Decompositions of a set into disjoint pairs
by
S. Ginsburg (University of Miami)

In this note we shall discuss the possibility of the decomposition’

of a set of elements into disjoint pairs such that every set which is the
union of pairs and which satisfies one specified property, also satisfies
a second specified property. The principal result, Theorem 1.1, is a gen-
eralization of a lemma due to Sierpindski [3].

1. TEEOREM 1.1. Let F = {A:|&<} be a family of abstract sets, each
set being of power R,. Furthermore, let F contain a coindtial subfamily
G ={B;|<w,}, i.6., for each E<t, A; contains as a subset, at least one
element of G. Then there exists a decomposition of A=\J A4, into disjoint

pairs of elements with the following property: For anye;cft S which is the
union of pairs, if 8 contains at least one set Ag, then S has x, elements in
common with each element of F.

Proof. The demonstration is a modification of the proof of Lemma 1
of [3].

In Theorem 1 of [2] Sierpiviski stated a general result on families
of sets. An inspection of the proof reveals that the following result was
proved at the same time:

(») If {Dg}fqov is a sequence of sets, each set being of power s, , then there
exists a family P={Ng|é<w,} of pairwise disjoint sets, each set of
power <%y, such that 1° \UNg=\_D;, and 2° any set Q which is

. . i< @y <o,

the union of a family T of 8, sets in P has at least one element in

common with each Dy.

Sinece T is the union of x, disjoint families of ss sets each and since
the N are pairwise disjoint, it follows that @ has s, elements in com-
mon with each .D,.

Tu@ng to the proof of Theorem 1.1 let M be the family of those
sets B in & for which the power of A—B is s,. Let H=Mu{4—B|Be M}
) A. Suppose that H is non-empty. Well order the elements of H
:nto a sequence {Ds}e<m,, where the D, are not necessarily all distinct.
Then UD;=A. Let P={N;&<w,} be the family of sets obtained by

E<w,
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applying () to our sequence {D§}§<m_',- Decompose the set of ordinal

numbers W ={{|é<w,} into a family {W¢|é<w,} of pairwise disjoint

sets, each set being of power x,. For d<w, let Co=U N,. Thus,su Cs=A,
. veEmg <a,

and for &,0<<w,, DsnUs is of power x,. From the definition of H, for

each & A—D; is in H. Therefore the power of the set Czn(4—Dg) i8 &,

Denote by {5 o<, a0d DY {g/f,}[.<w7 the elements of C:nD; and Cgn(A—Dy)

respectively. Thus

U (ad,y8) = (De n C) o[ —Dg) 0 Cel =4 0 Op=C.
n<z7.vy

Consider the set of pairs K = {2,y |E<o,,v<w,}. Since 4 is the union

of the pairwise disjoint sets €, it follows that A is the union of the pair-

wise disjoint pairs in K.

Now let § be any set which is the union of pairs and which contains
an element of ¥. By hypothesis., there exists an element B in & for
which BCS.

(i) Suppose that Bisin G— 3. Foreach §, D= (DenB)o{Den(A—B)]
Since Dg is of power s, and A—B is of power <., D:nB is of power §,.
Sinee G is coinitial in F, it follows that Bn 4. is of power x, for each
&<z, Thus 8~ 4, is of power x, for <.

(i) Suppose that B is in M, say B=D,. Therefore C:nD;C 8. Let
2 be any element of (A—Dg)n Cs. From the definition of the pairs there’
exists an element y in Dyn C; such that (z,y) is & pair. Since § is the
union of pairwise disjoint pairs, and z is in §, it follows that y is also
in §. Consequently (A—D:)n(C:C 8. Hence

[A—Dg)u Cslu(Den () =0 C 8.
For each v<w,, C;nD,, therefore §nD,, is of power x,. Tor an element
D of G—2, we have seen in (i) that DDy, thus D~S, is of power ,.
Thus Dgn B, for v<w,, is of power x,. Thervefore D;n.A4,, for o<1, i8
of power §,.

B. Suppose that 37 is empty, i. e., there is no set B; sueh that 4A—Bg
is of power n,. Decompose 4, in an arbitrary manner, into digjoint pairs.
TUsing (i) above it is easily seen that this decomposition satisfies the
coneclusion of the theorem, q.e. d.

COROLLARY. Let I be an infinite set of power x,. The family A of all
subsets of K, of power s, each, can be decomposed into disjoint pairs with
the following property: If S is any subfamily of A, consisting of pairs,
and if 8 contains some element Y of A together with all subsets of ¥ in A,
then for each element % in A, § contains an element U in A which is « sub-
set of Z, i. e, 8 is a coinitial subfamily of the family A, ordered by set
inclusion.
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. . Remarks. 1. Assume that the hypothesis of Theorem 1.1 is ful-
filled. For a given decomposition of 4 into disjoint pairs it is possible
that each set §, of power x,, which is the union of pairs, has an inter-
section with each set in F of power &,. For example, let 4 be an abstract
set of power &, A = {r,y;|E<w,}. For each £ let (g, ¥;) be a pair and let
and

Ag={w, [v<<wp}u{ye} Be={y,|v£E}.

