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The space of prime ideals of a ring*
by
C. W. Kohls (Lafayette, Ind.)

1. Introduction. Jacobson showed [4] that the set of primitive
ideals of an arbitrary ring may be made into a topological space by means
of & closure operator defined in terms of intersection and inclusion rela-
tions among ideals of the ring. It was observed by McCoy in [11] thab
the set of generalized prime ideals defined therein may be treated in
exactly the same way.

In the present paper, we shall primarily consider subspaces of this
latter space, among which the space of primitive ideals is the most im-
portant. In section 2, we review the Dbasic results of the subject and
establish notation and terminology. In section 3, we present some simple
extensions of the discussion of Jacobson [4] on the connection between
compactness of a general space of ideals and restrictions on the ring.
The following section treats the relation of other topological properties
on appropriate spaces of prime ideals to algebraic conditions on a com-
mutative ring. Section 5 is devoted to an examination of the connection
between the prime and primitive ideals of an ideal of an arbitrary ring
and those of the whole ring. These results are applied in the last section
to the situation in which the ideal is viewed as given, and the containing
ring is a ring with identity into which it has been imbedded by a stand-
ard process.

Several of the results of sections 3 and 4 (in particular, 3.1, £.1 and 4.7)
were obtained independently, in a slightly different form, by McKnight [12].
Since none of his results have been published, we have included a com-
plete discussion.

2. Preliminary concepts. Throughout this paper, the word “ideal”
always means “proper two-sided ideal””. For the definition of a primitive
ideal, see [4], and for the notion of prime ideal in an arbitrary ring,
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of the National Seience Foundation, U. 8. A., constitutes a section of a doctoral dis-
sertation, written under the supervision of Prof. Leonard Gillman. The author wishes
to express his gratitude to Prof. Gillman for the-adwice and encouragement given during
the preparation of this paper.
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see [11]. Tf is shown in [11], Theorem 1, that an ideal P in an arbitrary
ring 4 is prime if and only it whenever axb ¢ P for all z ¢ 4, then a e P
or belP.

‘We shall'use the same notation and terminology as [2]. For an arbi-
trary ring 4, G(4) denotes a general structure space of 4; PB(4), the
space of primitive ideals; Q(4), the space of prime ideals; and R(4),
either P(4) or Q(4). _

For each acd, we call S(a)={8 e S(4): ae 8} the S-set of a,
and CS(a)=6{4)~S(a)={8 ¢ S(A): a¢ 8}(!), the CS-set of a. It i
easily seen that S(a) is closed, and thus that €S(a) is open.

A ring A will be called &-semi-simple if AG(4)=(0). The notion
of - semi-simplicity coincides with the wsual semi-simplicity in the sense
of Jacobson. The ideal A (4) is the radical defined by McCoy in [11].
Tt is contained in the Perlis-Jacobson radical AP(4); so P -semi-simplicity
implies Q- semi-simplicity. More generally, for any S(A) containing P (4),
9 - semi-simplicity implies &-semi-simplicity.

Many investigations about topological properties of &(4) are sim-
plified by use of the observation that the €G-sets form a base for the
open sets of S(4). This can be established by noting that for any sub-

set B of S(4), the relations BC M G(a )CB, together with the fact
aedB

that every G-set is closed, imply that B= (}%G(a).
ae
of this approach was observed also by MeKnight, [12].)

It is now easily shown that S(4) is always a T,-space. For, given
distinet S, T € S(4), there is an element g in either §—1 or T—§,
say the former; and then €& (a) is a neighborhood of T not containing 8.
If 4 has an identity, then every maximal ideal of 4 is primitive. Now,
in general, there may be a primitive ideal contained properly in another;
but when A is commutative, every primitive ideal is maximal, so that
PB(4) is a T,-space. However, this need not be the case for Q(4). For
example, if 4 is the ring of integers, every non-empty CQ-set con-
tains (0).

