Contribution to the theory of Saks spaces
by
W. Orlicz (Poznan)

1. In the sequel X will denote a linear space in which a norm [ ] is
defined; this (fixed) norm will be called fundamental. Besides this, one
or more norms will be defined in X, and they will all be called starred
norms. All norms are supposed to be of B-type (shortly: to be B-norms),
i. e., to be homogeneous, and whenever we speak about normed spaces
without further specification, the norms will be supposed to be of this type.

We shall set

F=FfoeX, o<1y

Now let a starred norm | |* be defined in X; we define in X, the distance
(%) d{@y, @) =|o,—m]* where 2,75¢X,.

If d{2,,20) = |1, — 2[*—0 and |2 =0(1}, where z,, 2,¢ X, the sequence {x,}
will be said to be w-convergent to m,, in symbols: x,—>x, as n—co. The
space X, provided with the distance () (given a starred norm), con-
sidered as a metric space (in which therefore the o-convergence is de-
fined) will be denoted by X,(w); if this space is complete, it will be called
the Saks space. Let us notice that we do not suppose the space X to be
complete either with respect to the fundamental norm or to the star-
red one.

It two norms | |, and || |, are defined in X and #,¢ X, |a),—~0 as
n-—>co implies [z,,~0, then the norm | |, is called non-weaker than || [,
in X. It || |, is non-weaker than | |, and vice verse the norms are ealled
equivalent in X. The definition of non-weaker and equivalent norms in X,
is evident. Obviously, equivalent norms in X, are not necessarily equi-
valent in X.

The norms [ |, and | [, are equivalent in X if and only if two po-
sitive constants %, and %, exist such that. kfja], > |iz], > kollz), for z e X.

The first of these inequalities is necessary and sufficient in order that '
be non-weaker than | .
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The space X (o) [the Saks space] will be called equimlemf to the
normed [Banach] space if the fundamental norm is equivalent in X to
the starred norm under consideration. This nomenclature is justified by
the fact that if we define in X another starred norm equivalent to the
former one and equal to the fundamental norm, then X, is identical
with the sphere Jz] <1 in a normed space in which the metric-topology (x)
is identical to the topology induced by the norm f J.

Tn section 1 some supplements to the results of [5], [6], and [9]Y)
are given. In section 2 linear functionals over the space of bounded fm'm-
tions (in an infinite interval) are investigated, the starred norm being
defined in an adequate manner. This space supplies also a skilful example
of a Saks space for which the space X is not complete either with 1'espec:t
to fundamental or to the starred norm. In section 3 I give some appli-
cations of general theorems to the examination of the continuity of di-
stributive operations.

1.1. We hegin with the following relation between the fundamenta,l
and the starred norra:

If X(w) is a Saks space, then X is complete with respect to the norm

(¥) o= sup (], Jel*) -
(See [6], p. 1).

1.2. Let X{o0) be a Saks space. A necessary and sufficient condition
in order that the fundamental norm be non-weaker in X than the starred
norm is that X be complete with respect to the norm | |.

In order that the starred norm be non-weaker in X than the funda-
mental norm i is necessary and sufficient that the space X be complete with
respect to the norm | [*.

This follows from 1.1 (see [6], P. 2, where the first part of the theo-
rem is proved; the proof of the second proceeds analogously).

In connection with the last theorem let us add the following remark.

If X is complete with respect to the starred norm and

Fne Xw), @n>z, implies lim |z, > fr,],

then X (w) iz a Saks space.

It follows that, if X is complete with respect to the starred norm
and if this norm is non-weaker in X than the fundamental norm, then
X, (w) is a Saks space.

Let X be the linear space composed of functions having a conti-
nuous derivative in <a,b>, and vanishing for {=a. We define |z|= s(%;)) [z (@),

1) The number in brackets refer to the bibliography at the end of this paper.
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as the fundamental norm, and [z|*= sup |«(?)| as the starred one. X ig
<a,by

obviously complete with respect to the fundamental norm, and this
norm is non-weaker in X than the starred one. Let y () be a funetion
having a discontinuous derivative in <a,bd, let y(a)=0 and let ') <1
in <a,b). Let us choose #, ¢ X(w) such that (1) —=y'(¢) for te<a,b>.

Then the Cauchy condition [z,—az.J*—~0 as m,n-sco is satisfied,
|za~y|*—+0 as n—+oco and y ¢ X. This example shows that if X is com-
plete with respect to the fundamental norm and this norm is non-weaker
in X than the starred norm, then X(w) is not necessarily a Saks
space.

1.3. Let U be a distributive operation from X to a normed space Y.
U is called linear in X {w) or, more precisely, (Xs(w), Y) -linear it @, € X(w),

Iy e Xy(w), m,,—mm(, implies U(x,)—~U(x,). If ¥ is the linear space of real
numbers, then the term linear operation in Xw) will be replaced, as
usual, by the term linear functional in X{ow).

We shall denote by = or &* or E, respectively the space of linear
functionals (i.e., the conjugate space) over the normed space X, ||,
or X, §|* or X, ||, where |||, is defined by formuls 1.1(*). In these
spaces the norms of the functional ¢ will be introduced by the usual
definition, and will be denoted by [&], J£|*, Jéll, when £ is in 5, % 5,
respectively. All these spaces (with the usual definitions of addition. and
multiplieation by scalars) supplied with the corresporiding norms are
Banach spaces. :

Evidently ECE,, &, <|&], £*CE,, ] < [&]*

Let E(w) denote the linear space of linear functionals in 2 s(w) (this
is the conjugate space to X,(w)). If & € 5(w) then the norm of the func-
tional & (without a further indication of the related conjugate space)
will always mean the norm |&,.

Moreover the inclusion F*CHy(w) is satisfied.

1.31. («) Z(w) 78 a closed linear subspace of =,.

(B) If X is complete with respect to the fundamental norm and X (w)
is a Saks space, then Z(w) is a closed linear subspace of E, and the norms
1o and & are equivalent in Syw).

(v) If X is complete with respect to the starred norm and X(w) is
a Saks space, then Ew) is identical with E*, and the noims ||, and J&)*
are equivalent in Sw).

