Topological characterization of the Sierpinski curve *

by
G. T. Whyburn (Charlottesville)

. 1. Introduction. The wuniversal plane -curve -described by Sier-
pinski [4]-in 1916 has proven highly useful in the developments of va-
rious phases of topology and analysis which have gone ahead at such
‘2 rapid pace in the 'intervening perio& of over forty years. Infierest in
this curve and its analog in 3-space is currently much alive and its role
in mathematics is surely by no means finished. The curve is obtained
very simply as the residual set remaining when one begins with a square
and applies the operation of dividing it into nine equal squares and
omitting the interior of the center one, then repeats this operation on
each of the surviving 8 squares, then repeats again on the surviving
64 squares, and 5o on indefinitely. Sierpinski showed that this set con-
tains a topological image of every plane continuum having no inferior

point and thus it has come to be known as the Sierpinski plane uni- .

versal curve.

The main results in the present paper were first stated by the author
in a talk before the Warsaw Mathematical Colloquium in the spring
of 1930, on which oecasion he was henored to be introduced to the group
by Professor Sierpinski. An abstract was published at that time [5];
but since the treatment and proofs in hand then were long and com-
plicated, no detailed publication has been made of the results until now,
though they were utilised by. other authors (ct. [1], p. 258). Recently
the author received a letter from B. Knaster indicating that reference
to these results would be appropriate in connection with recent work
of his and A. Lelek’s and urging that publication be made. As a result
of ‘this letter, the subject has been restudied by the author from a more
modern viewpoint with the result that new and simpler proofs have
been devised, based on markedly different techniques. This new freat-
ment is presented in this paper.

* This research was supported in part by the United States Air Force through
the Air Force Office of Scientific Research of the Air Research and Development Com-
mand, Under contract No. AF 49 (638)-71 at the University of Virginia.
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. 2. Preliminaries. By an 8-curve will be meant a plane locally
connected 1-dimensional continuum § such that.the boundary of each
complementary domain of § is a simple closed curve and no two of these
complementary domain boundaries intersect, It will be noted that the
Sierpidski curve is an S-curve; and one of our main results is that all
S-curves are homeomorphie. The boundary of the unbounded com-
plementary domain of a plane continuum is called ifs outer boundary.

Remark. If € is any simple closed curve lying in an S-curve 8, I is
the interior of C, and if no complementary domain boundary of 8 lying
in I +C has a point in common with C, then T = S-(C+1I) is an S-curve.

For the complementary domain boundaries of T are ¢ together
with all complementary domain boundaries of S lying entirely in I,
and no two of these intersect,

DEFINITION. A subdivision ¢ of an §-curve § is a division of § into
a finite number of S-curves effected by taking a simplicial or cellular
subdivision ¢’ of the elementary closed region R obtained by adding
to 8 all save a finite number Iy, I,, ..., I, of its bounded complementary
regions in such a way that the nnion K of all 1-cells of o” (i. e., the 1-di-
mensional structure of ¢’) lies entirely in S and contains the boundary
of R but does not intersect the boundary of any bounded complementary
region of & other than I,, I,, ..., I,. The intersections of the 2-cells of ¢’
with 8 give a collection of S-curves (see Remark) constituting the
“2-cells’’ of the subdivision ¢ of 8.

LemMa 1. If 8 and S are S-curves with outer boundaries C, and 0
respectively, & is any positive number and kb is any homeomorphism of C,
onto (b, there ewist ¢-subdivisions of S and 8’ whose 1-dimensional struc-
tures K and K' correspond under a homeomorphism which is an exten-
sion of h.

