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On theories categorical in power
by
A.Ehrenfeucht (Warszawa)

The aim of this paper is to give some applications of theorems on
automorphisms of models [1] to the study of theories categorical in
power '), The main result is contained in theorem 1 which states, roughly
speaking, that no antisymmetric and connected relation is definable in
a theory categorical in power 2" where n>>w,. As a corollary we find
that no ordering relation can be defined in any such theory. The final
theorems deal with the existence of mutually indiscernible elements in
each model of a theory categorical in power 2" as well as with the .exis-
tence of universal models of such theories.

The terminology and notation used in this paper are the same as
in [1]. For more detailed information concerning theories categorieal in
power and examples of such theories the reader is referred to papers [3]
and [5).

Definitions. An n-ary relation R(&,,...,&) I8 antisymmetric in the
set A if, for arbitrary @y,...,2,¢4,

#(8y,...,2,)  implies ZNR(w,.(l),...,:r,,(,,)) B
neS,
where 8, is the set of all permutations of the set {1,...,n}.

The relation R(&,...,&,) is comnected in the set A if, for arbitrary

Byyenyned,
=£(%y ..., )  implies ZR(aﬂ,,(l),...,.r,,(,,)).
EIAN

Let a be an order-type and P a subset of §,. We shall say that an
n-ary relation R defined in a set 4 belongs to the set K (a,P,4;) where
A, is a subset of A if there is an ordering relation ~< of the order-type e
in the set 4,, such that, for arbitrary #,...,m, in 4,

2,=2... 2w, implies  [R(&xyy-.-s%ep) if and only if meP].
1) A theory T is categorical in power m if any two of its models of power m are

isomorphie.
) #(@,5..,2,) 18 the conjunction of inequalities 2, x, where l<{i<j<{n. The

letter ) stands for “there is” and the symbol ~ stands for negation.
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TeEOREM 1. Let n be an arbitrary infinite cardinal number and T
a theory with the following property: there is an n-ary predicate p defined
in T and a model I of T over a set | M|3) such that M, is antisymmetric
and connected in an infinite set A,C|M|. Under these asswmptions T is
not categorical in the power m=2".

LEMMA 1. If m=2", then there is a set X and an ordering relation <
in the set X such that
(1) the ordering relation is homogeneous (i. e., each two intervals are

similar ),
(2) szi
(3) there is a subset X, CX dense in X such that X,=n.

An outline of the proof of this lemma is given in the appendix. Here
we remark only that a set X satisfying (1)-(3) can be obtained by ap-
plying the well-known Dedekind procedure of completing the cuts to
a set X, of power n ordered in the type = (see [2]).

Lexya 2. Under the assumptions of theorem 1 there is a sel Py,
G5 P58, and a countable set A,C A, such that

M,eK(w,Py,4,).

Proof. Let 4’ be an arbitrary countable subset of 4, and - an
ordering relation of order type w in A'. Further let R be the clas~ ~*
the subsets of 4’ having exactly n elements. We define a division -
into 2™ subclasses Kp, each gubclass being defined by a subset P 0. wpe
The definition of K, is as follows:

ZeKp if and only if

where @y,...,x, are distinct elements of Z, and Z; < ... < Z,. It is obvious
that subclasses Kp and Ky are either equal or disjoint.

Since M, is antisymmetric and connected in the set A’, classes K,
and K, are empty. By Ramsey’s theorem [4] it follows, that there is
a class Kp, and infinite subset 4,CA’ such that conditions Z CAd, and
ZeR imply ZeKp,. Lemma 2 is thus proved.

To prove theorem 1 we now construct two non-isamorphic models
M, M? of the theory T, both having the power m.