Ad («). The inclusion E(w)C&, is evident. The closedness of Ew)
in £, results from the fact that the relation [€n—Efo->0as n>o0, &, ¢ Eyw),
is equivalent to the uniform convergence of the sequence &,(x) to E(x)
in the set o] <1, Jof* <1.
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Ad (). The inclusion S(w)CE results by 1.2. By 1.2 |lr] <1 implies
jrf* <k, where we may suppose that k>1. Since

sup % (x)

£l
d

(the supremum being taken over the set [ <1) and
£
2 ()

E ¢(5)

we get [|£]<kj&],. On the other hand, the inequality [&] < [£] is fulfilled.

Ad (y). The inclusion Z*CE{w) is valid without any hypotheses
concerning the norms [ | and | [* Let £ ¢ Z{(w) and let [z,)|*—0. By 1.2
|€n] =0, whence &(z,)—0, and this implies &e¢Z* Thus £*=5(w). The

equivalence of the norms |£], and |£* in &E(w) may be proved in the
same way as for the case (B).

1.32. (¢) Every linear funetional in X{w) may be represented in

<félo s

sup = sup

the form

(%) E=E&+E  where & eF, & e5*,
moreover

(x#) Illo = &) + &l -

Since, by 1.31 (a), & is continuous with respect to the norm | |,, the
representation (+) and formula (xx) result from a general theorem on
the representation of distributive functionals, continuous with respect
to two pseudonorms (compare [2], p. 139). Representation () is, of course,
not unigue. If X(w) is separable, then among all representations (%)
satisfying the condition (%) there are two,

=545, =4+&,

where ||&] (or J&l) is equal to the supremum M (or the infimum m) of
all norms & of functionals appearing in (k) under the condition (sx).
Let [£]—m, as n—co, é= &+ &, 2] + |54l = [&],. Since [&]* <]¢,, and
since the separability of X{w) implies the separability of X, [ I* there
must exist a subsequence &' converging for every x to &, ¢ 5%
Let
&i(x)=Mm (& () — £5{x)) = lim &x) .
i—»o0 i—co
Obviously &=§& +&; &e 5, &7 < €fs, implies & ¢Z. Moreover, &llo
=& +]&[*, m=1lim [£¢] > |&} >m. For M the argument is similar. Be-

sides the representation (x) with condition (*x), also a representation
with the norms surpassing J£le may be useful.
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(B) If there exist such &, € 5* for & e Hs(w) that |&—E&—>0 as n—co,
then for this & and every £>0 a representation (k) em’sz_&s with & <e.

(8") If & is a distributive functional on X and for every £>0 there
exists a representation (x) in which |&| <e, then & e Ew).

Ad (p). Since &; e Z(w), it suffices to set & =~&—§&;, n being suf-
ficiently large.

Ad (p'). There exist, for n=1,2,..., representations &= & - & such
that & —&f,<||&— &) <1/n, and since & e 5y(w), it is sufficient to make
use of 1.31 (o).

1.88. («) Let X (w) be a Saks space. Let &, e E{w) for n=1,2,... The
sequence £,(x) is bounded for every x e X if and only if [ o=0(1).
' (B) Let U, be (X w), X)-linear operations, Y being o linear normed
space. Then the sequence |U,(x)| is bounded for every x e X if and only if
the following inequality is satisfied:

(%) U] < Klz]y  for xeX.

Every functional £ € 5y(w) is in Zy; by 1.1 and by the Banach-Stein-
haus theorem the boundedness of £,(x) for every x ¢ X implies the exis-
tence of & constant % >0 such that

(#%) [én()| < K]x|, for m2eX.

Therefore [£,], < k. Conversely, |&,],=0(1) implies (#«). The proof for (B)
is similar.

Remark. For the proof of necessity the hypothesis of the com-
Pleteness of X (w) may be replaced by that of the completeness of X, | |,,
which is weaker.

As a consequence of the above theorem it follows that: Every sé-
quence of linear functionals (operations) in the Saks space X (w), bounded
everywhere, is locally unifermly bounded in X,(ew).

By (x«) it follows for jr—a,|* <1, 2,7, ¢ X, that

En()] < | €l —0)| | Enlt0) | < 2K+ U [ £5(0)] -

Analogously for the sequence U,.

Now the question arises under which hypotheses concerning X(w)
the boundedness of &,(z) for every z, where &, ¢ 5{w), implies the uni-
form boundedness of &,(x) in X,.

It is easy to remark that a necessary condition is that the funda-
mental norm be non-weaker in X than the starred one. If X (o) is & Saks
space, then this condition is also sufficient.

icm

Coniribution to the theory of Saks spaces 275

If the fundamental norm is not non-weaker in .Y than the starred
norm, then there exists a sequence z, ¢ X sneh that [@)]-=0, |rf*-+o0
for n—oco.

Let us choose & ¢5* g0 as |[&f*=1, &,(z,)=|z.*. Then &, ¢ Zw),
[&n(x)| <[|* for x e X, but the sequence &,(x) is not uniformly bounded
in X;.

The sufficiency follows directly from 1.2 and 1.31 (B).

1.4. In this section

K; will denote the class of all normed linear spaces,

K, will denote the class of all normed separable linear spaces,

K, will denote the class constituted of the space of reals.

The following properties of the space X(w) will be needed:

(A, K;) (for i equal 1 or 2). Let U be a distributive operation from X
to Y where Y € K;. Suppose that for every functional n linear on Y the
functional 1;(U(m)) is in Syw). Then the operation U 1is continuous in
X{w).

(B, K;) (for i=1,2,83). Let U, be a sequence of linear operations from
X (w) to the normed space Y ¢ K;. Suppose that

Im U, (z) =T (x)
for every x e X. Then the operations U, are eguicontinuous in X(w).

I, in the formulation of the property (A, K;) (for i=1,2), the words
“for every functional linear on Y are replaced by ¢“for every 75 e H,
where H, is a fundamental set of linear funectionals on ¥’ 2), the ob-
tained property will be denoted as (A’, K;).

‘We shall complete here on some points the investigations of [9]
concerning the interrelations of the above properties.

(@) If X is complete with respect to the norm || |, (whence in parti-
eular if X(w) is a Saks space) then (A, K,) implies (B, K;).

(B) Euery space X o) having the property (B, K,) has the property
(A, K,).

