Concerning definable sets
by
N. A. Routledge (Cambridge)

1. We shall take the notions of function of nvariables (over the positive
integers) taking only the values of 0 and 1, predicate with n arguments de-
fined over the positive integers and sei in R,, Buclidean space of n dimen-
sions, each coordinate being o positive integer to be entirely equivalent.
(The function will be 0 for a set of arguments (ry,..,7.) when the
predicate holds, or s true, for (ry,..,7.), and when (7y,...,7,) belongs
to the set, and so on). Following Mostowski [1] we define certain
classes of sets: P® is the class of all sets expressible as (Hu,)(w,) (Ea,)...
won L@y vy By Yy ooy Yi) With n quantifiers (alternately existential and uni-
versal), where T(wy,...,ys) i8 a g. r. (general recursive) predicate, and Q%
is the class of all sets expressible as (wy) (Emy) (%) .o T(@1y ooy @y Yy eeer Vi)
under the same conditions. Provided n >0, then we lose no generality
by restricting T'(y,...,4) to be p. r. (primitive recursive) (see Kleene
[2], Theorem YV, Corollary). His theorem V can be enunciated as
PP P =PP(=0f).

We enquire: What is P®. QP, for n>12

2. From Turing [3] we get the idea of an oracle machine. We are
given a certain set § of integers, about which our knowledge is limited.
But there is an oracle which knows all about S. We then set up a ma-
chine of the usual Turing type, save that from time to time the ma-
chine produces an integer and enquires of the oracle whether this integer
belongs to §. The machine then moves on in a manner determined by
the reply of the oracle. If a certain function can be calculated by such
& machine we shall say that the function is Turing derivable from, or
reducible to, S. This is exactly the same as for the function to be de-
finable by a general recursive system of equations into which & (or
rather its associated function) enters as an already known funection.
‘We can now answer the question ending 1:

‘ PE,")~Q,(,") i exactly those sets in Ry which are Turing derwable from
some set in PPy, for n>0. '

To prove this is the aim of this paper?).

) I am informed that A. Janiczak has already obtained this result, in the cage
n=2, in a paper shortly to appear in the Colloquium Mathematicum.
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8. Let us assume that a certain predicate H(n) is Turing derivable
from a certain predicate S(n). Replace S(n) by an wundetermined pre-
dicate T(n) and set the machine working. After some steps the machine
will produce a number r,, and enquire: Does T'(r;) hold? Assign the value
of T(r,) arbitrarily, and the machine will move on and eventually per-
haps produce another number r, and ask whether T(r;) holds. If ry7#7ry
{otherwise 7T'(r,) is already determined) assign the value of T'(ry) arbi-
trarily and let the machine move on. And so on. Eventually the ma-
chine may reach a stage when it claims to have calculated H(n,), for
some n, (it would of course do this for every =, if the values assigned
to T(r,), T(1y),... were those of 8(ry),8(rs),...). I say that clearly it is pos-
gible to obtain an effective (and even primitive recursive) enumeration

_of all possible stages in the motion of the machine, for any particular

assignment of values to 7' leading to that stage, but I will discuss this
in 6.

4. We require the notion of the general multiple of a set of integers E
{(we shall denote it by (G.M.R)). This contains no numbers which have
prime factors of power higher than 2, and P;}...P7* belongs to it if
and only if 4;¢ R if m;=1 and i;¢é R if 7;=2 (for 1<<j<n).

(Pgy Py, Py, ... are the primes in ascending order).

Also 1 belongs and 0 does not.

Thus to settle a question:

Is it true that ag..,ar € R but fy,...,f:¢ R? we need merely enquire:

Does

Py ... P,

r

(Pg, ... P ) e G. M. (R)?
(We shall say that an integer is the correct form if and only if it is
non-zero and has no prime factor of power higher than 2).
5. Let us define functions A(n), B(n), J(u,v), K(n) and L{n) as follows:
A(n)= in(n+1),
On)=px(z<n+1 & A(n)>n)—1,
(3. e. ©(n) is the gfeatest pumber 2 such that A(x)<<n),
J(u,v) =4(u-+v)+u,
E(n)=n—4(0(n)),
L(n)=06(n)—K(n).
The functions J, K, L furnish a 1-1 correspondence between the

ordered pairs of integers and the integers, in the order

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(9,3)...
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That is, (#,v) is in the J(u,v)th place (counting from 0), and the pair in
the nth place is (K(n),L(‘n)).

