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A Chéracterization of Alephs.
By

Roman Sikorski (Warszawa).

I, will denote the set of the positive integers 1,...,n. The class
of all m-element subsets of I, (m<n) will be denoted by Jmn-

Clearly Sﬁ:(ﬁ)

X" will denote the Cartesian product of n replicas of a set X,
i.e. the set of all sequences &= (m,...,s,) where 2; ¢ X.

Let A eJmn. Every set PCX" of the form P=Y,x..xXY,
where Yy=(a)?') if ied, and ¥Y;=X for 4 non e, is called a A-set.
A A-set P is thus the ,(n—m)-dimensional hyperplane” defined by
the equations x;=a; for i e.

Theorem. Let m and k be positive integers and let X be a non-
empty set. In order that X <Mpyim, it is necessary and sufficient that

X" be the union of (m;; k) sets By (A e Jpmrn) such that PH <,

for every A-set P.

This Theorem is a generalization of theorems of Sierpinski?)
and Kuratowski$). )

Necessity. Let X, be the set of all ordinals Y) a<wrpmey-
It is sufficient to prove the existence of the required decomposition
in the case X=2X,,.

'} (@) denotes the set containing only one element a.

*) W. Sierpifski, Sur quelques propositions concernant la puissanuce du
continu, this volume, pp. 1-13. See Theorems 1,2,8,4,8, 10 and the. corol-
lary at the end of the paper.

®) C. Kuratowski, Sur une caractérisation des alephs, this volume,
pp. 14-17.

%) The cardinal of the set of all ordinals <« is denoted by @. The initial
ordinal wp is the least ordinal such that wg=Np.
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For every ordinal «, let {2}, <, De a transfinite sequence
containing every ordinal <a exactly once; y is the least ordinal
such that y=a-+1.

By induction on m, we shall define some sets E(iy,eeyim),
where #,...,1n i3 any permutation of a set A € Jmmsr, a8 follows.

In the case m=1, if ielyys, then E(i) is the set of all
(agy-yar1) € XT7F such that a;>a for j=1,... k1.

It iy,...,im i3 any permutation of a set A € Smtimetir (Mm2=1),
then E(fg,...,im) is the set of all (..., amisps) € X2+ such that

(i) “i:"‘,gff”) for ielny1qer—(iy), where

(i) for each i€ Iniqia—(iy), i'=i if i<iy, and i'=i—1 it
i>1y; and

() (Byy s Bmsr) € B(EY, ...y im) 3).

Clearly (i) implies that ¢,=max (C1y ey Omis4r) a0 Py e X
since E,'o <Nr+m_1.

We shall prove by induction on m that

(An). Xpt*=3 E(i}, .,in) where the sign Y is extended over
all permutations f,...,7%m of all sets A € Sp mis-

{(Bm). If P is a A-subset of X5 AeSmmen, and i,....0m
is a permutation of A, then

P Bty yim) < 8.

The  assertions (An) and (Bn) imply immediately the exi-
stence of the required decomposition of X2+ It is sufficient to
put E;=the union of all sets E(i,...,in) where gy im 18 any
permutation ¢f 1 € Jm mir-

(Ay). If (ay,.yapps) e X35 et =max (ay,...,ap41). Con-
sequently (ay,...,ap4q) € B(2).

This proves that X1 is contained in the union of all sets E(i).
The converse inclusion is trivial.

(Am)=> (A1) TE (a4, ..y tmpags) e X T, let ag=max(ay,..., dmpsps)s
We have Cll.=/t§‘:’iu) for some fie Xpm, ieInmpirs—{iy), where 4’ is
defined as in (ii). By induction (By,...,fmts) € E(ji,--rjm) for a per-
mutation jy,...,jm ¢t a set A’ e Jmmir Let =1, fmis="Tim1s-
Then, by (i)-(ifi), (ay,...,amta+s) € By, 4. pim), Which proves that
Xﬁ',ilﬂ is contained in the union of all sets E(iy,...,im). The con-
verse inclusion is trivial.