Ad («). Let X{w) have the property (A, K,) and let &, be a sequence
of functionals of Z{w) convergent in the entire space X. By 1.33 (o)

(%) |En()] < By when zeX.

®} A set H, of functionals linear over B-normed space ¥ is called fundamental
if [n]<<O<oo for 7 eH, and sup |n(y)|>=c|y| for every y ¥, the constant ¢>0
neHy

being independent of y.
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Let 2,¢ X, m,,—";O; choose an increasing sequence of indices so that
& (,) >0 a8 n—oo. Then we define an operation ¥V from X to the
space of the sequences convergent to 0 setting

. Vw)= {Ene) — &k, (@)} -
Since every fnunctional # linear over the space of the sequences conver-

ging to 0 is of the form 7(y)=) a.t, Wwhere X |a,|<oco, y={}, we
1 1

obtain

(V" () =,:21 (£, (1) — &y (7)) -
From & e¢Z{w) and (x) it follows that n(V(w)) is a linear functional
on X (w), whence by (A, K,) the operation V(x) is continuons iff X (w).
Hence & (@) — &k, (€r,)—0, which implies

EaTe,) = Ey(Ta,) — Ery_y (k) + Ery_ (1) >0

Since a similar argument may be applied to every subsequence £,, we
have proved that every partial sequence & (z,) contains a subsequence
convergent to 0; therefore & (x,)—0, which implies that &, are equi-
continuous in X (w).

Now let U, be (Xs(w), Y)-Iinea.r operations, let U,(a)—>U(x) for

e X, and let x, ¢ X, Tn—0. Let us choose, as before, an increasing se-
quence of indices so that Uy, ,(xy,)->0, and then let us choose func-
tionals 7, linear on ¥ such that

{%) Il =1, 7 Ukr) — Uy (i0,)) = | U 2,) — Uy ()] -
Since

M Uke) ~ Uy o)) | < ] | V(i) — Uiy} 0,

we see from what it has already been proved that the functionals
77,,(Uk”(m)—UkH(m)) are equicontimuons in X w), whenee |Uy(2)—
— Uk, (o1, )| 0. As for functionals, it follows that Uy (w2 )—0, and in
consequence U,(w,)—=0 a8 n—oo.

Ad (). The proof is identical to that of [9), p. 61, since the argn-
ment applied there does not use the completeness of Xo(w). The same
reasoning shows that (B, K;) implies the property (A, K,).

By the foregoing considerations and since (A, K,) implies (A, K,)
it follows that

(1) If Xdw) is a Saks space, then the properties (A, K,), (A, K,)
and (B, K,) are equivalent.
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(3) If the space X (o) is separable, (A, K,) implies (A, K;).

Let the sequence x;,&,,... be dense in X (w). If 1)(U(J:)) e Z(w) for
every functional # linear on ¥, then by the well-known argument, U ()
may be approximated by linear combinations of the elements U (),
whence the range of the operation U lies in the separable lnear closed
space spanned.upon the elements U ().

In virtue of the property (A, K,) the operation U is (X (w), ¥)-
-linear, whence the property (A, K;) is fulfilled. .

1.41. The space X (w) may have the property (A, K;) without being
complete. This is the case, for example, when X (w) is equivalent to

- a normed space; in this case Z{w)=25. Suppose that U is a distributive

operation from X to a normed space Y, and let o'/(U(w)) € Bw) tor every
functional linear on Y. The operation U is continuous with respect to
the norm | |. It is sufficient to prove this for #=0. In the contrary case
there must exist a sequence x, such that jx—0, |U(z,)|—co. In the
space H conjugate to ¥ let us define a sequence g,(n)=x{U (x,)) of linear
functionals. Since n(U(z,)) >0 as n e H, we infer that ’n(U(wn)) <C in
the sphere |y <1, whence |U(x,)]|<C, which is contradictory. In the
case we are considering now the property (B, K;) is not fulfiiled in gene-
ra.i, although, on the other hand, there exist X (w) equivalent to nor-
med spaces, non-complete, for which (B, K,) is satisfied.

For applications of Saks spaces it would be interesting to establish,
in terms of metric properties of the space X (w), the sufficient and ne-
cessary conditions for X (w) to have the property (A, K;) or (B, Kj).
Some sufficient conditions, called the conditions (Z2,) and (Z,), have been
given in [5] (see also [9]); we shall use them in this paper without further
references.

1,5. Let ¥ be a normed space. Let us denote by

I{Y)=Y x¥Y X...

the space of all sequences u = {y,} with terms from ¥, with the usual
definitions of addition and multiplication by scalars. By Tu(Y), T(Y)
or T(¥) we shall denote the subspace of 7'(¥) composed of sequences
that are bounded, convergent or convergent to 0, respectively. Let [u]
=sup |y; with this norm Ty(¥), T.(Y), and T'(Y) are normed spaces;
if Y is a Banach space, so are Ty(¥), T« Y) and T(Y); the spaces T.(Y),
To(Y) are separable if and only if the space ¥ has this property.
1.51. Let the Saks space X (w) have the property (A, K,). Let U, be
(X,(co), Y)-linear operations. Suppose that for every x e X there exists a re-
presentation :
(%) =g 11",
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such that {U (')} e TCTW(Y), T being a separable subspace, {U.(x'"')} TLY).
Under these hypotheses the operations are equicontinuous in X(w)

Let 2, ¢ X;, -;c,,i>0; let us choose, as in 1.4, an increasing sequence
of indices 'k, so that U, (xr,)—+0 as n-»co; then let us choose fune-
tionals 7, linear on Y satisfying the conditions 1.4 (%). Let us write
Valw)= Uy (®) — Uk, ,(#). L6t wuy,u,,... where uy = {4} ¢ T for k=1,2,..
be a sequence dense in 7.

Now we select an increasing sequence [, of indices so that the ge-
quence 4,(Ye )y Nn(Yi, ) converges for k=1,2,...