J, K, and L are clearly p.r. (see Péter [4] § 1).

We now return to our machine, and define two functions Step(n)
and Ans(n).

If L(n) is of the form P, ...P, (Pp ... Py )% with a,,...,f, all different
and 7, $2>0, and there is & possible asgignment of values to Z'(x), and
a possible notion of the machine such that in the course of the first K (n)
steps the machine appeals for the values of T(«,),..., T'(fs) and ig told that
T(uy)yenny T(ay) hold but T(8),..., T(f;) do not, let Step(n)= K(n) and
Ang(n)=L(n). In all other cases let Step(n)=0 and Ans(n)=1. That
these two functions are p. r. may be demonstrated by an arithmeti-
sation, or @ddelisation, of the structure of the machine, in the man-
ner of Kleene [5]. The proof is obvious but highly tedious and complex.

These functions provide the enumeration required at the end of 3
(with many repetitions of the case when the machine has made no moves,
and no values of T have been assigned).

We can also obviously define predicates Fin(n,x) and Eval(n) (both
D. r.), where Fin(n,z) means that after Step(n) moves, if we tell it that
Ans(n) e @.M.(T) (i, e. that T(a;) holds, etc.) the machine finishes the
calculation of the (supposed) value of H(x), and, this being the case,
Eval(n) is the value of H(xz). (In other cases we are not interested in
the value of Eval(n)).

6. We know that, for any , there is a certain assignment of values
to T (viz. putting T(y)==8(y)) which makes the machine complete the
calculation of H(z) correctly, after a finite number of steps (and after
only a finite number of values of T have been assigned) i. e.

(@)(En)(Fin(n,x) & Ans (n) ¢ G.M.(8)).

There is for each z clearly only one such n, and, for this, BEval (n) =H(x). So

Levuma 1. H(z)=(En)(Fin(n,s) & Eval(n) & Ans (n) ¢ G. M. (8)).

7. Levma 2. If 8(n) is of the form (Ew)R(n,w) then G.M.(S) is of
the form (Ex) (y) M(n,®,y) where M(n,®,y) is Turing derivable from R(n,w)
being derived from R and p. r. fns. by substitution.

(Derivability was defined only for predicates with one variable, but
this restriction was for convenience of exposition and is not egsential
at all).

For, ne G.M.(8).=.n is of the correct form (see 4)

H

& (a) (P, divides n but P? does not .- (Bo)R(a,))
& (8) (P} divides n—(w)~R(p,)).
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Now let n=Py ... Py (Pp..Pp)? and if @,..w, are the (hypothetical)
28 such that R, ;) holds for 1<i<r and if we put

y=P-P2.. Pi
we see that ne @.M.(S).=.n is of the correct form

&(By)(a) (P, divides n but P2 does not. -R(a,z), where 2 is the power
of P, in y),
&(p) (x)(P; divides n—>~R(8,m)).

Thus ne@G.M.(8).=.(By)(a)(B) (=) N(n,y,a,8,x),
where N is a predicate obtained from p.r. fns. and R(n,») simply by
substitution.

Now the funetions J(J(p,q),7), and K(K(n)), L(E(n)), L(n) furnish
a 1-1 correspondence hetween the ordered triplets and the integers.

Thus n e GM.(8).=. (By)=) N (n,y, K(E(2)), I{K(2), L(z)) as was
required (since p.r. fns. and substitution are all part of Turing deriv-
ahility).

THEOREM 1. If G(n) is a predicate, Turing derivable from (Ez)R(n,z),
then
@) G(n).=. (Bx)(y) My(n,»,y)

(i) G(n).=.(x)(By) My(n,z,y)
where M, and M, are obtained from p.r. fns. and R(n,z) by substitution,
and so, certainly, are Turing derivable from R(n,z).