Proof of Lemma 1. Let » be an integer such that there are not
more than » bounded complementary domains of either § or 8" of dia-
meter e Let Oy, Oy, Cs, ..., ¢, and G4, O, Ci, ..., O}, be sets of distinct
complementary domain boundaries of S and S’ respectively including
all those of diameter ¢ in each case. Decompose § inte the comple-
mentary domain boundaries not included in (C,); together with the
individual points of § not on such a boundary and let W be the hyper-
space and ¢ the natural mapping. Decempose S8 similarly, letting W'
be the hyperspace and ¢’ the natural mapping. Then both W and w'
are topologically equivalent to a closed plane elementary region with
n+1 boundary curves. (By the theorem of R. L. Moore [3], since the
decomposition extends to an upper semi-continuous decomposition of the
whole plane into continua not separating the plane by adding its interior
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to each non-degenerate element and including as new elements all indi-
vidual points in the other complementary regions of 8 or of &' respect-
ively.) Thus the homeomorphism g¢'he~t of the boundary curve g(C,)
of W onto the boundary curve ¢'(C}) of W' ean be extended to a homeo-
morphism

HW)y=W".

Now let { be the (countable) set in W' consisting of all points which
are images of non-degenerate elements of the decomposition of 8" under ¢’
together with images of non-degenerate elements of the decomposition
of § under tp. For a given 8 > 0 let us take a simplicial subdivision X
of W' of mesh < & effected by a 1-dimensional graph G In W’ which
does not intersect @ but which containg all the boundary curves of W'
Then on & both ¢'™* and ¢ 't™' are homeomorphisms. Thus the sets
E'=¢ @) and K = ¢t /(&) effect subdivisions ¢ and o' respectively
of § and 8 which correspond in 1-1 fashion with X Also ¢'~Yg(K) = K’
is a homeomorphism which on C, reduces to k, since ¢ reduces to ¢'hp~?
on ¢(C,) so that we have

¢' ' hep(Cy) = 1(C,) = Cq .

Thus & extends to a homeomorphism from K onto A'.

Finally, for § sufficiently smatll, both o and o' will be of mesh < e.
This is a direct consequence of the fact that the mappings fp and ¢’ are
e-mappings, 4. e., point inverses are of diameter <e in each case, to-
gether with the easily verified

Lemma 2. If 4 and B are compact metric spaces and f(4)= B ‘is
an e-mapping, there exvists a 8 > 0 such that if B, is any subsel of B of
diameter <6, the diameter of 1 (B,) is <e.

For, if not, there exists a sequence of subsets B;, B,, ... of B such
that 8[B,] <1/n and 8[f (B,)] > We may suppose the B, so chosen
that these sets converge to a single point b ¢ B and so that the sets f~'(By)
converge to a set 4, in A. We then have 8(4,) > ¢ whereas f(4d,)=1"b

by continuity of f; and this contradicts the fact that f is an e-mapping.

3. TurorEM. Any two S-curves are homeomorphic.

Proof. Let 8 and 8’ be §-curves with outer boundaries ¢, and Cj
respectively and let by be any homeomorphism of €, onto Of. Taking
¢=1 in Lemma 1, there exist subdivisions o, and o} of § and 8’ re-
spectively of mesh <1 whose 1-dimensional structures K, and K, cor-
respond under a homeomorphism h(K,) = K; which is an extension

of Ry, (4. €., Rhy(2) = hy(x) for z ¢ K) and whose “‘2-cells” correspond in
1-1 fashion under &,.
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Now taking ¢ = %, for each pair §;,8; of corvesponding #2-cells”
of ¢, and of Lemma 1 yields an extension of A, from the outer boundaries.
of 8 and §; to the 1-dimensional structures of %-subdivisions of S
and §;. These separate extensions and subdivisions of the corresponding
cells of o; and o; combine to yield 3-subdivisions o, and o; which are
refinements of o, and o5, respectively, and an extension R, of h; which
is a homeomorphism of the 1-dimensional structure K, of o, onto the
1-dimensional structure XK; of o;.

We next take £ = | and obtain }-refinements o3 and oj of o, and o3
similarly and a homeomorphism hy(K;) = Kj which is an extension of h,
to the l1-dimensional structures K, and Ki of o, and oy respectively.
Continuing in this fashion, for each n we obtain 1/n-refinements o,
and o), of o,_; and o,_, respectively and a homeomorphism

ha(K ) = K,

which is an extension of A,_; to the 1-dimensional structures K, and K,
of o, and o}, respectively.

