On the :-theorems*
by
H. Rasiowa (Warszawa)

The purpose of this paper is to provide a simple proof 1) of the two
well-known e-theorems (see Hilbert and Bernays [5]) for elementary clas-
sical theories and to demonstrate that these theorems hold also for some
non-classical theories cousidered in my paper [10], in particular those
based on the intuitionistic logic (see Heyting [4]). The second s-theorem
for non-classical theories proved below, permits the elimination of quan-
tifiers only in the case of theories whose axioms are all in the prenex
normal form (. e. all guantifiers occur before a formula without quan-
tifiers).

To achieve the above-mentioned aim, we shall use the algebraie
method which has been successfully applied to simplify the proofs of
GOdel’s theorem (see . g. Rasiowa and Sikorski [11], of the Godel-Skolem-
-Lowenheim theorem (see e. g. Ragiows and Sikorski [12]) and of Her-
brand’s theorem (see Los, Mostowski and Rasiowa [7]). The notion of
the algebraic model investigated in my paper [10] plays the essential
part in the proof of s-theorerns. Thus this paper is 4 continnation of [10].
In order to enable those readers who are not interested in non-classical
theories to read this paper independently, the proof will be given ouly
for clagsical theories. The knowledge of [10] makes it possible to Pass
without any difficulty to the case of non-classical theories considered
in that paper.

It is worth noticing that the proof given below holds for non-enu-
merable theories. Thus the Godel-Malcev theorem (see Godel [1], Mal-
cev [8] and ¢. g. Henkin [3], Robinson [14]) can easily be proved by the
use of L.of’s method 2).

* Presented at the Seminar of Foundations of Mathematics in the Mathematical
Institute of the Polish Academy of Sciences in Jannary 1955 and in October 1955.

%) Another proof of the firat ¢-theorem was given by Los [6]. For a proof of the
second s-theorem cf. Hasenjaeger [2]. .

%) Indeed, if a theory is consistent, then by the second &-theorem the theory aris-
ing from it by Skolem’s elimination of qusantifiers is also consistent. The proof that

‘this tlmorry has a model presents no difficulties (of. L.oé [6], Rasiowa and Sikorski [11)).
Bui this model is also the model of the previous theory. .
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1. Elementary formalized theories. Let G(A) be an axiomatic
theory (with & finite or infinite set A of axioms) formalized on the basis
of the first order functional caleulus. In particular, G(9)3) is the system of
functional caleulus on the basis of which the theory G(¥) is formalized.

We assume that the following symbols are the primitive signs of G(¥):

(1) individual variables x,, where tel, f)xo (it is convenient to
assume that the set I contains the set of all positive integers);

(2) individual constanis a,, where ne E, E >0;

(3) functors f, (i. e. symbols for functions from individuals to indi-
viduals) where pe M, IH >0;

(4) predicates F, (i. e. symbols for relations), where »e ¥, N >11%);
among these signs the sign of equality may occur;

-, — and quantifiers [], 3, 1e1l.

We shall denote by m(u) and n(») the number of arguments of j,
and of F,, respectively.

Among the expressions constructed from these signs we distinguish
terms and formulas.

The set J, of all terms is the least set such that

(i) w. ey for tel and a,eJ, for yeFE,

(11) if El!""Em(ﬂ)EJD then f,‘(fl,...,g,,,@)eJ, for ‘I.LEM.

The set of all formulas is the least set fulfilling the following con-
ditions:

(i) if &,..., &y edy then F (&, ..., &) is @ formula,

(i) if e, 8 are formulas, then so are —a, a+ 8, a- 8, a—f, U a, ga

(eel).

We shall write for brevity a=# instead of (a—8)-(8—a).

We regard as known the distinetion of free amd bound variable in
o formula. A formula without quantifiers is said to be open. A formula
without free occurrences of variables is called & closed formmla. Some-
times we shall find it nseful to write e(x,,...,%,) if 2,,...,2, are all free
variables in a. The closed formula []...[] a (#,,...,7,) is said to be the

Ty

(8) logical connectives —, -+,

1‘1

closure of a(x.,...,2.)-
‘We shall denote by a\z(i) a formula whi b rosults from o by the
substitution of the term £ for z, assuming that the necessary changes

3) © always denotes the empty set.
4) The cardinal numbers of the sets I, E, M, N can be arbitrarily large.
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in the bound variables of a were performed before the operation of
substitution.