%) The ordinals g1,...,fm+x are defined by (i) and (ii).
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(By). Let 4 eIigr, A==(7) € J1,1+k, and let P be a (i)-sef, i e.
the seb of all (ay,...,ax1) € XiTF such that wy=a,= constant (@, € X;)
Then P-E(i) is the set of all (ay,..,ax41) such that o=a, and
<L a, for j=1,...,k+1. Clearly, the power of this set is <, since
g <Rs.

(Bm Bm+1) Let A ES,,,.H mi4k and let P be a A- set

P=Y;x..X Ym+1+k,

where ¥;=(a;) if 7 ed, and ¥;=Xpyqs if- inon-e . .

The set @=P-B(iy, ..., im), WheTe iy,..;,%m i8 & permutation of 4,
is the seb of all (.., Gmisis) € Xmbit® suéh that (i), (i) and (iii)
are satistied and a=a; for i eA. We recall that the ordinals f;- are
uniquely determined by (i) since every ordinal <{a appears in the
sequence {uf} exactly once. Comsequently the ordinals gy where
4 eA—(i,) are uniquely determined by ordinals a; (ie) since a;= y(azu)
for i e A—(ig).

Let P'=YiX..X Ym+k, where Yi=(fy) for ied—(%), and
Yir=Xmir for § € Injapp—A. Clearly P’ is a A'-set in X"‘“ where
A" € Smmyr is the set of all integers +' such that 4 e Ad—(4).

Hence @ is the set of all elements (ay,...,@mt11r) Such that
(i) is satistied, and (By...,Bm+r) € P’ -B(4f,...,im): The last set is
of power <s; by the induction hypothesis (B.) since 4f,..,in is
a permutation of 4" Hence Q< i,.

Sufficiency. We shall prove the following two statements:

(C). In the case m=1, there is no decomposition of X+ )

(X =8.14) into (7‘*1'1)=k+1 sets H (i e Ints) such that

P-By<n for every (i)-set PCX'TE
" (D). If there is a decomposition of X™F* (Feg;yniq) into

1+ %
(m;],;_!_—:ll_ ) sets Ba (A e By, mi14x) such that

P-Ei<s, for every A-set PCX™™™ A e Spitimerts
then there is a decomposition of X' etk (X =Netm) into (m;; k)
sets Ea (A" € Jmmir) such that

(iv) P Ex <y, for every A'-set P'CXI™*, A" € Spmin-
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The assertions (C) and (D) imply that, for every positive
integer m, the decomposition (iv) of X g impossible whenever
Xy=%c1m. Consequently, the decomposition (iv) is also impossible
whenever Xg>Reim.

Proof of (C). Let X, be a subset of X with X,=g., and
let by e X, For every beX,, let P, be the (k4 1)-set® of all
(@5 %5,0) € X*™. - We have Pp-Bppy <. Therefore the pro-
jection '@ of all sets Pp-Egm Eyy (b e X,) on the ,,'hyperplane” Py, has
the power <(Rr,. Consequently, there is & point (a! ( <y 0%, by) € Pp,—Q.
The set I (the ,straight line”) of all points (al,...,al,#) (z ¢ X) has
the properties:

(v) the set M=L- Z' P5 has the power 8;

(V1) M-Egn=0.

By (vi), MCEgp+...+Eg. By (v), there is an integer i, el,
such that M -Eg=8;. Let P, be the (i)-set of all points
(g eeeyeps) € X such that 2,=a,. We have MEyy CPyEy
which contradicts the assumption that PyEgy < ..

Proof of (D). Let X,CX, X;=%um, and let P be the class
of all A-sets P=Y¥;X ...X ¥Tmrrx CX™ ' where ¥;=(a;)CX,
for i ed e Jnp1,myr (- €. m-+14+ k% non ed).