If w=1{ye}is a sequence extracted from a sequence {y,}e T, the
sequence 7/,"(yk,n), 771,,(3/,‘,”_1) converges; this follows from the inequality '

]Um(ykn) - 77m(3/k,.k)‘ < "i'/kn — Vil < SUP ”yn - ynk”

and from the fact that y lle dense in 7. Given an z e X, lot «’,2” be
elements of the representation (x). Since {V,(x')} is the difference of two
sequences extracted from a sequence belonging to 7, the sequence
1},,,( ’,n(.r')) is convergent. Since {F,(x"')} e Ty(¥), inequality
i (Van())| < o [V ()]

implies #,(Vi,(z”'))—0. Therefore the sequence Vi (%)) converges in
the whole of z. By 1.4 (a) the functionals V1) are equicontinuous
in X w). By 1.4 (%)

T‘rln(‘l‘kt"): Ukt,(‘rkx,,) - Ukt,,_1(xk;") -0

and since Uk,n_l(mk,“)—‘,o, we infer that Ui (%, )0 a8 n—oo. The hypo-
theses of our theorem are also valid when we replace the sequence U,
by any of its subsequences. Thus we have proved that every subsequence
U, contains a partial one, U, such that U,(z,.)-»0, consequently U,
are equicontinuous in X (w).

1.52. Let X (i) be a Saks space with property (A, K,); let U, be
(X o), Y)-linear operations, such that the sequence U (z) converges in a set
dense in X{w), but diverges for al least one . Suppose moreover, that the

sequence Un(x) is bounded everywhere. Under these conditions for every -

positive integer r there exist elements Byylyyayty 0 X(w) such that
the sequence U.ly) diverges for every Y = Awy + Ay ... + Ao, where
[l + 1]+ oo + [ > 0.

Let X. be the set of convergence of the sequence U,(x). Suppose
that the quotient space X/X, is finite, say s-dimensional. Therefore

#; € X/ X, exist for {=1,2,...,s which are linearly independent and such
that if e X/X_, then

() U= Aty + Aty + oo + A,
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Let us fix an a; from the class w; for i==1,2,...,5 and let « he the class
in which there is a given element x ¢« X. By (x) there exist elements v,
y; € X, such thaf

$ § 5
ry= 2/1,—m,-+ Zliy,-, whence x= ,/vl,-r,-—i—z with z2eX,.
i=1 i

i=1 i

[
-

Let T be the linear subspa.ce of TW(Y) spanned upon the elements
{U )} with i=1,2,...,s. Let us write &' = Ay + ors+ ...+ Ay, @' =2.

. Then the hypotheses of 1.51 are satisfied, whence the operations are

equicontinuous in X(w), and since the sequence U,(x) converges in a set
denge in X(w), it must converge everywhere, contradicting the hypo-
thesis that it diverges for at least one x. Thus we have proved that the
gpace X /X, is infinitely dimensional. To prove the theorem it suffices,
with any given #, to choose linearly independent classes uy,%,...,u, of
X/X,. and then select x; e u;.

1.58. Let X(w) and U, satisfy all the hypotheses of 1.52. Then the
set of all sequences {U.(x)}, e X, is not separable in TyH(Y).

This results from 1.51.

1.54, Let A and B be matric methods of summability corresponding
to the matrices (;,) and (by,) respectively. Let A be permanent for null se-
quences, let B be conservative (= convergence preserding) for null sequence
and such that there exists o bounded sequence A -swmmable to 0 but not
B -summable.

Under these hypotheses:

(a) the set of all B-transforms {Bilx)}, where x is a bounded sequence,
A -summable to 0, ¢s non-separable in the space of bounded sequences (com-

“pare [3], [8]);

(b) for every positive integer v there exist bounded Sequences &y,®g, ... ,&yry
A-summable to 0, such that any sequence A, + Ay + ..o+ A0y, | 4]+ (4| +
+.. 4|4 >0 is not B-summable (compare [1])2).

Let X be the space of bounded sequences, 4-summable to 0, and,
given x= {t,} ¢ X, write

| I L3 S 1 3 n
lel=supltd, |ol*= 2 Zaltal + sup |dn(@)] 5
" n==l "
o
where A(x) =] aut,. With these norms, X(w) is a Saks space satis-
n=1
fying the condition (X)), whence having the property (A, K;) (com-

%) In this section we use the terminology and the notation of [3].

'
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pare [5]). Moreover the sequences « converging to 0 and satisfying [ <1
lie dense in X (w). It is sufficient to apply 1.53 and 1.52.

By aid of theorems 1.52 and 1.53 one can obtain analogous theo-
rems for matrix methods of the summability of multiple sequences, for
methods of summability congisting in the transformation of sequences
into functions, or funections into functions. Similar results may be ob-
tained also for matrix methods of summability (the matrices being nu-
merical) transforming sequences of elements of normed spaces, ete.

1.6. («) Let starred norms
to spaces X(w,) and Xw,). If X{w,) has the property (A, K;) and
Efa)CE{w,) then the norm | |3 is non-weaker in X, than the norm | |f.

Let U be the identical transformation from X(w,) to X provided
with the norm | ff. Let 5¥ be the space conjugate to X, | |f. Since
F¥CE(w,)CE(wy), 1)(U(-Jc)) is @ continuous functional if # € ZF. The pro-
perty (A, K;) of X(w,) implies that U is linear in X(w,), whenece [u,]<1,

[#4]E —0 implies [U(z)lf =|xlf -0 as n—oa.

(B) Let 5 be an arbitrary set of functionals distributive on X ; then
there exists in X at most one starred norm, unigue in the sense of the equi-
valence of norms in X;, having the property (A, K,) and such that Z(w)=5.

This above follows directly from (). i

Let us notice that in these theorems we may replace (A, K;) by
(A, K,) adding in («) the hypothesis that one of spaces Xy w,) or Xy (w,)
is separable and in (p) the hypothesis that both are so.

1.61. (o) The necessary and sufficient condition in order that every
linear functional in X{w) be uniformly bounded in X, is that the funda-
mental normn be non-weaker in X than the starred one.

The sufficiency being trivial, we prove only the necessity. Let us
introduce, besides the starred norm | |* corresponding to the conver-
gence o, a second starred norm, [zff=|z|, for ¢ X. By 1.41 X(w,) has
the property (A, K;). By hypothesis S(w)CE(w;), whence by 1.6 («) the
norm || || is non-weaker than | |* in X,, and hence in X.

Let us notice that if the fundamental norm is non-weaker in X than
the starred one, then every (Xs(w), Y)-linea.r operation is uniformly
bounded in X;.