The set Cn{%) of all theorems (or of all provable formulas) of G(Y)
is the least.set such that

1¢ Cn (W) contains all axioms,

90 Cn(¥) contains all substitutions of tautologies of the sentential
calculus,

30 if g Cn(W) and B is obtained from o by the admissible substi-
tution of a term & for 2, (¢el), then fe On(%),

4o if aeCn(A), a—>PfeCn(W), then fe Cn

5o if a—e—[]ﬁe Cn(¥) then a->fe On(UA

if S‘a—»fﬁe Cn(¥) then a—feCn(AU),

6o if there ix no free occurrence of x, in a (in 8), tel, and if
a—>p e Cn (%), then a_J],geCn(m ) (then Za»ﬂeC’n(QI))

A theory G{¥U) is conszstent if there emsm a formula a of that theory
such that aé Cn(¥H).
The following theorem is well-known:

1.1. THE DEDUCTION THEOREM. If f§ ¢ On(¥w {a}), then a—f ¢ Cn(A),
for any set A of closed formulas, any closed formula « and any formula f.

If the set U contains only open formulas, we shall distinguish the
set Ong(W) of theorems formally proved without using the rules of in-
ference for the quantifiers. More precisely: the set Ony(2) is the Ileast
set of formulas of G(N) fulfilling the conditions 1°-4°, In the considered
case we shall denote by Go(¥) the theory with the set % of axioms and
with the get Cny (%) of theorems.

In the rest of this section let ‘G () be a theory whose axioms g, ¢ U
(¢ € R) are all closed formulas in the prenex normal form. Using Skolem’s
known method (see e. g. Hilbert and Bernays [5]) of the elimintaion of
quantifiers it is possible to pass from G(A) to a theory GXU*) with the
set A* of open formulas and with new primitive signs of individual con-
stants and funetors. We shall restrict the deseription of Skolem’s method
to a few examples.

It

Clq=2 ---Z Bo{1 5 e 5 2
x1 Tn

then we add the new individual constants 8f,...,0% and instead of the
axiom g, we take a3 an axiom the formula o= g,(84,...,b%) arising from o,
by the rejection of quantifiers and by the substitution of b¢ for ;.
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If

ae:n H Bolyy ey ),
*1 Xx

then instead of a, we take the axiom afs= By(@s... Ly)-

In the case of
=[] 3 ST 3 deseeord

Xz J‘x X3 x5

we introduce the new signs of functors gi, g3, g8 and instead of q, we take
a8 an axiom a:=ﬁe(xlvgg(xx)7g§($1)7mug§(x17-”54)) -

It is important that by this elimination we always add new sym-
bols of individual constants and of funectors.

According to the notation previously introduced, ‘G(9) denotes the
functional calculus on the basis of which the theory G (%) is formalized,
and G*(@) — the functional ealculus establishing the basis for the for-
malization of T*(U*).

Given g, ¢ ¥, we ghall denote by of « 9* the formula arising from a,
in the process of eliminating quantifiers and by 3, — the closure of of.
The set of all y, for g e R will be denoted by U*.

Obviously

1.2. a is a theorem of G*(U*) if and only if it is a theorem of T*(A*)
for any formula a of GHU*).

1.8. If a9, then a is a theorem of TGHIA*).

2. Algebraic treatment of elementary theories. Given a the-
ory G{(¥), we shall treat each formula a of this theory as an algebraic
functional (J,B)®, (sez e. g. Rasiowa [10], p. 297) defined in a domain
J #@ of individuals with values belonging to a fixed complete Boolean
algebra B, by regarding:

(a) Individual variables as variables running over J;

(b) individual constants as fixed elements of J;

(c) functors f, (u e M) as m(u)-argument fanctions defined on J
with values in J; the set of all such functions will be denoted by f(J);

(d) predicates F, (v e N) as n{v)-argument functions defined on J
with values in B; the set of all such functions will be denoted by F(J,B);

(e} the logieal connectives —, -+, -, —> as the Boolean operations of
the complement, join (sum), meet (product) and the operation a—b
= —a- b, respectively;

(f) the logical quantifiers D, , || as the signs of infinite sums and

0N

products (B) Y, (B) [] in the algebra B, respectively.
x €7 x &

11*
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Sometimes, it is convenient to write (J ,B)®(a) instead of (J,B)®P,.

Let

(i) ay=jsed (neE),

(ii) fu=tuefl)) (ped),

(i) F,=¢, «F(J,B) (velN),
be an arbitrary but fixed system of valuations of all individual con-
stants, funetors and predicates of T (W) according to the algebraical
interpretation deseribed above. This system will also be denoted
by M=[{j,} {r.}, {g,}] and will be called an algebraic pseudomodel of
G(¥) in the domain J and algebra B. The symbol (J,B, M)D.({z.}} or
(J,B, M)P(o; {i,}) will denote the value of the funetional (J,B)®, for
the values of its arguments fixed above by (i), (ii), (i) and the values
of r,=1, (i,eJ, for ceI). We shall write J,B, MP,=c if ce B and
(7, B, M) P({i}) is equal to ¢ identically {i. e. for every system x,=1,
tel)).
( X.n algebraic psendomodel Mt is said to he a generalized algebraic
model (see Rasiowa [10], p. 298) of G(¥) in the domain J and the al-
gebra B if for every ae¥, (J,B, M)P.=1, . e. the unit of B.

