dense subset of X is m-nowhere
dense. We shall prove that, for every indexed set {d;}.r of disjoint
non-zero elements in U, we have T <m. It sufficies to prove it in the
cage where {4;};.r is a maximal class of disjoint elements, i. e. the union &
of all sefs Ry(4;) is dense in X. The nowhere dense set X — @ is contained
in a nowhere dense m-closed set N. Thus there exists an m-~indexed
8eb {Bslses Of elements in U, such that the union @, of all sebts hy(By)
(s ¢ 8) satisfies

Gy=X—-NC@H.

Since k(B,) is compact and hy(4;) are digjoint and open in the compact
space X, for every fixed s there exists only a finite number of indexes ¢
such that ho(4,) intersects o(B,). Since G, is denge in X, every set ho(dy)
intersects at least ome set (B,). This proves that T < m.

(°) This theorem is kmown. For the case of Boolean ¢-algebras, see Loomis [5]
and Sikorski [7]. For the case of arbitrary Boolean algebras, see Sikorski {8].
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4.2. 4 Boolean algebra U satisfying the o-chain condition is weakly
o-distributive if and only if, in the Stone space of W, every set of the first
category is nowhere dense (V).

In fact, if follows from 4.1 that if 9 satisfies the o-chain condition,
then the notion of ¢-nowhere dense set and the notion of nowhere dense
set coincide in the Stone space of 91 Consequently sets of the o-category
coincide with sets of the first category. Therefore 4.2 follows from 2.1
(W) = (W,).
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