(B) If X{w) has the property (A, K,) and every functional distributive
on X and uniformly bounded in X, is Uinear in X(w), then the starred
norm is non-weaker in X than the fundamental norm.

Let us define the norm | Jf as in the proof of («). By hypothesis
E=E{0w,)CEw). Let |u[*—>0 as n->oco. Suppose that |z,]=>e>0; write

[T, and | [¥ be defined in X, gyiving rise
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y= ol Since [yfr—-0, Iyl =1, we see by 1.6 () that [yt — g0,
which is contradietory. Thus |z,|->0.

Let us notice that without the hypothesis that X (o) has the pro-
perty (4, K;) the proposition 1.61 (f) may bhe false. Indeed, let X be
the space of functions integrable in (a,b) with the exponent a>1. Let

b t
a e
lel=(f [oce)la)™, ]].L'||*=su£)bl [e(z)ax].
a asi<h
Then Z(w)=ZE (compare [9]) in spite of the fact that the convergence
generated by the starred norm does not imply that generated by the
fundamental one.

1.62. Let the space X be separable with respect to the fundamental
norm, and let E, be a fundamental set of Unear functionals on X (com-
pare %)). If Xw) is a Saks space having the property (A, K,) and E,CE(w)
“then the starred morm ds won-weaker in X than the fundamental norm.

The separability of X implies that every sequence £ e, contains
a subsequence &(x) converging for every z < X. Since, by 1.4 (a), Xy{w)
hag the property (B, K;), the functionals &, are equicontinuous. In con-
sequence the functionals of the set 5, are equicontinuous. Let lalf <1,
[[ea]*—-0; since for n=1,2,... Eup [& ()| >e|m,) with a universal constant

€5y
¢>0, and since equicontinuity implies iupl‘f(av,.)[»(}, we get [|m,]—0.
€2,
Finally, we can free ourselves from the hypothesis || <1 as in the proof
of 1.61 (B).

Let us call the starred norm wuseful if: 1° the corresponding X,(w)
is a Saks space, 2° X (w) has the property (A, K,), 3° a class of funec-
tionals Z belongs to Syw).

The meaning of 3° is not precisely formulated. The set & may be
taken in various manners depending on X. & is only required to con-
tain linear functionals of & simple structure.

The last theorem enables us to prove that in the case of typical
separable Banach spaces it is impossible to introduce a useful norm essen-
tially different (in the sense of the equivalence of norms in X) from | |.

If X, ||| is & Banach space, then, by 1.2, 1° implies that the funda-
mental norm is non-weaker in X than the starred one. Let us suppose
that F is such that a certain set of linear combinations of functionals
of & is fundamental. If, moreover, 2° is to be satisfied, then the starred
norm is non-weaker in X than the fundamental one. Hence the funda-
mental norm is equivalent to the starred one in X.

In the following Banach spaces there exists no useful starred norm,
non-equivalent to the fundamental one,

Fundamenta Mathematicae, T. XLIV, , 20
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1. Let O(4) stand for the space of functions continuous in a closed
interval 4, [z]=sup [«(f)|; let 5 be the set of functionals of the form
4

E(w)=1u(z) where 7 e, or the set of the functionals of the form
(+) fay= [a@) @
1

where 7,,7, € 4. Let us observe that if the interval A is open (finite or
not), then it is possible to introduce a useful norm non-equivalent to
the norm || (see, for instance, [97)..

2. Let L%(a,b) be the space of the functions integrable in (a,b) with

b
the exponent a>1, |w|= ([ |=()]"d)", let Z be the set of the functio-

nals (x) where 7;,7,¢(a,b).

3. Let H" be the space of convergent series with the exponent a>1,

©

el = {3 |4l "%, and let Z be the set of the functionals of the form E(x) =1,
1

where o= {t,}.

2. For a>1 we shall denote by M“ the space of measurable func-
tions, bounded almost everywhere in (o0, oo) and satisfying the con-
dition )

oo
[l (@)Fas < oo

—

(the addition of elements, ete. being defined as usual). By o’ we denote
the exponent conjugate to a1, i. e., such that lja+1/a'=1.
As the fundamental norm in M* we define

kel = sup* Jas(2)] 4)
(—00,00)
as the starred one:

el = { f];p(t) |"dt)"“.

~o0a

By L or M we always ‘denote in this section the Banach space of func-
tions integrable in (—co, co) with the exponert a>1, with the norm | |I%
or the space of measurable bounded functions in (—o0, 00) with the
norm | |.

4 sgp*y(t) denotes the essential supremum in A of the funetion y (i)
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Let us set

Mi=F {5« M° | <1};

x

M* is not complete either with respect to the fundamental norm, or
with respect to the starred one; M2 is, however, a Saks space.

Lot 1 <ay <ay; if @.is a measurable funetion in (= o0, 00) and Juf <1,
then :

o0

Jlemd < [|o@|ma,

whenee (in the sense of set-theoretical inclusion)

MPCM?  as

1<y <a,.

The converse inclusion is not true. To see this let us consider the fol-
lowing functions:
Let 1 <oy <ay and geb

1

Jc(t):m for ten—1,n)u {—n,-n+1)

where n=1,2,...,

1
(Tog mytar " piles
0 elsewhere,

for te{n—1,n)u{—n,—n+1),n=1,2,..,m,
Tm(t)= .

m being an arbitrary positive integer. Then xe M% and = ¢ M, mo-
reover z, e MICMP, |wmd—0, [Lmf—co.

2.1. (x) The space Mj is separable.

(B) The functions of M%, where p is an arbitrary exponent >1, lie
dense in the space MZ.

Ad («). The set of all linear combinations with rational coefficients
of characteristic functions of rational intervals belonging to M5 is dense
in M5.

Ad (B). It suffices to take Dounded functions vanishing outside
a finite interval.

2.2, The space M5 satisfies the condition (£ and (Z,).

‘We shall prove only that (%) is fulfilled. Let K (2,,0) be the sphere
with centre x, and radius ¢ in M?. We are free to suppose that Ji| < 1.
Let k=1— oo, fof <1, Jot <,

A= F {z@®) >k, B=(—oo, co)—4.

20*
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By the definition of A we have |A]|<(d/k)". Let us set if || <1, ¥ <4,

; 0 as ted, . ,
o )‘“{ 2@ +ao(t) as  teB;
—(t s ted
()= (1) as E. y
2o(t) as teB.