Instead of (J,B, P, we shall also write briefly ()@, provided
that it does not lead to a mistake.

The following known theorem (cf. Rasiowa [10], p. 299) is easy
to prove:

2.4, If ae Cn{N), then (J,B, W)P,=1 in every generalized algebraic
model M in every domain J#D and every complete Boolean algebra B.

Given a theory G(¥) (Go(M), let L (L,) be the Lindenbaum algebra
(see ¢. g. Ragiowa [10], § 2) of this system. The construction of L (L)
being known, we shall only givé an outline of the description of L (Lo).
Given & formula a of G(N) (%",(QI)), let |a| denote the class of all for-
mulas 8 of this theory such that a=§ ¢ Cn (%) (a=f'¢ Cno(%)}. Then I (L)
is the algebra of all cosets |e| with the operations

la]+|Bl=la+pl, la|-|pl=le-Bl,
—lal=|-al, la|->|8]=—|al+|f|=|a—5].
It is known (see for instance Rasiowa [10], 2.1, 2.3, and Rasiowa
and Sikorski [13]) that:
2.2. (i) L (L) is a Boolean algebra with the unit element 1=|al,
where ae Cn(A) {a e Cng W)},
(iiy |a|C|B} if and only if a—BeOn(U) {a—fe CnyA)),

@ Yelf=Xa, []lli) = []a-
fedy ' " x, fedg b
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Let L (L,) be a complete Boolean algebra, constituting an exfension
of L preserving all sums and produets (iii) of 2.2 %) (constituting an ex-
tension of IL,). We shall construct the following pseudomodel of T (%)
{Go(A)} in the domain J, of all terms of this theory and in the algebra

L (Ly):
ER:[{a,,}_. {fu}! {%}] (moz[{aq}y{flx}7 {"Pv}])
where (&1, Enn) =\ Ful&ry e s Ea)| € L (L) for any & ..o Eney €.
Tt is known {see Rasiowa [10], 3.6, p. 299) that
2.3. If ) (GoW)) is consistent, then for every formula a of this
theory

(J“’E,m)d)a({fl})=ia(§:); ((J.,,Zu,iltu)d%({f,}) = ia(im .

Counsequently, N (N,) is the generalized algebraic model of () (‘GO(QI)).
Moreover, ae Cn(2) (aeCn,,(QI)) if and only if

(JO’E7%)¢G({~T:})=1 ((Jo,Eo,ﬂo)Qa({-Tn})zl) -

Let G'(9) be the theory arising from T(¥) by the addition of new
symbols b, (2 ¢ K) of individual constants and new symbols g; (£ eZ)
of funetors to the primitive signs of G(A).

The following theorem is well-known and easy to prove.

2.4, If a is a formula of the theory (), then o is provable in T'(A)
if and only if it is provable in G(AU).

8. The first :~theorem. In this section let G () denote a theory
whose axioms are all open formulas.

3.1. THE PIBST £THEOREM. Given an open formula o of the theory
G, if aeCn(A) then ae CnyN).

Indeed, suppose that a ¢ Cny(%). Then by 2.3 (J, oy Loy Ro) Do {m}) # 1.
It follows from the definition of the generalized algebraic model that R,
is @ generalized algebraic model of G(¥). Hence, on account of 2.1,
a e OCn(%), which completes the proof.

Quite & similar method makes it possible to prove the first e-theorem
for all non-classical theories described in my paper [10], in particular
for the theories based on the positive, minimal, intuitionistic and modal
(S, logic.

4. Lemma. In this section and in the next, let G(A) be a consistent
theory whose axioms o, ¢ (g € B) are all closed formulas in the prenex
normal form and let T*A*) be the theory arising from G(A) by the

5) E. g. MacNeille’s minimal extension, cf. [8].
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elimination of quantifiers with the aid Skolem’s method (cf. section 1,
P. 158). Let 945emr s Ve Vo, (0<7), be the closures of a;;,...,az,",a;ﬂ e UA*
and let « be an arbitrary closed formula of G ().