The set of primitive ideals can be neatly characterized when 4 is
commutative: it congists of those maximal ideals M which are prime,
i. e., such that A/M is a field. (It is well known that this is equivalent
to the statement that A/M is not a zero-ring.) For, if A/M is a field,
it is a simple ring with identity, and hence a primitive ring, so M is
a primitive ideal. Conversely, if A/M is not a field, 4. e., if 4/M is a zero-
ring, it is a radical ring, which can contain no primitive ideals; so M is
not a primitive ideal.

(The advantage

(1) The symbol — will be used for set complement.
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3. General structure spaces. In this section we study the re-
lation between algebraic conditions on the ring 4 and compaciness of
2 general structure space S(4).

LenmMA 3.1. The space S(A) is compact if and only if whenever the
set {aglpeo 13 contained in no S-ideal, then there is a finile subset {thyy.e, O}
that is contained in no S-ideal.

Proof. The condition stated is equivalent to: For every collection
{ap}peo Of elements of 4 such that for each § e S(A4) there is an a, ¢ 8,
there is a finite subcollection {a,,...,a,} such that for each § e S(4),
there is an ¢; ¢ 8. This is equivalent to: Every eover by §G-sets has
a finite subcover; which is the same as requiring that S(4) be compact.

It follows that for every Noetherian ring 4, the space S(4) is com-
pact. For, the ideal generated by any set {4,},c¢ has a finite basis,
and it is easy to show that the basis elements may be selected from

" the a,’s. Also, if every non-zero element belongs to at most a. finite

number of G-ideals (as in the ring of integers, for instance) then &(4)
is compact.

We shall say that 4 is finitely generated if A is a finitely generated
ideal of A.

TumorREM 3.2. Let 4 be a ving in which every proper ideal is con-
tained n an S-ideal. Then S(A) is compact if and only if A ds finitely
generated.

Proof. With the stated condition on 4, Lemma 3.1 now becomes:
S(4) is compact if and only if whenever {a,},es is a set of generators
for A, then there is a finite subset {a,,...,a,} such tha,t (g y.0ey ) =A.

We note that if A is finitely generated, then evely proper ideal is
contained in a maximal ideal. For, let I be any proper ideal, and let U/
be the union of any maximal chain of proper ideals containing I. Then
U is a proper ideal; for otherwise, each one of the finite number of gen-
erators of 4 would be in some ideal of the chain, and thus in the larg-
est ideal of this finite subchain, which is impossible. So we have:

CoroLiARY 3.3. If A4 s finitely generated, and every maximal ideal
of 4 is an S-ideal, then S(4) is compact.

Now when 4 has an identity, every maximal ideal of A is primi-
tive. Hence:

CorOLLARY 3.4 (Jacobson). If A has an identity, and S(A)
then &(4) is compact.

It is not true that if every proper ideal is contained in a maximal

ideal, then A is finitely generated, as shown for instance by the dlscrete
direct sum of an infinite number of fields.

2P (4),

PR
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4. Subspaces of Q(A). Throughout this section, we require G(4)
to be a subspace of Q(4); and except in Theorem 4.1 (a), we assume
that A is a commutative ring. -

The first two theorems are concerned with conditions which make
&S(4) a Hausdorff space.

TuroreM 4.1. (a) Let A be an arbitrary ring, and lot S(4)CQ(4).
The space S (A) is Hausdorff if and only if for each distinct pair 8,T ¢ S(4),
there exist a,b e A such that a ¢ 8, b¢ T and axb e AG(A) for all e A.

(b} In particular, if A is commutative, the last requirement simplifies -

1o abe AS(4). .

Proof. (a) In view of [11], Theorem 1, the condition stated is equi-
valent to the statement that for each distinct pair §,7 e S(4), there
exist disjoint €S-sets containing § and T respectively. This in turn is
equivalent to the requirement that G(4) be Hausdorff.

(b) Since AG(A) is an intersection of prime ideals, this is evident.

