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On strengthening the Lebesgue Density Theorem
by ‘
S. J. Taylor (Birmingham)

Suppose that F is any Lebesgue measurable set on the line, then
the density theorem due to Lebesgue states that

(1) lim 20 g

for all peints x in F except for a possible subset B CE of zero linear
measure. Here CE denotes the complement of B, I denotes a closed
interval, and | 4| denotes the linear measure of the measurable set A.
The problem arises as to whether or not this result can be improved
either (a) for each particular set F or (b) uniformly for all meagurable
sets E. We can look for sharper results in two possible directions, leading
to four problems in all.

(i.a) Suppose that E is a fixed set, and E’ is the exceptional sub-
set where (1) is not satisfied. Can one always find a measure function
of class 1(!) @(x) such that () p —m*(E') = 0% Certain special cases of
this problem were considered by Besicovitch [2], [3], who actually de-
termined the function ¢(z) for the sets he considered. We will see that
the answer to (i.a) is affirmative.

(i.b) Does there exist a measure function of class 1, p(«), such that
for any set £ the subset B’ where (1) is not satisfied has zero ¢-measure?
The answer is negative. Problems (i.a) and (i.b) are dealt with in § 1.

(il.a) Suppose that F is a fixed set, can we strengthen (1)? I e.
Does there exist a real funetion y(z), depending on K, monotonic in-
creasing, defined for positive z with lim w(r) = 0 such that

20+

. | IACH
(2) lim L2 CEL
aer |L{p(1])
|Zj—0
(*) p(z) is a measure function of class 1 if p(x) is defined, continuons, monotonic
increasing for positive x, x/p(x) is increasing, and lim @(®) = 0, lim g(@)/s = + co.
w0t 2ot

() p—m*(4), for any set 4, denotes the outer Hausdorff measure of 4 with
respect to ¢@(x), first defined in [4].
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for all points « in E except for a subset B’ C K of zero linear measure?
Problem (ii.a) was posed by 8. Ulam in 1937 in the Scottish Book, and
was Tecently brought to my attention by P. Erdss. The answer to this
question is again affirmative.

(ii.b) Does there exist a function y(z) of the above type, independent
of E, and such that (2) is satisfied at all points of any measurable set B,
except for a subset of zero linear measure? We prove that no sueh fune-
tion exists. Problems (ii.a) and (ii.b) are dealt with in § 2.

Thus we see that the Lebesgue density theorem is “best possible”
in the sense that it cannot be improved uniformly for all measurable
sets. However a stronger result (in two directions) is trune for each partic-
ular measurable set on the line.

In § 3 we consider briefly the analogous results for measurable sets
in Euclidean space of #-dimensions.

For notation and a summary of the definition of Hausdorff measures
the reader is referred to [7].

1. Hausdorff measure of a linear set of zero Lebesgue
measure. In this section we show that there is no linear set A such
that (%) A(4) =0 but g—m*(4)> 0 for every measure function ¢(x)
of clags 1. Since the measure functions of class 1 classify linear sets of
zero Lebesgue measure, in the sense that ¢—m*(4) < 4 oo implies
A(A) =0 when g{z) is of class 1, this result is of some interest in itself.
It provides an immediate solution to problem (i.a). We need several
results proved previously.

It E is any linear set B denotes a set on the z-axis congruent
to E, E¥ denotes a set on the y-axis congruent to K. The Cartesian
protuct B x FY denotes the plane set of points (x,y) with z in B®,
y in F‘”’.

Lemma 1. Given any linear set B such that A(E)= 0, there exists
a perfect linear set P such that

ABP % PY) =0,

This is a restatement of theorem 1 of {7}

Ligmma 2. For any perfect set P, there exists a measure function of
class 1, with respect to which the measure of P is positive.

(*) A(4) denotes the Hausdorff measure with regpect to x. When . is linear
A(4) = |4]. '
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_This is lemma 7 of [7].

LeMMA 3. Suppose that ¢ (z), @.(x) are two measure functions each
of class 1, and ¢(z) = @, (z)p(x). Then there exists a constant k > 0 such
that, if B is a @,-measurable linear sel, F is any linear sel, then

(p—m*(E(m) XE('II)) > kqnlum(E(z))%—-m*(F(”)) .

In the case where both faetors on the right-hand side of the above
inequality are positive, and at least one is infinite, the lemma should
be interpreted as stating that the left-hand side is also infinite. A special
cage of lemma 3 was proved as theorem 3 of [7]. The lemma ag stated
can be proved using the methods of Marstrand [5]. As no new idea is
involved the proof is omitted.

THEOREM 1. Given awy linear set’ A of zero Lebesque measure, there
exists a measure function @ (z), of class 1, such that pr1—m(4) = 0 (3).