(i) follows immediately from lemmas 1 and 2, and the general result

(Be) (BR)X (a,B,...) = (Bp)X (B (), L(y), ..)

for any predicate X(a,f,...).
For (ii), note that ~@(n) is also Turing derivable from (Ez)R(n,x)
and so, by (i),
~G(n).=.(Bz) (y) Mi(n,z,y)
and thus, at once, (ii).
This theorem clearly holds true when n &tands for not one variable
but many.

CorROLLARY. If G(n) ts Turing reducible to a PP set (see 1) then
G(n) e PP -QP.

8. THEOREM 2. For n>0, PP -Q¥ =the class of sets in By Turing
derivable from sets in Py, =Ry -D(PL,), say (where D(X) means the
class of all sets Turing derivable from sets in the class of sets X).


GUEST


10 N. A. Routledge

First, two leramas:

LEMMA 3.
PR. Q¥ CDPL,), i n>0.
For if
H{Yyy s Yi) - = (By) (B2) oo A(Byyeees @y Y1 s Yk)

= () (By) o By s U,

where 4 and B are g. 1., then for all ;,...,yx either there is an such that
(1) () (Bg) o Ay ey @ny Y1y -y Yie)y O there is an & such that
(2,) (Bs) .. ~B(@y, .., ¥x) Ut never both.
Let
A(®yy oy ny F Y1 Yoy - Yr) I Yy De evern,

A
Oty oo Bns¥r ¥ I= ) i L @—1)sYes i) if 4 e 0dd.
Let
D@y Yy ooy Yic) = (@) (B3) o C(@1yvey s Y1y ooy i)
Then
D(@yy.e i) € QI
and clearly

/‘%(D($1,2.7!1y?]m---yyk> V. Dy, 2y, + 1,92,-.-,‘%))

exists, by (I), and is Turing derivable from D).

Call it {1y ..., Ya), then H(Yy .oy ¥i) = D(F Y1y -y Yie)y 2Y1s Y25 s Y} ch"”ly
We have now merely to show that D is Turing derivable from a PY,
set. Now clearly a Q¥ set is derivable from a @, set by using the
enumeration of ordered (%k--1)-tuples which can be got from J, K and L,
and any Q®, set is clearly Turing derivable from the P&, set which is

its complement. Hence the lemma.

LeMmaA 4.

R DPLHC PP QP i n>o0.

We prove this by induction on n. It is true for # =1, obviously, and
for n=2 by Theorem 1.

If n>2, assume the lemma to be true for n. Then if G(M,l, vy M)
is derivable from some (Fz)R(x,m), where R eQ,.__l, by Theorem. 1 (ex-
tended for many variables)

Gty ooy mie) = (Ba) () Ma(hyy ooy M, ®,Y)
=.(x) (By) My(ny,...,9),

where M, and M, are derivable from R.
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Now, as in Lemma 3, a Q,,_l set is derivable from a Pf,lll set, and so
M, and M, are derivable from a P, set, and so, by hypothesis, M, e Q¥?
and M,e P%*®, That is, there are g. r. predicates Mi (2y,...y@ny Mgy .oy Ny 8, )
and Ma(2y,.eey2ny Wy, .ees N, @,y) such that

ooy i) = (Bax) (y) (21) (Ba) (2) oo M3 (205 0,9)
(@) (By) (Bzy) (22) (B2g) oo M3 (21400 )

(Bw) () (Bey) (25) ... M1(E(t), 2550, %, L(1))
() (Bt) (25) (Bay) ... M3(K(t), 22, 0., 2, L(1))-

||l

Il

li

Thus GeP®, - Q¥
Hence the lemma, and hence Theorem 2, since

PP.9®  certainly C Ry.

Added in proof. This paper was written in August 1952, and since
then a result, essentially the same as my Theorem 2, has appeared in
8. C. Kleene’s Iniroduction to Metamathematics, (North Holland Publi-
shing Oo.), (see Theorem XI, p. 293).
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