Obviously = —a, and the following inequalities are satisfied: |z <1,
flzaff <1,

e — o= ( [ 1zt + [ o) a)" < (A|+ (el 'F < /k+9,
A B

lea—aofe= ([ |—2(t) —a(t)at)" <2] e < 20k
A

Taking ¢ sufficiently small we obtain
ey =i <es  [a—mola <g.

2.3. A. Every linear functional tn M7 with a>1 may be written in
the form

(*) ta)= [aywd, oeMs,
where s

() Y=t +5l), wnel', gl
The functions of (xx) may always be chosen so that
(a) Jélo— 5

or

(b) w1 €L, 4a(t)5=0 in a set of finite measure, y, ¢ M2 , |y it <[€]o+ (|€l0)")
Tyl <[l o5

(%) Il <
B. Bvery functional of the form (%) with y satzs;fymg (#%) 18 linear

in M;. Its norm satisfies the inequality (%¥)-
Ad A. Tet M;" denote the Saks-subspace of M composed of the

functions vanishing outside the interval (—m,n). By a known theorem
of Fichtenholz

n

E@)= [ a@)yutydt for zeM™,

—n

where y, is integrable in (—n,n). It is easily seen that Yml(t)=ya{t) for
te(—n,n), m>n. Let us set

y()=limy,(t) for {te(—oo, o0).
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Let xe M; and let
z(t) for te(—n,n),
Ta(t)=

0 elsewhere ,

zn(t) = Sign z (t) sign y(t) 2a(1) 5
)

2 (t)=sign x(t) sign y ()2 (¢
Then

= [lz®|ly@|@, &)= [e@yt)@,

and since |2,] <1, |px—2{s—=0 a3 n—oco, we see that &(z,)—£(2), whence
#{t)y (t) is integrable in (—oco, co). Since |z, <1, [#,—z]f —0, we infer that
&(my) — &£ (), whence & is representable in the form (x). By 1.32, £(z) may
be represented in the form &(w)=§& (x)+ £,(x) for x e M where £, is a con-
tinuous functional in M, and 5,, is continuous in I° moreover 1.32 (xx)
is satisfied. Now

L)

E(x) = fm(t)yz(t)dt for =zeL”,

—o0

where g, e L%, [&)*=|ys[¥ and since £ is of the form (x), we get

)= [e@uma  for meM;.

Obviously |&(w)| <||&| for xe Mg, whence

J m@la<gl].
-0
Thus we have proved (s«) and the inequality

loralit 4 [l < J&fo -

On the other hand, if the functional () is written in the form (+x),
then
|& )] < ol + Il ol < ol ol
whence
&l < lallt + el 5
thus (a) is valid.
To prove (b} let us write

A= E {ly (@) < [élo}s A=A A (—n,n),
B={(—o00, c0)— A4, By=B~ (—n,n).
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Let us define

2(t) = (fli‘/(t)la’dt)-l/a|;l/(t)]""‘lvsigny(t) for ted,,

0 elsewhere.
It is easy to verify that o] <1; let
r=lets { [ lyiofa) ™",

Ay
Then |l¢] < 7, and sinee

@l =|femya|=[wora( [y ™
An Ay Ay

: <[élolello < [£fo max (1,7),
we see that

(f ly (t)la'on)lla< léts " max (1,117,

An

which is possible only when r>1. Therefore

(flvora)™<pg, for n=1,02,..,
An
whence

a4, \ 1’
() ([imoral™ <je,.
A
Let us now consider the function

—1fa _s y
)= { |Ba| " signy(t) for teB,,
0 elsewhere,
Then, supposing |B,|>>0, we have
B, .o 1 _ 1
€l Erllﬂ< 18()| = Wﬂ[ [y (®)] dt < &), 2] < €]l max (1’ E;lm) )

which implies |B,|V~' <max (1, 1/|By[t=), whence |B,|<1 for n=1,2,...
and |B{<1. Let us notice further that

(00) Tywla<pg, it |B<1.
E
To prove this it suffices to set

?(t): ‘ Slgﬂ ’I/ (Z) fOl’ t E.E 3
0 clsewhere ,
ard to ohserve that |z],<1, [&(E)] < [&],.
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Suppose now that ||£],<1 and consider the functions

for ted, {y(t) for

0 ted,
4 =
y(t) elsewhere, Y

0 elsewhere ,

() = {

By (o) and (00) there follows [y[* < [lo, |yl < €], Liet us suppose that
[£o>1, and let C= E{y®)|<1); we define the functions g, and ¥, as
{

above only replacing the set 4 by C. By (o):
el <1l

lA—c|< [ wla< [ lyora< e
A-C A-C

This inequality together with |B|<1 and (oo) implies |y, i <|&]e+ (|€lo)";
moreover the set (— oo, co)— (=B 4 — C is of finite measure, y=1y,+ ¥,.
The inequality (%*) is, in virtue of Holder’s inequality, true for every
decomposition (xx), whence in particular for the one defined above.

Ad B. Tf y, ¢ L%, then the functional

Glo)= [e®nt)d

is continuous with respect to the norm | ¥ since |&x@)| < |yal|z|s; con-
sequently &, e Z(w). Let y, e L'. For every >0 there exists.a decom-
position y,(8)= 2,(t) +2,(t) where z; e LY, |2 <&, 2 ¢ L' and 2,(t) is bounded
in (—oo, co). If