Proof. Apply lemma 1 to the set 4, to obtain a perfect linear set P
such that A(A®xP¥)=0. PY being a closed set, it is measurable
with respect to any measure function: Further by lemma 2, there exists
a function g.(x) of class 1 suech that g,—m(P) > 0.

Now if ¢y(x) = a/pa(@), @) 15 also a measure function of class 1,
and ¢,(2)@.(z) = #. Applying lemma 3 we see that if @ —m*4) > 0, then
A(A® x P¥) > 0 which is not trué. Hence g~ m*(A)=0 = g —m(4).

CoroLLaRY. For any Lebesgue measurable set B, there exists a measure
function @(z) of class 1 such that the subset B’ of those points © in B where

© lim Sup.lI_r.\_O_'E.J # 0
zel III
|20

satisfies o —m(E') = 0.
This solves problem (i.a). To deal with problem (i.b) we need

LEMyMA 4. Given any measure function p(x) of class 1, there exists
a linear set A measurable with respect to o(x), such that 0 < p—m(4) < oo.

This is proved in [4].

Suppose that ¢ (#) is any measure function of class 1. Let 4 C [2,3]
be such that 0 < p—m(4) < co. Let BEC [0, 1] be a Lebesgue measurahle
seb with [E| > 0. Put ¥, = v A. Then |B,| = |¥]|, since |[4] = 0. How-
ever if xe 4, then

tim L0 OB _
zel |1
|Zi=0

() (Added in proof.) It has been pointed out to me that a direet proof of Theo-
rem 1 was given by Besicoviteh; see Proc, Camb. Phil. Sov. 52 (1956), p. 28.

Fundamenta Mathematicae, T, XLVI. 21
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so that the exceptional subset of E; where (1) is not satisfied has po-
sitive p-measure. That is, there is no “universal” funetion ¢(x) of clags 1

which solves (i.a).

2, Strengthening the limit in the definition of density.
We consider problem (ii.a) first in the case where E is a closed subset
of the open interval (0,1). It will be easy to deduce the general case
from this one. Let G be the complement of E in (0, 1). Then & is open,
and consists of an enumerable sequence of disjoint open intervals K,
i=1,2,.. Let |K;| = I;, and sappose that the K, are enumerated 50 that

(3) <L, i=1,2,..
Then > 1; < 1. The essential idea behind our proof is to nse the faet
i=1

that a convergent series of positive terms always converges with a de-
finite rapidity: that is, there are series which converge more slowly
that Y'I;.

Choose a sequenee {a;} (i=1,2,...) of positive numbers such that

4) a; > ;41 >0, @4;—=0 as {—o0,
bl
— =
(5) a: Z a
and
3 I
® D
i1

converges. Note that (3) and (5) together imply that, if I; = I, then
;= a;y;. We define a function y(z) in terms of the sequences {I;} and
{a;} as follows.

When z=1; put p(@)=0a; (i=1,2,..). When Iy, #§; and L
<@ <l define p(z) by linear interpolation. Put %(0) = 0.

From (3) and (4) we deduce that
(7) p(x) is continuous and monotonic inereasing for 0 < <1, with

p(0) = 0.

From (5) and (6) we deduce that
(8) zjp(x) is monotonic increasing with lim w/y(z) = 0.

z—0+

We will see that y(w) is a function such that (2) is satisfied. In the

proof we will need

Levyma 5. Suppose that I, is a closed interval on the line (not a single
point), for each index a, and J = _J I, «y Where the index set is not necessarily
aek

enumerable, is a bounded set. Then J comsists of am enumerable set of
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disjoint intervals, and for any 6> 0, there is a finite set of some of the inter-
aq

vals I, J" =\ Lo such that I, ~ I, is void (i 5 j) and [J'| > (3—0)|J].
i=1

The proof of this lemma is not difficult, and is left to the reader.

TuarorEM 2. Suppose that E 18 a closed linear set contained in the
open interval (0, 1): then there exists a function w(x) which is defined for
positive z, 8 continuous, and decreases 1o zero as x decreases to zero, such that

i II~CE| _
aer [L|p(1])
Z}=>0
for all © in B cxcept for a subset of zero Lebesgue measure.

Proof. Points of B which are end-points of intervals of the com-
plementary set are clearly in the exceptional subset where (2) is not

satistied. Let E; be the set of points of E which are not end-points of

complementary intervals. Then |E;| = |B|. From the set G construct the
function y(z) satisfying the conditions (6), (7) and (8). Then

(9) D'ljp(l) converges .
1=1

For each positive rational %, let E(k) be the subset of B, such that, for
& e B(k),

. £, E+R] A Q|
10 lim sup L€,
(o) ot T (k)

>k ().

For any & > 0, we prove that | E (k)| < ¢, and therefore |E(k)| = 0. By (9)
we can choose an integer N such that

(11) j’ Liw(l) <lek.