Clearly P=%:4m. Since PE < 8, for every A-set P, the
union § of all sets PE4, where A e Jni1mir and PP, has the
power <M. The projection of § on the (m-1+4k)-th axis of
coordinates also has the power <{N.im; therefore there is an
element ¢ ¢ X such that

HPE,=0 if Pe®, deSmptmen, P is a 4 -set,

where H is the set of all points?) (z,a), & € X”‘”H’.
Since H is the sum of all sets HP, where P is a/4-set e P (A fixed),
we obtain HFE, =0 for every A € Jnt1,mir Hence

H is contained in the union of all B4 such that

(vii) mF+-14-k e € Imit, mittk -

§) That is, Pp is a .A-set, where A= (k+1).
NI a=(x ,...,;rm+k)eX0'"+]‘, then (x,a) denotes the point

(@41 00y Tmtk, @) € xmtctl,
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For every A'eJmmir let Fa be the set of all ae X5t
such that (@,a).e B4, A=A'+(m+14+k). By (vii), XF™ iy the
union of all sets By, A’ € Jn,mix. We shall prove the property (iv).

Let A’ e Sm,m-i-ky A=/l’—l—(m—|—1+k) € Sm-{»l,m—l—l—}.—kl Let P'=
=Y{X ...X ¥nyz, where Yj=(a;) for jed’ be any A'-subset of
Xgtk and let P be the A-set of all points (..., Bmix,a) ¢ XTHTE
where a;=a; for jeA. We have PE;<8,. Since P'E, is the set
of all @ e X§H* such that (#,a) e PE4, we infer that P'Ba < 8.

Corollary 1. Let k be any positive integer. -The continuum
hypothesis is equivalent to the assertion that the (k- 2)-dimensional
E-+2

Euclidean space is the sum of ( 5 ) sets Eup®) such that the set

PEg, is finite for every k-dimensional hyperplane P perpendicular
to the i-th and j-th awes of coordinates.

Corollary 2. Let k be any positive integer. The continuum
hypothesis is equivalent to the assertion that the (k--1)-dimensional
Euclidean space is the sum of k-+1 sets B; (i=1,...,k+1) such that,
for every k-dimensional hyperplane P perpendicular to the i-th axis
of coordinates, the set PE; is at most denumerable.

In order to prove the above corollaries it ix sufficient to put
in the Theorem

=0 and m=2,
or: .
r=1 and m=1.

8) Here A=(i,)) e g 42, 1. €. (1,7) is a two-element subset of I4qa.
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The Space of Measures on a Given Set!).
By

J. H. Blau (Cambridge, Mass., U.S.A.).

This paper is an attempt at a systematic discussion of the
concept of weak convergence of measures. We shall introduce
a neighborhood topology in the set Mz of all measures on a given
set (or space) R, and discuss the relations between the properties
of R and the topology of My This topology specializes to weak
convergence under certain conditions. ‘

The space of measures. Let R he an abstract set with
a class of subsets called ,open—, satisfying, for the present, only

Axiom I: R is an open set.
A measure is a set function defined for all sets, satisfying:

) P(4)>0, (0)=0, BR) finite.

(2) ACB = ¢(4) <¢(B)

(3) 9(24) <f_z;¢<Ai)

(4) ¢(A)=LB ¢(0) for all open sets 0DA (Regularity).
(5) Open sets are (Carathéodory) measurable.

Definition: A unitary neighborhood O(gy,0,a) of a mea-
sure ¢, is the set of all measures ¢ for which @4(0)<@(0)+a and
|p(R)Y—go(R)|<<a, where O is open and a>0.

Any finite product of unitary neighborhoods of g, is called
a neighborhood of ¢,.

The measures on R thus constitute a topological space Mp.
Neighborhoods are open sets, but we shall not prove this.

1) Presented to the American Mathematical Society April 30, 1949. The
author is indebted to Professor Witold Hurewicz for.advice given during the
preparation of thiz paper. . .
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