Loy = fm(t)zl(t)dt for xeM, ()= fm(t)zz(t)dt for xel”,

then £, and £, are linear functionals on M or L* respective}y, &4 = ]\zﬂl{’<e.
By 1.32 (p') it follows that &={;+{, is a linear funetional on M.
2.31. () Theorem 2.3 remains true for a=1 if we replace L* by M,
M by M, sl by ool and Elo+ (el n (D) By €.
The proof is similar. o
Let & be the ring of all measurable sets (bounded or not) -of finite
meagsure. L . .
(B) In order thai the functional & De linear in Ms.q,t is %ec.essmy anl
sufficient that £ be representable in the form 2.3 (¥) with y having the fol-
lowing property: _ G
(a) The sei-function @(B)== [ly@)|di is absolutely continuous % T,
E

i. 6., for every e >0 there is a 6 >0 such that |B| <8, E ¢ € implies o (E)| <e.
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Necessity. In virtue of 2.31 («) every linear functional on M may
he represented in the form 2.3 (x) where Y=Y+, ell, y,e M.
Obviously

vl ® = [|lyw)a, i=1,2,
E

and consequently ¢(¥) are absolutely continuous in (&,

Sufficiency. It is easily seen that the absolute continuity of ¢(E)
in € implies

sup f[g/(t)[dt:]f<oo.
IEI<L §
Ee€

Heuce for every set #¢& of measure >1

[y @ <2x|5].
E
Write
A= E{jy(t)}> 2K}, A= {te(—n,mn), [y(t)]> 2K +1/r}.
1
' Ry the last inequality [4,|<1 for Tyh=1,2,..., whence [4|<1.
Let us set

y(E) for ted,

{) = ) = 2 () — (1) -
n = {0 e =y

we then obtain for i the decomposition 2.3 (##) With y, e I%, y, € M. Thus
EEEA(G)) bY (“)

2.4, A. Let a>1; the following conditions ave necessary and sufficient
that the sequence

(%) )= [e(t)ya(t)dt

be convergent jor every zeMS:
(a) for n=1,2,... there exist representations

Yn(t)=51u(t) + Yan(t)
such that yi, e L'y yp, e I¥ and

[yt < F,  fyuft <K,

K being a constant,
(b) the set-functions

ol E) = [|ya)|a@t, EeG,
E

are equi-absolutely continuous in € i e,

the condition of 2.31 (a) is satis-
fied uniformly in n,
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() there exists a function y representable in the form 2.3 (sx) such that
for every T
lim fy,,(t)dt = f@/ (t)di.
n—->oa 0 0
B. If the conditions (a)-(c) are satisfied, then the sequence &, con-
verges 1o & functional of form 2.3 (x), where the function y of (¢) s
taken as y. .
Ad A, Az M matisfies the condition (X)), the limit functional is also
linear in MS ([6], p. 10). Taking as « in (%) the characteristic function

of the interval {0,t> we obtain (¢). The condition (a) results by the appli-
cation of 1.33 («) and 2.3 A (a). For a given set E of finite measure, let

| signy,(t)  for ieE,
@(t) = 0 elsewhere .

Sinee [nft <|BE[Me and the condition (X)) implies equicontinuity of &, in
M2, we infer that |E|<d with & sufficiently small implies |&(z;)] < ¢ for
1==1,2,..., whence

5H(Q,,,)=f[y,,(t)|dt<s for n=1,2,..
E

Ad B. Let

where i=1,2, n=1,2,..

En(@) = [ o(t)yinlt)dt
By (3) |Ean(@)] < |yeall® |2t < K|t , whence the set-functions
f |3/2n(t)ldt
E
are equi-absolutely continuous. Therefore by (b) the functions

[ ()|t
E

are also equi-absolutely continuous. ) 1
Let A,=F {{y(t)| > K/8}, By=(—o00, co)—4,. From [y <K fol-
t

lows |4, <8, and thus, 8 being sufficiently small,

Jlyu)dt<e  for  n=1,2,..

An
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If we Mg, this leads to the inequality

@) < [ Tl 0]t + [ 120)] Jntey
A By

. K, oo K\
< sy’ )Im(t)lA[ it +an Kot lmnl(5) a

K, aw -
< o+ 55 el < e+ Ko™,
since

’

s Tl < <o

By By

As the linear combinations of characteristic functions of intervals lie
dense in M5, the sequence &,(x) converges in a set M3 dense in M¢,
Choose @ e My 50 that |o—ak <e/K, |o— | <ed"/K; then |&,(z)—
—&inlo)| <2¢ for i=1,2, n=1,2,.; consequently the sequence En(z)
converges. By (c) it follows that the limit-funetional, which must be
representable in the form 2.3 (%), is defined by the funetion y(f) de-
seribed by (c).
Analogously we can prove

2.41, The sequence of linear functionals in MY, of jorm 2.4 (%) con-
verges jor @« My if and only if the eonditions 2.4 (b), (e) are satisfied.

8. Let X(w) be a Saks space, and let U be a distributive operation
from X 1o a normed space Y, such that

(%) Bm [T ()] > U ()]

as @y e Xy, @y>w,. Then U maps every bounded set X,C Xyw) into the
bounded set U(X,).
Distributivity and () imply that U is continuous in the B-gpace X,
I lo, Where || |, is defined by 1.1 (x). Tt follows that U (2)] <K when || <1,
loel*<1. If Ja|* <% (k>1), as weX,, then [U (@) <K% for x e X,.
Remark. The theorem remaing true if ¥ is F-normed.

3.1. Let 8 be the linear space composed of measurable functions
in 4 (the interval A may be infinite) with the usual definitions of ad-
dition, ete. A sequence y, ¢ S is called almost convergent in measure to y
if it converges in measure in every bounded interval ACA. The almost
convergence in measure of series of elements iz defined gimilarly. It is
posgible to define an F-norm in § so that almost convergence in mea-
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sure be equivalent to convergence in norm; for example we can put
for e 8

" 1 e
= Xy |5

n=1

o0
where the intervals 4, are bounded, 4,C4,C... and Lle,,zA.

In the sequel Y will denote a normed space whose elements are
meagsurable functions in a (finite or infinite) interval A. The space Y
will be said to have the property (W) if the following condition is satis-
fied: if ¥, Y, ¥y ¢ Y and y, almost converge in measure to y, then

lim | >y

8.11. The following Banach spaces (norm, addition, ete. being de-
fined as ngual) have the property (W):

(I) ¢(4) — the space of bounded continuous functions in 4,

(I') M(4) — the space of bounded measurable funetions in 4,

(I1) I*(4), a1 — the space of functions integrable in A with the
exponent «, )

(TIT) V0 (A) — the space of continuous functions of finite varia-
tion in 4, N

(IV) V¥ 4) — the space of functions equivalent to funetions of finite
variation in 4.