T=N4-1
For every point & of E(k), there is a 6 = 8(£) > 0 such that no point of
@I(f is within 0 of & For each poiht ¢ of E(k), choose an interval
};1= [, £+ 1] such that (10) is satisfied and 0 < b < 8(&). Then, for

N
each & I ~\J X, is void, and so
t=1

(12) Ien@l=|Ii~n U Ki.
. i=N+1

() [, 2+ 1] denotes the closed interval &<C vl &+ R
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Let J = |J I;. Then

P 0)
(13) JDE(k).

Apply lemma 5 with 0=} to obtain a finite set of points &, &, ..., &,
N ] Y,

such that Ip, ~ Ig is void when i+ j, and, if J =1;L=JIIE’,, then

(14) CARS UL

Put b= L}, i=1,2, ey - Then by (10) and (12),

5 & &+hiln, U Il
h < Tc . —————W“—“‘
Now [&;, &+ k4 n, U K consists of a finite or infinite number of whole
intervals K,UK,,, .- and possibly one partial interval IKi C K;,. Put
I, = | K- Then, by (7) and (8),

G &thln U Kl . y
i=N+1 io ___l_< I
¥ N0 +‘x;z; ke 2 o

K.;nIEj#z ke

Since the I, are disjoint and all the points & are in E, no interval K;

can have a non-void intersection with more than one I. Hence

q .
;h"% 2 wfi)\l e e

KinJ'#e =N+1

N
since J ~ () K; is void by construetion. By (11), we have
i=1

- g
W= D) ks < e
j=1
and therefore, by (13) and (14) we have, as required,

|B(k)| <e.
Let E(+) be the subset of E, for which

lim isup]———-———-‘E  EFM NG,
h=>04 2 (h)

when & is in E(+). Since
E(+)= ) Ek),

k rational
k>0
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it follows that E(-) has zero Lebesgue measure. Similarly, if F(—) is
the subset of those & of E, for which

EE T
we also have |E(—)| = 0.
Now, if
I[E—— b, £+ 1]~ CE|
W +W)p( +77)

>a>0,

it follows from (7) and (8) that at least one of the inequalities

=W, E1nbl_ |l E+]n G
h[’(/)(h’) 2 h”’([)(h")

>a

must be satisfied.

Hence if (2) is not satisfied at a point & of E, & must be in
E(+)uvB(—), or is an end point of a complementary interval. Thus the
subset B CE where (2) is not satisfied has zero Lebesgue measure.

I state a special case of theorem 2 which is of some interest.

THEOREM 2A. Suppose that B is a closed subset of (0,1) whose com-
plement consists of open intervals of lengths {I;} (i=1,2,..) and a s
such that 1> a> 0 and > 1™ converges. Then at almost all points © of B

I~CH| _
tim |

xel [Ill+a
|I|—0

This result can be proved by the methods used in the proof of the
last theorem using the function y(z) = 2= It is analogous to the main
result of [2], which states that under the conditions of theorem 2A, the
exceptional set Where (1) is not satistied has zero measure with respect
to p(x) = o'~

The main theorem of the paper now follows easily.

THEOREM 3. Given any Lebesque measurable linear set E, there exists
a function y{a) which is defined for posilive ®, is continuous, and decreases
to zero as w decreases to zero, such thai

|I ~CE

lim {(=—rr I =0
2 [Tl (I

for all & in B except for a subset of zero Lebesgue measure.
Proof. There exists a sequence of bounded closed sets Fy, Fy, ..., Fn, ...

such that # = Cjﬂ- C B, and |E—F|=0. Hence it is sufficient to prove
T=1
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the theorem for sets F which are enumerable unions of bounded closed
sets. For each F;, define a function y,(x) which satisfies theorem 2. Thag
is, there is a subset Fj;C F; such that

[LACFy| _
(15) Efi‘ o)

o0
whenever ¢ is in F,—F; and |Fj| = 0. Let F' = | JF%, and choose a fune-
g=1

tion p(x) which tends to zero more slowly than any of the (@) as 2—0.
Thus y(z) is monotonic,

(16) = limyp(@)=0 and lim v@) L, i=1,2,..
20+ 20+ Wi(m)
If § e ¥ —F’, then £ is in some F; but not in F; and therefore (15) is true,
and, a fortiori, by (16),
I ~CP|

aer TN
0

Since |F'| = 0, the theorem is proved.