It follows easily that if A is an integral domain with more than
one S-ideal, and if 4 is &-semi-simple, then G(4) is not Hausdorff.
This is true, in partieular, for the ring of integers whenever & is
infinite. The same result was obtained by different means in [2], Theo-
rem 3.4 ff.

THEOREM 4.2. Let A be a commutative ring, lot S(A)CQ(4) and
suppose that for each distinct pair 8,T « G(A), there are a,b ¢ A satisfying
the following conditions: a ¢ 8, b« 8—~1T, and for some x,y € A and integers
mym,g,ky with m>j, n>k we have az=da’, By=>b*. Then S(A) is
Hausdorff.

Proof. We note that 5" *y ¢ §; and 6" ¥y ¢ T, since the contrary
implies b"y=>b* ¢ T, whence b ¢ T, since T is prime. Select any positivé
integer h satisfying (n—k)h >%. Then for all p >h, we have (n—k)p >k,
80 (B y )P = O RR Ry Py pO—Re—kypyry (k241 Hence, by iteration,
d=(0""*y = (" =@, Thus, we have an idempotent d ¢ § — 7. Sim-
ilarly, there is an idempotent ¢ ¢ 8. Now ¢—d ¢ §, for otherwise, cef.
Thus ¢(e—d) ¢ 8, since S is prime; and [¢(c—d)]d=0 e AS(4). By Theo-
rem 4.1, S(4) is Hausdorft.

DErmvitioN 4.3. Let 4 be a commutative ring, and let aed. We
shall say that an element ¢ ¢ 4 iz a relative identity for a if ae=a.

Evidently if A has an identity e, then e is a relative identity for
each element of 4. We shall be primarily interested in rings without
an identity which have relative identities for sufficiently many (or perhaps
all) of their elements. An example of such a ring is the ring of all con-
tinuous real-valued functions with compact supports on a locally com-
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pact, non-compact Hausdorff space. This ring has no identity, but each
element has a relative identity.

Another example i3 provided by w-regular rings. A commutative
ring A is said to be m-regular (see [7], p. 62) if for each a ¢ 4, there is
an z ¢4 and an integer » (depending on a} such that az=a". Thus,
a"z is a relative identity for ¢”. In case 4 is regular, i. e, n=1 for all a,
then every a <A has a velative identity.

If 4 is a commutative ring such that for each maximal ideal M,
there is an a ¢ M having a relative identity e, then each maximal ideal
is prime. For, ae=a ¢ M, s0o A/M is not a zero-ring. In [8], 3.8 we give
an example of a ring which satisfies this condition, but possesses ele-
ments without relative identities.

The following lemma amounts to the observation that a well known

process for “enlarging” idempotents can be applied to relative identities
as well (2).

LEMMA 4.4. Let A be a commutative ring. If aq,...,a, have relative
identities €qy...,6,, respectively, then there is a common relative identity
for the set {ag,...,a,}.

Proof. Define a sequence of elements of 4 as follows: f,= e, + &, — €,8;,
fa=h+es—fies, and in general, fr=fr_1+ ex—frsi, (k=2,...,n). It can
be verified immediately that f; is a relative identity for {a,,...,a;}. Thus,
fa is the desired element.

Lemma 4.5. Let A be a commutative ring which is finitely generated:
A= (agy.eny8,). If a;¢(af), (i=0,...,n), then A has an identity element.
Proof. Let ;¢4 and integers m; be such that a=ya; +mal,
and set ¢;=y;a;+mya;; then ¢ is a relative identity for a; (i=0,...,n).
By Lemma 4.4, there is a common relative identity ¢ for the set {ag,...,a,}.

Since any b ¢ 4 may be written in the form b= D (#a;-+ma;) for suitable
i=0
z; ¢ A and integers n;, it follows that e is the identity of 4.