Denote by F (= &) the family of sets {dg, Bs|é<w,}. The hypothesis of
Theorem 1.1 is satisfied. Now each set 8, of power x,, which consists
of pairs, contains &, of the #’s and y’s. For each é<w,, A; and B con-
tains all but a finite number of the a’s and the ¥’s respectively. Con-
sequently each of the sets, 4,8 and Bgn 0, is of power x,.

The situation is different if the family F contains at least three
disjoint sets, say Ay, 4y, and 4, For any decomposition of 4 into dis-
joint pairs, there always exists a set &, of power &,, consisting of pairs,
which has an empty intersection with some set in #, in particular, with
either 4; or 4,. To see this let Z be the set of those elements which are
in pairs that are in 4, Thus Z is a subset of 4,. If the power of Z is x,,
let 8=Z.8ince 4, and 4, are disjoint, § and 4, are disjoint. If the power
of Z is <x,, then the set U, defined as the set 4,—7, iz of power x,.
This is 80 because each set in F is of power x,. For each element « in U,
let (w,v) be the pair which contains u, and let V={v|ve(u,v),ueU}.
If s, of the elements of ¥ are in 4, let § be the union of those pairs (u,v),
\‘vl.lere % i8 in U and v is in A4,. Since 4, 4,, and 4, are pairwise dis-
joint, §n4, is empty. If there are fewer than ¥, clements of ¥ in Ay,
let 8 be the union of those pairs (,»), where u is in U and v is not in 4.
Dere §n 4, is empty. It is clear that in each case, the power of § is w,.

» 2 From remark 1 and Theorem 1.1 we see that if F' contains three
dlS]'OIIﬂS sets, then there exists a set S, of power v,, consisting of pairs,
which contains no set in F. The conclusion of the previous statement
holds even if F ‘does not contain three disjoint sets. To be specific the
following result will now be proved:

vLet o set A, of power w,, be decomposed into disjoint pairs. For any
family of sets-F={A5§§<m,,}, of power w, each, there exists a set S, r;f
power N,, consisting of pairs, which contains as a subset no set in F. Fur-
thermore, for each & Sndg is non-empty.

In order to see this let the elements of 4 and the pairs in A cach
be well ordered into the two sequences, {psls<,, and {ag}e < resﬁectively.
Let 2, be the first element in 4, and let by ybe the pairm(yxontéining x
Let y, be. the first element in the set 4,—b, and ¢, the pair containing ‘7/0'
‘We continne by transfinite induction. For each &< a<w, let xg, v, b:
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and e be defined. Let «, be the first element in the set A,—[U{bsues)]
f<a

and let b, he the pair which contains r,. Let y, be the first element in
the set A, —[U(bsues)ub,] and let ¢, be the pair which econtains ¥,-
f<a

Clearly the clements &g, To, Yor Yoo §F0. o7 are in different pairs.

Now define & as the set \U'bs. For each £, ys is an element of A whieh
5<w7

is not in S. Consequently S contains no set in F.

2. We now restrict ourselves to decompositions of the plane. We
denote the plane by E2.

TarorEM 2.1. There is no decomposition of the plane into disjoint
pairs with the jolloweing property: S being any set which is the union of
pairs, if 8 contains one line then it contains two lines.

Proof. Suppose the contrary, !.e., suppose that such a decompo-
sition does exist. For each line I denote by S(L) the union of the pairs
(a,y), where o is in L. Let L, be any line. By assumption, S(L;) contains
a second line, say Lp. Consider the set S(Ln). S(Ls) consists of the union
of pairs, each pair containing an clement in L, and an element in L.
Suppose that L, contains a pair neither of whose elements is in L,. Then
8(Ly) cannot contain L,. Thus 8(L;) containg but one line. From this
contradiction we obtain the following: :

{(+) For each line L there corresponds a second line Ly so that S(Li) =8(Ls).
Under this correspondance Ly corresponds to Ls. To each element x in Ly
there corresponds an element y in Ly such that, for xy, (x,y) i8 a pair.
If L,nL, is non-empty, say Ly nLy={xy}, then the pair (Tq,Yo) which
contains «q, need not be a subset of LyuLs, 1. €. Yo need not be in
either Ly or L.

Now let (p,q) be any pair and let L, be the line containing p and g.

Let L, be the line which corresponds to L,. By (*), L, contains either p

or g, say p. Let (r,8)7(p,¢) be any pair with r in I and s in L,. Denote

by L, the line which contains ¢ and s. Clearly L, is neither I, nor L.

Denote by L, the line corresponding to L. By (%), L, is neither L; nor L.

Now the elements ¢ and s belong to (L,). From («), it L, does not con-

tain p, then L, contains ¢ and r. Since L, contains ¢ and », Ly is Ly

Tt I, does not contain g, then L, contains p. Now L, contains either »

or s. It L, contains », then L, is L. If L, contains s, then L, is L,. In

any case L, is either Ly or Ly This is a contradiction. Hence no such de-

composition is possible, q.e. d. .