In order to define the first model we denote by T* an open theory
which is an inessential extension of 7' (cf. 1], p. 52) and by X a set
(ordered by a relation <) whose existence is stated in lemma 1. Further,
let £ be the order type of the relation -2 in X. Applying theorem 6.1

of [1], we obtain a model M=} (X) of T* (and hence of T) which satis-
fies the conditions:

LMo (Zays -oe y Zagy) 18 equivalent to me P],

7) | M| denotes the set of individuals of the model M.
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(9) MeeE(B,Py,X), :

(5) each one-one mapping f of X onto itself which preserves the rela-
tion -2 can be extended to an automorphism of M. ’
The essential property of the model M is given in the following
LeyMA 3. For no set BC || ’

(6) M, e K(w(m),Py,B)

where w(m) is the least ordinal number of power m.

The proof of this lemma, which constitutes the central point of the
whole paper, will be divided into several stages:

I. Suppose that the leramsy is false, 4. e., that there is a set BC|1
and an ordering relation < of the order-type w(m) in the set B such
that for arbitrary a,,...,2, in B the formula x, <z, <...<x, implies that

M Tayyeee s Tapy) 18 equivalent to e P,.

II. From the construction of the model M'=M(X) it easily follows
that each element » in | MY and hence each element x in B is represen-
table in the form valyng(w,..,z:) where #,..,2x ¢ X and ¢ is a term
of T*.

Since the number of terms of T™* is w;, there is a term ¢, such that

m elements of B are representable in the form
(M) z=valam @o(®yy. s 2h)y Ly, Tre X

We denote by B’ the set of these elements.

III. We shall select from B’ a narrower set B’ of power m with
the following property: there is a term p of T* with p 4 ¢ free variables
(p>0,9>0), q elements %,,%;,...,4, of X and a subset X" of X such
that each element w ¢ B’ i3 representable in the form

U=valyr P (@yy s Bpy YryooyYa)y G e X, myE gy for i)
moreover if
w =valpa P (01, ey gy Y1y oy Ya)s

(@), 2 « X* for j=1,2,...,p) and « #u", then af =g for i,j=1,2,..,p.

2 2
W' =valyn (B1 .00 @0, Y1y Yg)

It will be sufficient to indieate the construction of B” and-X" in

the particular case k=2.
For each u ¢ B’ we select a pair z,=2z(u), z=2,(u) of element of X

such that
u="Val o (2, %)

and regard 2,(u), 2,(u) as projections of v on the coordinate axes x and .

Fundamenta Mathematicae, T. XLIV, 17
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If the projection of B’ on the x-axis has the power <m there’ig
a 1, ¢ X such that m elements of B’ have the form valy:gy(y:,2:). Re-
versing the order of variables in @, we represent m elements of B’ in
the form valyayp(x;,y,) where (@, ¥1)= oY1, ).

It is now sufficient to put

X'=F[ueB and z(u)=y]
()

and to take as B'' the set of all elements valy: w(z,y;) where z ¢ X',

If the projection of B’ on the wx-axis has the power m we select
from B’ a subset such that no two elements of the subset have the same
abgcissa. We call this subset B*.

If B* has m elements in common with the diagonal set (consisting
of elements with identical coordinates), then we omit all the other ele-
ments and call the remaining set B’'. The elements of B" are represent-

able in the form valpay(x) where (z)=gy(z,x). It is now sufficient to -

take as X" the projection of B’ on the z-axis.

It remains to consider the case when B* has less than m elements
in common with the diagonal sef. Then we omit these elements, call
the remaining set again B* and consider the projection of B* on the
y-axis. If its power is < m, then we proceed as in the first case, con-
sidered above. If its power is m, then we select a subset B’ having at
most one element on each parallel to the z-axis and take as X'’ the sum
of the projection of B’ on the z-axis and the projection of B’ on the
y-axis.