THEOREM 4.6. Let A be a commutative ring without identity, but having
a single generator. Then A contains a mon-prime maximal ideal,

Proof. Let (a)=A. By Lemma 4.5, a.¢ (a®), so (a?) is a proper ideal.
In view of the remark preceding 3.3, (a®) can be imbedded in a maximal

(*) The same device was wsed in a lemma on Bapach algebras by Loomis in [9],
p. 83, (Added in prootf: It has heen called to our attention that 4.7 and 4.9 are
very similar to Théoréme 4 of K. Fuiiwara, Sur les anneaus des fonctions conti-
nues & support compact, Math, J. Okayama Univ. 3 (1954), p. 175-184. If his more
general notion of relative identity is used, the proofs of 4.7 and 4.9 can be carried
over to non-commutative rings with only very simple changes.)
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ideal M. Now A/(a?) is a zero-ring; for i r,8ed, i 6, 7,5¢(a), then
rs e (a?). Hence A[M is also a zero-ring, 80 M is not prime.

For a ring of this type, Corollary 3.3 is inapplicable. An example
is the ring B of even integers. In this case a=2, and (4) is itself the non-
prime maximal ideal. Of course, here we may conclude that S(F) is
compact from the fact that F is Noetherian.

TagorEM 4.7. Let A be a commutative ring such that for each
8 e S(4), there is an a ¢ 8 having o relative identity e; and suppose that
QA)DG(A)IBP(A). Then S(4) is locally compact.

Proof. Let T ¢ €S(a) be arbitrary. For all ¢ 4, aex—ar="0 ¢ T.
Since a ¢ T, and T is prime, we have ex— ¢ T. Thus ex—z e ACS(a)
for all « ¢ A, i. e., the image of ¢ in A/ACS (@) ig the identity. Since C&(a)
is hom@omorphic to G(A/AQZG(a)) (2], Theorem 1.1) it is compact; and
it is the closure of a neighborhood of 8.

CoROLLARY 4.8. Let A be a commutative ving such that for cach a € A,
there emist & < A and integers n,k with n>T%, satisfying a"p=a"; and sup-
pose that Q(4)DS(4)DP(4). Then S(4) is locally compact.

Proof. For each § ¢ &(4), pick a ¢ 8. Then a* bas a relative identitv
o %z, and af ¢ 8.

TagoreyM 4.9. Let A be a commulative S -semi-simple ring such that
for each 8 ¢ S(4), there is an a ¢ 8 having a relative identity; and suppose
that QA)DS(4)DB(A). Then S(A) is compact if and only if A has
an identity.

Proof. Suffieiency. See Corollary 3.4.

Necegsity. For each §eS(4), choose an @ ¢ 8 having a relative
identity. The collection of €S-sets for these elements is an open cover
of §(4), which by compactness, may be reduced to a finite subcover,
say {€S(ay),-..,CS(ay)}. By Lemma 4.4, there is an ec 4 which is
a common relative identity for the set {ag;...,aq}.

Now let 8eGS(4) be given. For some k, ax¢ 8. For all xeAd,
arer— agw="0 ¢ §. Thus, ex—=z ¢ S, since § is prime. By © - semi-simplic-
ity, em=m, i. e., ¢ is the identity of A.

Collecting results from 4.2, 4.8 and 4.9, we have:

COROLTARY 4.10 (cf. [1], Theorem 2.2 and [7], Theorem 4.1). Let A
be & commuiative m-regular ving; and suppose that Q(4)DG(A) P (4).
Then G (A4) is o locally compact Hausdorff space. If in addition A is S-semi-
simple, then S(A) is compact if and only if A has an identity. In partio-
ular, both of these conclusions are valid when A is a commutative regular
ring (which is P-semi-simple, hence S -semi-simple).
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5. The prime ideals of an ideal. Let 7 be an ideal of a ring 4,
and let J be an ideal of I. It is not always true that J is alse an ideal
of the whole ring 4. For example, let A be the ring of ail polynomials
in an indeterminate ® over the integers; I, the ideal of 4 consisting of
all elements of 4 with the constant term divisible by 6 and the coeffi-
cient of # by 2; J, the ideal of I consisting of all elements of I with the
coefficient of z divisible by 4. Then J is not an ideal of A, since (6 4 4z)x
= G-+ 4a? ¢ J.

