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1. Introduction. As is well known the existence of a choice func-
tion on an arbitrary family of sets is related to the theory of partially
ordered sets, well ordered sets, and to Tychonoff’s theorem [5]. Moreover
choice functions subject to some restraint have been investigated. For
example, if a choice function assigns to distinet sets distinet values, it
is termed faithful. Conditions equivalent to the existence of a faithful
choice function have been obtained. (See [3], [4], and their bibliographies.)

If the family consists of subsets of a topological space and in ad-
dition is itself topologized, then one can speak of a continuous choice
function. The existence of continuous choice functions is of use in ge-
neralizing fixed point theorems to multivalued functions. The nonexist-
ence of a continuous choice function on the family of all lines in the pro-
jective plane was demonstrated by Fenchel [2]. It might be noted that
2 topological space X has the fixed point property if and only if the
family of sets of the form X—P, where P ¢ X, does not have a con-
tinuous choise funetion.

The object of the present note is to show the close relation between
convexity and the existence of continuous choice functions. It was sug-
gested by various results in the theory of convex hodies to be found
in ([17; p. 10-13) [6], [7], and [8].

2. Convexity of open sets, In the following E", n > 1, denotes
n-dimensional Euclidean space. If L™ is an r-dimensional hyperplane
in B" and ACE" and if L'~ 4 # @ then I'~ 4 i3 an r-dimensional
cross-section of A. Any L"7' divides E" into two (closed) subsets I, and
K,. A subset BCA4 is a cap of A if B= A~K, for some K, or if
B=F" Tt " is such that ACK, and 4 ~intK,=@ then L™ is
& support plane of A. A set 4 is convex if P, Q ¢ A implies PQ C A.

TAROREM 2.1. A necessary and sufficient condition that the open
set A be convex is that there ewists a continuwous choice fumction f on the
Jamily of dts (n—1)-dimensional cross-sections. Moreover any such f s
onto A. '
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Proof. Assume that 4 is convex. Define d: E"—~E' by d(P) = ¢ ",
Define f on an (n—1)-dimensional cross-section B of 4 to be the center
of gravity of B relative to the density d. (Because of the behavior of e~
when x is large, this is a valid definition even if 4 is unbounded.)

Convergely assume that A is open and there exists the continuous
choice function f. Let L™ ' be a hyperplane with the properties that
I"'"A=0, B,nd #0, K,nA #0. A contradiction will now be
obtained. Let P;e K;nA, i=1,2. Let LI, i= 1,2, be the hyper-
plane parallel to L"™* and containing P;, i=1, 2, regpectively. It is
possible to define a path in the space of (n—1)-dimensional hyperplanes
meeting 4, which begins at 7™, ends at L3, and does not pass through
L™ (For example, first rotate L™ about P, until it meets P,, then
rotate about P, until it becomes L3™"). The image of this path under
f is a path in E"' which, beginning in K,~A4 and ending in K,~4
must meet L™ But L'~ A = @. This contradiction shows that an}i
I™'which meets the interior of E, the conuvex hull of 4, meets A.

Let Peint®. It will be shown that there exists L™ such that
FIZ"™Y = P. Let 8" 'CE" be an (n—1)-dimensional Buclidean S$phere
with center P. Let A: 8"~ —8""" be the antipodal map. Let : B"— P81
be radial projection. Assume that for no L™ is f(I"™) = P.

Define g: 8" —+8""" by setting ¢(Q) = rf(Z"*) where L™ is the
hyperplane through P perpendicular to QP. Since the angle QPg(Q) = $m,
g is homotopic to the identity and hence has degree ome. Since gi = g,
the degree of g is even (see [8]). This contradiction implies that there
is I"™ 50 f(I"Y) = P.

Thus int H¥CA. But ACE, hence 4 CintE. Thus 4 = intE and
is therefore convex.

THEOREM 2.2. A necessary and sufficient condition that the open set A be
convex is that there exists o continuous choice function f on the family of r-di-
mensional cross-sections of A, 1 <r<n—1. Moreover any such f is onto A.

Proof. The case n—r = 1 is considered in Theorem 2.1. An indue-
tion on #—r easily establishes Theorem 2.2.

THEOREM 2.3. A necessary and sufficient condition that the open
set A be conver is that there exists a continuous choice function f on the fam-
ily of caps of A. Moreover any such f is onto A.

Proof. If 4 is convex assign to each cap, I, ity center of gravity
F(I0), relative to the density d defined above. This f is not only continuous
but faithful and onto A (see [4] or [8] or the proof of Theorem 3.2 which
rectifies a slight error in [8]). The proof of the converse is similar o that
of the preceding proof. Incidentally one has proved

Fundamenta Mathematicae, T. XLV, 13


Artur


184 Sherman K. Stein

THEOREM 2.4. A necessary and sufficient condition that the open
s6t A be conwex is that there exisis a continuous faithful choice function f
on the family of caps of 4. Moreover any such f is onto A.

COROLLARY 2.5. If there is a continuous choice function on the family
of caps of the open set A, then there is o continuous faithful choice function
on this family.

3. Convexity of arbitrary sets. The assumption that 4 is
open was made for the sake of simplicity. The following theorems in-
dicate the complications that can arise at the boundary of an arbitrary
subset ¢ C E".

THROREM 3.1. A necessary and sufficient condition that plane of C
be convexr and have the property thal each plane of support has a unique
point of contact is that there ewists a continuous choice function f on
the family of s (n—1)-dimensional cross-sections. Moreover any such
f is onto C.

Proof. Similar to that of Theorem 2.1.
The analog of Theorem 2.3 is

THEOREM 3.2. A necessary and sufficient condition that C be convex
and have the property that each plane of support has a unique point of con-
tact is that there ewists a continuous choice function on the family of caps
of (. Moreover any such f is onto C.

Proof. A proof can be based on the following: If ¢ is convex, and
has the property that each plane of support has a unique point of con-
tact, then any continuous choice function on the family of caps of ¢ is
onto (. This fact will now be proved (for simplicity assume that O is
compact). ,

Assume that P e O but that P ¢ imf. Let 8" be an (n—1)-dimen-
sional Euclidean sphere with center P and let I= {f{0 <t <1}. For
Q « 87" let Z" (@) denote the plane of support to 4 perpendicular to PQ
and meeting the ray with end P and containing Q. Let K(Q,t) denote
the cap of C containing @ which is cut off by the hyperplane which is
a tth of the distance from L™ YQ) to L™ *iQ). Define F: §* 1 x I-»8"*
by F(Q, 1) =rfK(Q1).

First note that F|8" " x1 is constant (with value f(C)). Next note
that F|8* X 0 is homotopic to the identity since the angle QPF(Q,0) < .
Hence the identity map of 8" would be homotopic to a constant map.
This cofitradiction proves that f is omto .

Similar analogs of Theorems 2.2, 2.4 and Corollary 2.5 hold for
arbitrary gets.
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4. Questions. The preceding theorems suggest several problems.

.1. ‘What is a necessary and sufficient condition that a continuous
choice’ function on the (n—1)-dimensional cross-sections of an open

set 4 be representable as the center of gravity function induced by a suit-
able density on 4?2

2. The similar question for continmous choice functions omn the
caps of A.

3. Let A be a bounded convex open get. Is each choice function
on the caps of 4 induced by a density on 4 also inducible by a density
on the surface of 4% Or conversely?
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