IV. The relation < orders the set B’ in the type w(m); we can
therefore enumerate the elements of B by means of ordinals < w(m). Let

UpCU L. LUeL.ny E< (M),
be all the elements of B”. We divide this sequence into the n-tuples
(8) i (Hhgy Uyy cory Uno1)y weey (Ugy Ugpry vory Ugpnat) yore

For cach of those n-tuples (ug, %gq1, «., Ugpn_1) We Tepresent we;
in the form (see III)

Uggj = VAW (Beajay oo s Tejips Y19 +oe 2 Ya)

where the ‘‘coordinates” ®g.;1,...,%4,, Delong to the set X''. We further
establish a correspondence between the considered n-tuple and a sys-
tem U of np disjoint intervals of the set X

QIE= ((a;-i 1 bEl> 3oery Llbgpy b§p> geery <a5+ﬂ—1,1: bé+nm1,1>a s <‘7J$+n—1.p ’ bé+n—1,P>)
such that for ¢=1,2,..,p, j=0,1,...,n—1 the following relations hold:

Qerii 3 ety = Doy Geygiybeggae X
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The existence of such intervals follows from the density of X
in X.

Since X,=n, the number of different systems is at most 7, hence
at least one system, say U, is correlated with n different n-tuples (8).
Thus there are ordinals &;,&,...,&, such that

(9) QI=QI51=9152=...=Q[5“, & < <<y

V. Now let a, f be two arbitrary permutations belonging to S,.
‘We consider the finite sequence

Uy +BW=1 3000y Uty +p0—1+

The ¢th coordinate g, +sm-1: of the jth term of this sequence
lies in the interval (ag g ipoy—v1r Deyg+en—1) which in view of (9) is
identic with 4;= (@s+p-vi> Dg+pne) and thus is independent of a.
In view of the homogeneity of X (lemma 1) thére exists a similarity
transformation of A onto itself which maps @, +s0)-1: OO Zeyopy—1i-
Since the different intervals, as members of one and the same system 2,
are disjoint from each other these similarity transformations can be
extended to a transformation of X onto itself which preserves the or-
dering relation <. By (5) we can extend this transformation to an auto-
morphism of M. We have thus obtained an automorphism of Jf* which
IAPS Dy +BG)-1i onto X4 pp-ri for i=1,..,p, j=1,...,n, and hence
(see IIX) maps wgq -1 OBE0 g a1 j=1,..,0.

It follows that

(10) ]llg(uga(lﬁﬁ(l)_l,...,u;a(n)+,3(,,)_1) if and only if
Mty ptey 15 -ee y Ugrhpter—3) «
VI. We now conclude the proof of lemma 3. Since
Ugr ity < Ugatly K oor K Ui,
for arbitrary non negative l,...,l,< n and since
Uy, € Ugr1 L oo L Ugon—1y
we obtain from I the equivalences

if and only if «aeP,,
if and only if feP,.

M (s gy +p=11 -+ 1 Uy a1
M o(tke =1y ere y g, +80-1)

Tsing (10) we infer that  a ¢ P, if and only if fe P, whence Py=9
or Py,=A4,, which confradicts lemma 2.
Lemma 3 is thus proved.
17*
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We now define a second model, M2 To this end we add 'oo. the
theory T 2 set Y= {¥shs<om of new constants and a seb of m axioms

of the following forms:
e (yiaa)i ey il/zu(,,)) if
~e (y50(1)7 e 7(‘/&,(,,)) if

aePy,
aéPoy

where & <...<§, are arbitrary ordinals. -
The extended theory obviously has the following property:

for each model If* of it such that |M’l=2"

(11) MEeK(o(m),Po, Fly e ¥))-
MII

Tet M2 be an arbitrary model of T satisfying (11). ITl view 0f~lemmfx 3
formula (11) proves that models M* and M? are non-isomorphie, which
completes the proof of theorem 1.

From theorem 1 we immediately obtain the following

COROILARY. No ordering relation can be defined in a theory which.
is categorical in power 2" with M>Kq. ) o

TumorEM 2. If @ theory T is categorical in power 2" and |M|=2",
then there is a set A C|M| such that Ay=2" and every ome-one transfor-
mation of Ay onto itself can be extended to an automorphism of the model M.