Now a condition on J which is weaker than the requirement that J
be prime in I was shown by Johnson to be sufficient to insure that J
be an ideal of A ([5], Lemnma 2.1). However, we shall be interested only
in prime ideals. Suppose J is prime in I, and let jed, ae A be given.

. Then for all z ¢ I, (ja)x(jo)=j(azja) eJ, 50 juoeJ; and (af)(aj)=(ajza)je J,

80 aj eJ. Thus, J is an ideal of A.

In general, J will not be a prime ideal of 4. For example, let 4 be
the ring of integers; I, the ideal (2); and J, the ideal (6) of I.

‘We recall that the symbol R(4)} designates either of the spaces P (4)
or Q(4). The first theorem below is concerned with enlarging ideals
of N(I) to ideals of R(4). The result for the spaces P(I) and P(4) was
recently published by Goldie ([3], Theorem 1). And the statement for
the spaces Q(I) and Q(4) is almost contained in [6], Theorem 2.5. In
both cages, however, the proofs are different from the one we present.

TrmorEM 5.1. Let I be any proper ideal of a ring A, and let Pe R(I).
Set Q={aed: TaCP}. Then QeR(4), and P=Q~I.

Proof (for the spaces Q(I) and Q(4)). Let a,b € Q. Then I(a—b)CP,
whence a—be@., .

Tor every @ ¢ A, we have JoaClaCP; and since P ig an ideal of 4
(as remarked above), we have TazCPzCP. Hence zaeQ and axeQ.
Therefore @ is an ideal of 4.

Now let ¢,d¢@Q be arbitrary. Then there exist 4,f eI such that
ic,jd ¢ P. Since P < Q(I), and ic,jd eI, there is a zel for which
{ic)z(jd) ¢ P. Thus I(czjd) ¢P, so e(z)d ¢ Q. Hence Qe Q(4) [11].

Finally, if p P, then IpCP, so pe@nI. And if keI—P, then
there is an @ ¢ I such that kak ¢ P. Since ki e I, we have IkGP; s0o k¢ Q.
Thus, P=@Q~TI.

An alternative approach to the result proved above is possible.
We show first that {a e 4: JaCP}={a e 4: TaI CP}. Suppose that Ia¢ P,
and let 4 « I satisfy ia ¢ P. Then for some x € I, tazia ¢ P. Since ziag el ,
we have Ial ¢ P. Thus, {a ¢ 4: InICPIC{acA: IaCP}; and the reverse
inclusion is obvious. (Clearly we could show in the same manner that
{aed: alCPy={acA: IaICP}) :
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The proof can then be carried through in substantially the same
way, except that the proof that ¢ is a right ideal is now direct. Having
obtained 5.1 for the spaces Q(I) and Q(A), we conclude that P is an
ideal of 4 as a corollary (c¢f. [3]).

When 4 is commutative, we can also describe @ in another manner,
which will be useful in the next section. Let ¢ be any fixed element
of T—P, and set Q,={aed: caeP}. Let aecq,. Then caelP, so
Tae=IcaCIPCP. Since ¢ ¢ P, it follows that IaCP, 4. e, a<@. Hence
9.CQ. But it is obvious that QCQ.. Consequently, @=¢..

An alternative proof of Goldie’s result that P « P(I) implies ¢ ¢ P(4)
for commutative 4 can be given by use of this fact. Let P ¢ B (1), and
let @ ¢Q=Q., bed be arbitrary. Since ca,ch «I, and ca ¢ P, the con-
gruence (ca)z=cb (mod P) has a solution x (in I). Thus c(axr—b)e P,
80 az=>b (mod ). Hence Q@ «P(4).