This completes the solution of problem (il.a). Problem (ii.b) is
solved by

TEEOREM 4. Given any function y(z), defined fov 0 < o<1, which
decreases to zero as x decreases to zero, and a real number a, 0 < a <1,
there exists a perfect linear set E C [0, 1] such that |E| = a, and for all & in H,

hmsupl ~OB| _
e, Ilp(lI) —

= 400

Proof. The theorem is proved by actually constructing a Cantor
type set with the required properties. We use a method similar to one of
the constructions of [1]. Let y(a/2*) = az, k=0,1,2, ... Let 7y= 1 —a, and
define a decreasing sequence 7y>7, > 7> ...> 0 such that 7/ag_;—>+oo
and 7,0 as k—oo. Let Fy=[0,1]. Obtain F, from F, by removing from
the centre of ¥, an open interval of length r,—r,. Then #; consists of
two equal closed intervals. Suppose that F; has been defined, and con-
sists of 2' equal disjoint closed intervals (i =1, 2, ...). Obtain F;,, from
F; by removing from the centre of each ¥; an open interval of length
27¥(r;—y—r;). Then F;_, will again consist of 2! equal digjoint closed

intervals. Finally put P=‘ﬂ F;. Clearly |P|=gq, and P is a perfect
=1

linear set. Let & be any point of P. Then there is a sequence of closed
intervals

I,DLDLD..0LD..0¢,
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such that I is one of the closed intervals making up Fj, and therefore
has length 27%(a+ 1) = L. Further |CP —CFy| = 1y, and the set OP — CFy,
is equally divided among the intervals of F,. Hence

|In ~ CP| re2 7"

elw (L)) 27 a4y (@)

When k >k, 7 <a and therefore w(l) >w(a/2k_l) = qy—,. Hence, for
k=koy,

I ~CP| =27, and

Wk—l— 5a o 00 a8 k—oo.

This completes the proof of the theorem.

3. Analogous results for measurable sets in. Euclidean
n=-space. The results in » dimensions analogous to theorem 1 and lemma 4
are true, and can be proved by essentially the same methods. Hence,
whatever definition of density is being used, if it is known that the density
theorem is valid, then the answer to the problem analogous to (i.a) is
affirmative, and to that analogous to (i.b) is negative. Of course in
n dimensions one needs to' consider Hausdorff measure functions of
class n, i. e. functions @(#) which are monotonic increasing, defined for
positive & and such that z*/p(z) is also monotonic with

li 0, lim-Z
Snpe =0 em |

Before we can pose the n-dimensional analogues of (ii.a) and (il.b)
we must decide how zero density (analogous to (1)), will be defined in
n dimensions. There are two*possible definitions which are relevant:
we use the terminology of Saks [6], p. 106 and p. 129. ’

For any set B in » dimensions, d(#) denotes the diameter of E,
and |E| denotes the outer Lebesgue measure of E. R denotes a closed
rectangle with sides parallel to the axes. A decreasing sequence of closed
rectangles

Rl:)RzD -..DRkD ves

is said to be regular if the ratio of the lehgths of the longest to the short-

est side of Ry is bounded, and d(Ry)->0 as k—>oo. The Lebesgue density

theorem can then be stated in two ways.

A. If B is any measurable set in n-space, then there is a subset
B'CE with |E—F'| = 0 such that when »¢E’,

|Rk ~ 0E| -0

k—»oo | Rre !

for every regular seguence of closed rectangles {Ry} tending to =.
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B. If F is any measurable set in n-space, then there is a subset
E'CE with |[E—E'| =0 such that, when z e,

for every decreasing sequence of closed rectangles {£;} containing » such
that d(Ry)—>0.

A and B are equivalent in 1 dimension: however in n-space (n > 2),
B is stronger than A. Both A and B are true in n-space (see [6], p. 129
for a proof of B). I can show that A may be strengthened in the same
way that (1) was strengthened to give (2) for linear sets.

TErOREM 5. (iven any Lebesque measurable set E in Euclidean
n-space, there exists a funmction p(x) which is defined and continuous for
positive x, decreases to zero as z decreases to zero, and satisfies

. |Ry~ Gﬂ
kosco [ | 9 (| Ril)

when {Ry} 98 any regular sequence of rectangles decreasing to & and & is
any point of a subset B'CE with |E—F'|=0.

It is sufficient to prove the analogous result for density with respect
to a sequence of cubes tending to £ This can be done by making a few
modifications to the proof of theorems 2 and 3 given in § 2. Since no
essentially new idea is involved, I omit the details.

The theorem in n-dimensions analogous to theorem 4 is true and
can be proved by defining the x-dimensional analogue of the Cantor
set in the obvious way.

There remains the following unsolved problem arising from the
definition B of density.

PrOBLEM. Given an #-dimensional Lebesgue measurable set E,
does there exist a function y(z) which is monotonic increasing and con-
tinuous, with lim y(z) = 0, and a subset B’ C E with |B—%'| =0, such

T-+0+

that for any &eF,

=0

. |RA CE| —00
1131 |R|'P(|Ri)
a(R)—~0

I have been unable to decide the answer to this question. The me-
thods of § 2 break down in this case essentially because the analogue
of lemma 5 i8 not valid without a restriction on the ratio of the lengths
of the longest and shortest sides of cloged rectangles making up J.
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