Proof. From theorem 1 it follows that for any predicate ¢ of T
and for any infinite set BC|M| there is an infinite subset B'CB whose
elements are indiscernible with respect to My, 4. e. are such that elthey
M2y, %,) fOU @M arbitrary n-tuple @y, ...,2, of distinct elements of B’
Or ~M(%y ... ) for such an n-tuple. It easily follows (see [1], D. 54)
that the theory T™ remains consistent upon adjunction of a set X of
power 2" of new constants and of a set of axioms of the form

(12) Q(Z/U--ﬂ?/n)DQ(mu---7“;")

where (4y,-..,¥s) and (2y,...,%n) are arbitrary n-tuples of distix}ci.: con-
stants of X and p is an arbitrary predicate of T*, Indeed, any finite set
of the axioms of the form (12) in which predicates g;,...gs oceur <can
be satistied in M by interpreting the constants oceurring in the new
axioms as elements of M which are indiscernible with respect to rela-
tions My, ...y My, .
Let M'(X) be a model of the extended theory built in the way In-
dicated in [1], p. 35-57. Each one-one transformation of X onto itself can
obviously be extended to an auntomorphism of M'(X) (see [1), D. 63)-
Sinee T* is categorical in power 2", it follows that the models M and
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M'(X) are isomorphic; the desired subset 4, of | M | is thus the image
of X under this isomorphism.

TEROREM 3. If a theory T is categorical in power 2", then for any
P <2 it has a model universal for the power P (i. e., & model M of power p
such that each model M of power p is isemorphic with a submodel
of M,).

Proof. Let M'(X) be a model of T of power 2" such that elements
of X are indiscernible with respect to each M, and further that every
element of M’'(X) is a value of a term of the theory T* for arguments
in X. The existence of such a model easily follows from theorem 2. Any
model M of power p<2"is obviously isomorphic with a submodel of

- a model of power 2". Hence by the categoricity of 7, M is isomorphic

with a stibmodel of M'(X) whence it easily follows that there is a sub-
set X, of X of power p such that I is isomorphic with a submodel of
the least submodel M'(X,) of M'(X) which contains X,.

But, by theorem 2, for any two sets X,,X;CX such that f(,:fl,
there is an automorphism of M'(X) which maps X, onto X;. Hence
M'(X,) and M'(X,) are isomorphic and thus M’'(X,) is the required uni-
versal model.

Appendix. Proof of lemma 1

A get X, of order type n. of power n is by definition the set of se-
quences 4= {Gfocom With a,=0 or a,=1 for each a < w(n) which satis-
fy the following condition: there is an ordinal ¢ <w(n) such that o=0
for B> a. The ordering of X, is lexicographical. Let X be the set ob-
tained from X; by the completion of all cuts of X;. The elements of X
can be represented uniguely by sequences {@,}ocwm; With @,=0 or g,=1
such that for every a < w(n) there is a f>a with as=20. Clearly the con-
ditions (2) and (3) are satisfied.

In order to prove (1) it is sufficient to show that each interval (a,d)
of X is similar to X.

Let me(a,b), 2 ={w.}, a = {a}, b = {b.}

We establish a correspondence between z and an element y ¢ X by
the transfinite induction:

1° Yo = Tumita,en®)-

2° If y, are defined for a< g, and depend only on X with f<f,
then

Yo = m(,‘y)[z,‘(x1§=xﬂ for B<py, and x} 2 x)] *

4y (uy)[...] denotes the least ordinal y satisfying [...]J.
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Thus ¥ 18 defined and depend only on w, with

a<(uy)[2(m§=mﬁ) tor B <p, and w;#:vy)].

<

One can easily verify that the correspondence x <>y defined above
i a similarity mapping of (a,b) onto X.
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