‘We shall consider the theory GHUw {¥o;-.-,%,,}) formalized on the
basis of the system of the functional caleulus G*(@) and the theory
BT {Yersee 1 ¥a})s Whose language is richer than the language of G ()
only by the primitive signs occuring in y,,...,%,-

Let us suppose that G (A {yg,---17,,}) 15 consistent and let M’ be
a generalized algebraic model of this theory in a domain J and in alge-
bra B. Fixing a valuation of all annexed signs so as to obtain the lan-
guage of GHUw{¥e, ) 7et) We can extend T to a generalized alge-
braic model M* of THU v {Vpsees Ve )

4.1, If in a generalized algebraic model M of G (W {yg,--sVel)s
we have
(%) (B)P(a,,,,) ¢ (D)P(a),

then there exists an exiension of WM’ to a generalized algebraic model M*
T U {yyy-1ve)) such that

(s3) (M) D (p,,,,) ¢ (D) D (a).

Indeed, if for p=g,4,
%ZZ"-ZsBe COPRI
*1 Xn

then, on aceount of (), there exists a system of valuations z,=i,¢.J
(t ¢ I) of individual variables, such that (MM )B(B,; {i.}) ¢ (MM)D(a). In the
case in question, y,== f, (83,...,b%). Thus it is sufficient to put bj=1,,...,b2=1,
in the M* in order to obtain (#+).

As the introduced signs 83,...,b% appear only in Yes1 Uhat valuation
can always be performed.

If
=[] ~]] Bens @yeees) 5
X1 Fn

then y, ., is identical with a,, . Thus in this case there is no need to
put any conditions upon IM* in order to obtain ().

If for g=g,;;, both the existential quantifiers and the universal
guantifiers appear in a, e. g.

znzznzp‘e (15w 75) 5

Xy Xp X3 Xg X5

icm

On the e-theorems 163

then from (x) it follows that
NIDDN I P AR RSt
i1€J igeld iged iset isel
Consequently, for every ied
SN S @B sy sy i) € (R D
iseJiged iyeJ ise]

Henee, it follows that there exist two functions oi() and of(f) defined
on J with values in J such that for every feJ

[] > @)%,

iget iged

0i(1), 0%(4) 4, i5) € (M) Do

Thus we have for every ,jed

(D) Py, (6, 0(4) , 53,1 85) ¢ (W) P -

ig€d

Consequently, there exists a funetion of(,j) defined on J with values
in J such that for any i,jed

(lm’)!bﬂq(i,ag(i),ag(i),j,a?;(i,j)) (WD, .
Since
= H”ﬁq(rl ,-gg(“'l)795(-T1)’14ag§(931714)) s

X1 x4

it is sufficient to choose an extension M* of W in which gf=di, gi=of,
$B=o0§ in order to obtain (). :

Since the introduced signs g8, 3, g8 appear only in yp,,,, the con-
ditions on IN* stated above do not lead to any ambiguity and can always
be performed. Tt is an easy task to generalize our proof to a fairly general
formula o, ,, in the prenex normal form.

It follows from our considerations that it iz always possibly to choose
such an extension IM* of P’ that we have (*x).

5. The second s~theorem. In this section we shall use the no-
tation introduced in section 4 {cf. p. 161).

5.1. THE SECOND ¢THEOREM. Given a formula a of a consistent
theory GN), if a is provable in T*A¥), then it is also provable in G @A),

It follows from 1.2 that 5.1 is equivalent to the following theorem

5.2. Given a closed formula o of a consistent theory G(N) if a is pro-
vable in G*(U*) then it is also prcvable in G(A).
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To prove 5.2, let us suppose that « is provable in G*W*) but not
provable in G(A). By 1.3, the first condition is equivalent to the con-
dition that a is provable in THAA*). Hence, there exist yy,...,%,.,
{r>0), such that « is provable in GHNUC {y,,..21%,.,}) but not pro-
vable in GXHw {ygy, -\ 70, }). Thus this last theory is consistent. By 1.1
the formula y,,,-»c is provable in GHUw {yy,.-,¥.}). Consequently,
by 2.2 in every generalized algebraic model IM* of this theory we have

1 (M) D(7,,.,) C(T) D(a) .

r+1
On the other hand, a being not provable in GHUw {Yg ;-7 }); by 2.4
it is not provable in T (U {y,,...,7,})- Consequently, the formula
&, ,,~>a 18 not provable in G (U v {yy,.,7,}). Thus it is consistent
and by 2.3 there exists a generalized algebraic model I’ of this theory
such that (W)d(a, ,~»a)#1. By 2.2 (i), (M)P(a,,,) (W) D(a).
Hence, by 4.1 there exists a generalized algebraic model IM* of
THW o {pes-es7,}) such that (WM*)D(y,,,,) T (M) @ (a), which contra-
dicts (1).

In an analogical way one can prove that the second e-theorem holds
also for some non-classical theories described in my paper [10] 5), in
particular for theories based on the positive, minimal and intuitionistic
logie.

Obviously, 5.2 implies the following theorem 3.3 which holds for
all the theories cited above):

5.8. The consistency of the theory T(W) implies the consistency of
T
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