If we only demand 2 decomposition such that each S(L) contain

a line segment not on L, then such a decomposition can be effected.

To be precise we have
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THEOREM 2.2. There exists a decomposition of the plane into disjoint
pairs with the following property: Hvery sel which is the union of pairs
and which contains one line

1° contains 2% disjoint, non-trivial closed imtervals of lines in the plane,

20 has 2% elements in common with every line in the plane.

Proof. Denote by K the set of points in the plane

K={(2,y)]| —co<ar<oo, 0y <1},

For each line I which is not entirely in K, let L'=IL—x.
Let § be the smallest ordinal number whose power is 2%, Let F'=@
={B;|é<0} be the family of all such sets I’. Obviously each set I
contains 2% elements. On applying the same procedure to the sequence
{Bele<o as in the proof of Theorem 1.1 we obtain a family of pairwise
disjoint sets {Ci|é<6} whose union is E*—X, and such that CinB,
is of power 2% for all £,v< 6. For each real number x define D, as the
seb Dy={(#,y)]0<y<1}. Since the power of the real numbers iz 2%,
we may decompose the set of real numbers into a family {B;|E< 6} of
pairwise disjoint sets, each set being of power 2%. For each & let

(s =O;uLéDx. Note that each set C; has 2% elements in common with
X € £

each line in the plane. Let F(=@) be the set of all lines in the plane.
Repeating the proof of Theorem 1.1 on F and the (%, we obtain a de-
composition of E* into disjoint pairs. Any set & which is the union of
pairs and which contains a line, containg some set (. Thercfore S satis-
fies the conclusions of the theorem.
Finally we have

‘ .T.IHEOB.EM 2.3. There exists a decomposition of the plane into a family
of disjoint pairs with the following property: For each line L in the plane,
i.he set S(L), which is the union of the pairs each of which is entirely in L,
is exact') and has. property A 2). Furthermore, if L#£L' and if T(‘L) and
D(L')_are any subsets, of power 2% each, of S(L) and S(L') respectively,
then T(L) and T(L') are incomparable order types 3).
. Proof. From Theorem 3.4 of [1], it follows that there exists a fam-
ily -of linear sets {¥,|£<6}, each of which is both exact and hasg pro-
perty A. Farthermore, for any two finite, linear sets M and N, it é#v

) A simply ordered set is exaet if the only similarity i i

. y r d 3 arity trs iion |

s tho toai ¥ transformation f of ¥ into
*) A linear set H, of power 2%, hag property A if no two disjoint & ] 7

of power 20 each, are similar. pe o disjolnt subsets of £,
*} Let " and D he two simply ordered sets. @ and D are said to be incomparable

order types if there is no similarity transformation of C int imilari &
formation of D into (-, inte D and no similarity trans-
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and T and T, are subsets of power 2% each of Y,v 1 and Y,uN
respectively, then 7. and T, are inecomparable order types.

Now well order the set of lines in the plane into the sequence {Lg}s<q-
For each & decompose L; into a family {Bflv<§} of pairwise disjoint
gets, each Bj being similar to ¥e. By Theorem 2.2 of [1] such decom-
positions arve possible. Denote by €, the set Bj. Suppose that for each
£<<a<<f, the set C; has been defined so that 1° C¢ is one of the sets BE,
and 2° the C; are pairwise disjoint. Since each L; is a line, for 5%y, the
set L,n L, contains at most one element. The B; being pairwise disjoint
for fixed a, it follows that each set C; has a non-empty intersection with
at most one set B3, say Biy. Since a<f, there exists a set, call'it By,
which has an empty intersection with each set C;, £<a. Define C, to-
be the set Byg.

Well order the elements of the set E? w—EUa(Jﬁ into a sequence

<

{2}s<o<or et Ly be the first line which contains »,. Now suppose that
y(&) has been defined for é<é<v. Let L,g be the first line not one of
the lines L,g, £<6, which contains ;. L, certainly exists since there
are 2% different lines containing ;. If v=y(&) let F,=C0hu{zg). I v is
not a y(&), let F,=C,. Clearly E*=(JF,. Now each set I, is exact and

v<f
has property A. From the selection of the sets X it follows that if T
and T, are subsets, of power 2% each, of F; and F, respectively, then
T, and T, are incomparable order types. Now decompose each set Fg
into disjoint pairs. This yields a decomposition of E? into disjoint pairs,
since E? is the union of the pairwise disjoint sets F;. There is no trouble in.
verifying that this decomxposition satisfies the conclusions of Theorem 2.3.

We conclude with the following questions:

Let a<<1 be a linear order type of power 2%. Does there exist a de-
composition of the reals into disjoint pairs such that any set § which
is the union of pairs and which contains, as a subset, a seb of order type o,
contains a subset of order type A? If the answer is in the negative, then
does there exist at least one such a? ’
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