THEOREM 5.2. Let I be any proper ideal of o ving A, and let
T={Q cR(4): @QHI}. Then I is an open subset of R(A4) that is homeo-
morphic to R(I), under the mapping o defined by a(@)=Q~1I.

Proof. For the spaces P(I) and P(4), this is part of a theorem
of Kaplansky ([7], Theorem 3.1 (a); cf. also [3]). We consider then the
spaces Q(I) and Q(4). By [11], Lemma 2, the mapping « is into Q(I);
and by Theorem 5.1, it is onto. The proof that « is one-to-one, contin-
uwous and open is identical with that given by Kaplansky.

Combining Theorem 5.2 with [2], Theorem 1.1, we have: R(4) is
the union of an open set homeomorphic to R(I) and a closed set homeo-
morphic to R(A/I).

6. Adjunction of an identity. Let 4 be a commutative ring
without identity. If D is a commutative ring with identity such that A4
admits D as a ring of operators, then 4 may be imbedded in the
ring (4;D) with identity defined as follows (¢f. [10], p. 87-88): Let
{4;D)={(a,d): aed, d<D}, and define operations in (4;D) by
(a1,0) + (ay, @) = (ay + Oy, dy + do), (@y,dy) * (@y ) = (@005 + g + oy 5 dady).
The identity of (4 ;D) is the element (0,1). The subset A,= {(a,d): d=0}
ig easily seen to be an ideal of (4 ;D) which is isomorphic to the given.
ring A. The quotient-ring (4 ;D)/4, is isomorphic to D. Thus, 4, « B(4;D)
(resp Q(4;D)) it and only if D is a field (resp. integral domain). More
generally, it follows from the well known correspondence between ideals
containing & given ideal and the ideals of the quotient-ring modulo
this ideal, that there is a one-to-one correspondence between the ideals
of D and the ideals of (4 ;D) containing 4,. The latter have the form
{{a,d) e (4;D): d K}, where K is an ideal of D. It is also easily
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verified directly that for every ideal J of (A;D), the set K;={deD:
(@,d) eJ for some aeA} is an ideal of D.

Since R(D) is homeomorphic to R((4;D)/4,), the remark at the
end of section b now specialized to: R(4 ;D) is the union of an open set
homeomorphic to R(4) and a closed set homeomorphic to R(D).

If 4 has characteristic n, we may always choose D to be I,, the
ring of integers modulo (n). Now if ns£0, R(I,) is evidently a Hausdorff
gpace. But when n=0, we are imbedding R(4) in a space containing
a subset homeomorphic to a non-Hausdorff space, which in certain in-
stances might be undesirable. However, this choice can be avoided in many
cases; for example, if A is an algebra over a field F, we may set D=F.

THEOREM 6.1. If D is R-semi-simple, then each P,eR(4,) is an
intersection of ideals in R(A ;D). If A is also R-semi-simple, then (A ;D)
48 R-semi-simple. .

Proof. Let Q={b e (4;D): (4,)bCP,}. By Theorem 5.1, @ ¢ R(4;D),
and Py=Q~A4,. From the above discussion it follows easily that the
R -semi-simplicity of D implies that 4, is the interseetion of the ideals
of R(4;D) which contain it, i. e, that 4(R(4;D)—I)=4,, where
T={SeR(A;D): §pA} *

The second statement follows from the equations:

AR(A;D)=AT ~ A (R(4;D)—T)
= (N 8) ~dy= [ (Bndy)=AR(4,)=(0).
SeX SeZ

It is a familiar fact that the one-point compactification of a locally
compact Hausdorff space is Hausdorff. In the next theorem, we see that
for certain spaces R(4), a “k-point compactification’ (with % finite)
will do just as well.

THEOREM 6.2. Let A be a commutative ring having charadteristic
n= pi‘?...pz", where the py’s are distinet primes, with the properties: (1) R(4)
is Hausdorff; (2) for each P eR(A), there is an a ¢ P having a relative
identity. Then R(A4;I,) is Hausdorff.