For each n and each z ¢ K,, we define h(x) = hy(x). Then since h, is
in every case an extension of h,_, it follows that A(z) is a 1-1 trans-
formation of Y K,=X onto } K==K'

Further, 7 is uniformly consinuous. For let ¢ > 0 be given. Then
if we choose a fixed » > 2/e, we can take § > 0 so that any two different
cells of o, either intersect or else they are at a distance >4 apart. Then
if @, y ¢ K and o(z, y) < d, » and y must be in cells 8, and 8, of o, which
are either the same or else they intersect. Thus the corresponding cells
85 and S;, of o;, must intersect so that their union S3+8, is of diameter <e,
because each is of diameter < 1/n < /2. However, this gives

olk(z), h(y)] <e,
because by the method of defining & we have
h{z) e Sy,  {y)eSy.
Thus h is uniformly continunous. By exactly the same type of argument,
17! is uniformly continuous.

Since K and K’ are dense in 8§ and §’, there exist unique continuous
extensions [6] of k and A~ to § and S’ respeetively. The extension of h™"
thus obtained is the inverse of the extended % so that we have a homeo-
morphism of § onto 8’ as required.

COROLLARY. Every §-curve is homeomorphic with the Sierpinski curve.

4. TaEOREM. In order thet a plane 1-dimensional locally connected

continuwm M. be an S-curve it is necessary and sufficient that it have no
local separating point. '
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A point p is a local separating point of a locally connected conti-,
nuum M provided it is a cut point of some connected open subset of M N

Suppose, first, that M has no local separating point. Then M has no

cut point and hence, by a theorem of R. L. Moore’s [2], the boundary

of every complementary domain of M is a simple closed curve. Further,

no two of these complementary domain boundaries can intersect, because

any point of intersection of two such boundaries would be accessible

from both domains and hence, by a theorem of the author’s [7], would

be a local separating point of M. Thus M is an §-curve.

On the other hand, if M is an S-curve, it can have no local sepa-
rating point because it is homeomorphic with the Sierpiniski curve §
and § has no such poinf. To see this latter, we have only to note that
clearly each point p of S is interior relative to § to an arbitrarily small
8-curve in § and thus no region in § can have a cut point, as no §-curve
has a cut point.

Note. An elementary proof for the above theorem, independent
of the theorem in §3 is easily given based on the Plane Separation
Theorem (see Chapter VI, § 3, of the author’s book referred to in [4),
p. 28, 38 and 56, for example).
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On covering theorems*
by
E. J. Mickle and T. Radé (Columbus)

1. Introduction. In his fundamental paper [2] (numbers in square
brackets refer to the References at the end of this note) A. P. Morse
derives various covering theorems of an extremely general character.
The purpose of this note is to formulate an even more general covering
theorem which is concerned with a pair of abstract binary relations a, 8.
This covering theorem (to be referred to as the (o, §)-covering theorem)
is stated and proved in section 3. The relationship of this (o, §)-covering
theorem to the corresponding result of A. P. Morse is explained in sec-
tion 4. In applying such covering theorems in metrie spaces, a conceptual
ambiguity arises in the following manner. Let 3/ be a metric space with
distance fnnction d. Given a point @ ¢ M and a finite, positive real num-
ber r, let us put

yla,r)={x| xe M, d(z, a) <r}.

A subset ¢ of I is termed a closed sphere if it can be represented in
the form € = y(a, r). Simple examples show that the center o and the
radius 7 are generally not uniquely determined by €. This ambiguity
necessitates a certain amount of care in formulating covering theorems
in terms of closed spheres. Section 3 contains suggestions along these
lines. '
In the proof of the (o, d)-covering theorem we use the set inclhu-
sion form of Zorn’s lemma {see section 2 for the statement of this lemma,).
In view of the generality of the (o, 6)-covering theorem the question
avises whether this theorem is sufficiently general to imply, conversely,
the set inclusion form of Zorn’s lemma. This is indeed the case. In fact
& very special case of the (o, §)-covering theorem is already adequate
to imply the general form of Zorn’s lemma (see section 6 for the state-
ment of the general/form of Zorn’s lemma and the proof of this fact).

* Research supported by the Office of Ordnance Research, U. 8. Army, DA-
33-019-ORD-2114.
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