8.2, Let X (w) be a Saks space having the’ property ({X, Kz?, .let Y be
one of the following spaces of 3.11: the space (1) where 4 is a fmv‘,te closed
interval; a linear separable subspace of M(A); the space (II) with a>1,
Let U be o distributive operation from X to Y such that:

(%) @€ X,y @, tmplies in A the almost convergence in measure of Ux(x)
10 U(w,).
Then U ds (X{w), Y)-lincar (compare [4]).
As every space Y under consideration has the property (W), lemma 3
implies the existence of a constant K >0 such that

(U@ <k i e <1, Jof*<1.

(#%)
Let [ <1, o *—~0 and set U(z,)=yn; each of the spaces ¥ 115 s:pg
rable; therefore it is sufficient to define in each case a fundamental set H,
of functionals such that n(U(z)) e Ew) for neHy.
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Let Y=0(4), 4 being finite and closed; as H, we choose the set
of the functionals of the form

1

Ta— T

2
fy(t)dt where T, <7y, 7,Ted.

k23

n{y)==+

By hypothesis and (#x) y,(?) converges in measure to 0 in 4, sup*[y.()| < K,
4

whence 7(y,) =0 for neH,.

A similar argument may be applied when ¥ is a linear separable
subspace of M (4).

Now let ¥=IL%4), a>1. As H, we choose the set of functionals
)= [y,
a4

where » i3 an arbitrary measurable funetion, vanishing outside a finite
interval contained in 4 and sup*jz()] <1. By (sx)

(f]yn(t)|adt)llu<K for '"‘=1a27-~~;
4
therefore

[lml|@t<RK|Epe  for a=1,2,..
E

Let #(t)=0 as ¢ ¢ 4, where A is a finite interval CA; then

|(T ()

=| 20 @] < s )] [ ] a0,

whence n(U(m,,))—>0 as e H,.

8.21. Let X, w) be a Saks space having the property (Zy), let ¥ be
one of the spaces of 3.11: the space (I1) with a=1, the space (IIT) or (IV).

If U is a distributive operation from X to Y with property 3.2 (x),
then U is (X w), ¥)-linear.

Ea,fzh of the spaces quoted in the hypothesis has the following pro-
perty: if for every sequence A, composed of 0’s or 1’s the sums

® | S,

are commonly bounded, then the series ) y, converges in Y. It suffices
1

to make use of this property, of the property (W) and to apply theorem 3
of [5], p. 271.

with  i=1,2,..
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8.8. Let Y be one of the spaces of 3.2 and 3.21. If the series

(+) 2, i

n=1
almost converges in measure in A to a function y e Y, {t,} being an arbi-
trary bounded sequence, them every series

Z Adin  Where dy=0 or =1

n=l

()

converges in Y.
Let X be the space of bounded sequences in which the fundamental

norm |z]=sup |¢,] and the starred norm |zf*= 2 |,|/2" are detined; the
n 1

corresponding X (o) is a Saks space sabisfying the condition (Z,). The
operations

) U,,.(Jc)=2t,,y,,, m=1,2,..,

n=1
oo

are (Xs(w),S)-linea,r and converge in § to U= g,’ tyy., Whence (comi-
pare [6]) U is (X (w),8)-linear, and by 3.2 and 3.21 (X{w), ¥)-linear.
converges with respect to
the starred norm to 0 as p,q—co, and this implies the convergence of
the series (x#). .

Remark 1. The convergence of any of the series (#x) is equivalent

=]
to the commutative convergence of the series %’y,,.

Remark 2. The theorem remains true if we replace the bounded
sequences in (%) by those composed of 0's and 1's (compare [7]).

8.31. Let A be a matriz method of summability permanent for null
sequences, corresponding to the matriw (@), end such that 51i11) 18] 0 as

n-soo. Let Y be one of the spaces of 3.2 and 3.21.
If the series 3.3 (%) almost converges in measure in AtoyeX for every
{ta} A-summable to 0, then there exists a constant I such thai for 1,=0
or =1 the sums 3.21 (x) are commonly bounded by constant K and y,—0.
Let X be the space of bounded sequences A -summable to 0 in. which
the norms | | and | |* are defined as in 1.54; then Xy(w) satisfies the
condition (Z,) (compare [5]), whence, as in 3.3, we can show that the

0
operation U(z)= tys i (Xi(w), ¥)-linear. As the fundamental norm
1
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is non-weaker than the starred one, U is bounded in X,. Hence, writing
@2 AysAgye 9 A, 0,0 we infer that the sums 3.21 (x) are bounded. Since
the sequence z.:0,...,0,4,,0,..., where 1,=1, tends to 0 according to
the starred norm, for |A {a,)|<|au], we get U(z,)=1,—0.
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On the method of category in analytic manifolds

by
S. Balcerzyk (Torun) and Jan Mycielski (Wroctaw)

1. The following hypothesis may be considered as classical (see
W. Sierpifigki [4] and F. Hausdorff [3]):

(H) The sum of fewer than 28 wnowhere dense subsets of a complete
metric space is a border set in this space.

Clearly, if the continuum hypothesis is supposed, a positive answer
follows by the theorem of Baire on the sets of the first category. Then,
by the results of Godel, (H) is consistent with the present mathematical
knowledge, but it has not been proved even in the case where the space
is the real line.

It is the purpose of this paper to prove (H) for some special classes
of nowhere dense sets in analytic manifolds.

Several applications of theorem 1 of this paper will be given in
other works. This theorem is & refinement of a lemma of J. de Groot
and T. Dekker [1].

2. Analytic surfaces in analytic manifolds. All manifolds
congidered are supposed to be connected, real and analytic.

For two manifolds M and 4, a mapping f: M —A4 iz called analytic
if the local coordinates of f(p) in 4 are amalytic functions of the local
coordinates of p in M.

LeMMA. Let f, and f, be two analytic mappings of a manifold M inlo
a manifold A. If the set 8= {p: p e M, f{p)=1,(p)} has an interior point,
then S=M. ’

Indeed it can easily be proved that then the set § is open and closed
and non-empty. Hence 8=M since M is connected.

Definition. A set § is called an analytic surface in a manifold A
if there exist an open connected set ¢CM, a manifold 4, and two ana-
Iytic mappings f,,fs: C—A such that f,(p,) #/a(p,) for some p, e C, and

SC{p: peC, h{p)=1)}.

THEOREM 1. The sum of fewer than 2% analytic surfaces in an ane-
lytic manifold M is a border set in M. :
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