Proof. We ghall show that the condition of Theorem 4.1 (for com-
mutative rings) is satistied by R(4;I,). The method of verification de-
pends on whether both, one or neither of the ideals under consideration
containg A,. The elements of R{4;I,) containing A, have the form

Q={(a,d) e(4;L): de(p)f(n)} (I=1,..;k).

Given Q;, Q;, 15=], let d;,d; be the images of the integers P, njpl,
respectively, in I,. Then (0,d;)¢@Q:, (0,d)¢Q;, and (0,d;) (0,dy)
—(0,d,d) = (0,0) ¢ AR(4 ;T,)-
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Next, let @ e R(4;I,) be such that @4, Then @~d,eR(4,).
By hypothesis, there is an (a,0) ¢ @~ A, having a relative identity e.
Clearly (a,0) ¢ @, and for any 4, (¢,—1) ¢ ;. Furthermore, (a,0)-(¢,—1)
={ae—a,0)=(0,0) e AR (4 ; L,).

Finally, let 8,8, ¢ R(4;1,) be distinet ideals such that S8,04,,
8,pA4,. Then, from Theorem 5.2, S ~A4, and Sy~ 4, are distinet
elements of R(4,). Since R(4,) is Hausdorff, it follows from Theo-
rem 4.1 that there exist (a,0),(5,0) ¢4, such that (a,0)¢ 8, A,,
(b,0)¢ 8~ Ay, and (a,0)-(b,0) e AR(4,). Clearly (a,0)¢8; and (b,0) ¢ 5,.
Now let T={SeR(4;I,): Sp4,}. Then AR(A ;I,,):AS:I‘\A(ER(A s L) —3)
;(Sﬂgs) ~4d, :SOQ(Sh Ag)=AR(A,). Hence (,0)-(0,0) e AR(A4; L,).

€ [

This includes all the possibilities, so the proof is complete.

We conclude with a more specialized result which has applieations
to problems about rings of continuous functions.

THEOREM 6.3. Leét 4 be a commutative algebra over a field F such
that for each P e B(A), A[P is operator-isomorphic to F. Then for each
Q e P(A;F), (A;F)]Q is operator-isomorphic to F, under a mapping which
sends the coset of @ containing (a,f) into a[Q~ A+ [ (3). Furthermore, if
F is a topological field and A is a ring of continuous functions from PB(4)
to F, then (A;F) is a ring of continuous functions from B(4;F) to F.

Proof. It has already been noted that (4 ;F)/A,=F; and it i evi-
dent that in this case the isomorphism has the stated properties. Now
congider any @ e (A ;F)— {4}, let Py=Q~4,, and define a mapping
a:-(A;F)—>F by ala,f)=a[P,]+7f. It is easily verified that « is a homo-
morphism onto. Let (¢,0) ¢ P, be fixed. The kernel of « is

{a,f) e (A;F): alPo]+f=0}={(a,f): a[Pole[Po]+fo[Po]=0}
={(a,f): (ac+fo)[Po]=0}={(a,f): (a,f)(¢,0) e Pi}=0Q

{see the remarks following Theorem 5.1). Hence (4;F)/Q is operator-
isomorphic to F; and the mapping clearly has the form indicated.

Now suppose A is a ring of continuous functions from P(A4) to .
Then A is semi-simple. Therefore, by Theorem 6.1, (4 ;F) is semi-gimple.
It follows that (4;F) is a ring of functions from P(4;F) to F.
Since PB(F) consists of only one element, P(A4;F) is homeomorphic to
the one-point compactification of P(4). Continuity then follows from
the functional relations (a,f)(4,)=F, and (a,f)(Q)=a[Q@ ~ 4,]-+f when
Q e P(A;F)—{4,}, which are valid for all {(a,f) (4 ;F).

(®) For simplicity, we let a[@~ 4,] denote the element of ¥ which corresponds
to the image of (4,0) in A./(Q~ 4,).
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