A system which can define its own truth.
By
John Myhill (Philadelphia).

Tarskihas shown 1) that for a certain class of Iogicél systems S.
the following holds:

It is impossible to define in S the class of Godel-numbers of true
statements of S. :

The essence of his proof consists of the following version of
the }f.‘,pimenides. Let Fmle be the class of Goédel-numbers of
meaningful statements of §; then we can define the class of false
statements of § as follows

z eFols=x e Fmla - ~x ¢ True

where True is the class of Godel-numbers of true statements of S.

) Let ,Nom (y,2)“ say that y is the Godel-number of the numeral
designating @, and let ,Subst (2,5,2)« say that z is the Godel-number
of the result of writing the expression whose Goédel-number is y for
all free occurrences of ,v“ in the expression whose Godel-number
si @ Let n be the numeral designating the Godel-number of

Ep.1 (By) (Be) (Nom (y,v) - Subst (2,y,v) -2 ¢ Fals).
Then the formula
Ep.2 (Ey) (Bz) (Nom (y,n)-Subst (2,y,n) -z « Fals)

5ay8 ti..lat the result 'of writing n for all free occurrences of ,p* in
Bp. 1 is false. But this result is Ep. 2 itself; i. e. Ep. 2 affirms its
own falsehood, an evident contradiction 2).

1) A. Tarski, Pojeie prawdy w jezykach j
wama, 1955, y jezy nauk dedukcyjnych, War-
*) We have (By) (Ez) (Nom (y,n)- Subst (2 i
2 2 ,Y,1) 2 € Fals)==(Ep. 2 is true);
but by Tarski’s schema for truth (see Tarski, op. cit.), also (Ey) (Ez) (Nom (y,n).

Subst (2,y,n) 2 € Fals)=(Ep. 2 is true); th tradicti
g ); the contradiction follows by the theory
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It is obvious that this proof of Tarski’s depends upon &’s
containing a certain amount of conceptual apparatus; in particular
it depends upon s containing negation. The question has hitherto
remained undecided, whether any system, even without negation,
can define its own truth. The purpose of this paper is to answer
this question in the affirmative.

Résza Péter3) has constructed a number-theoretic function &
such that for every primitive recursive function f of two arguments
there is a number # such that

f(y,z)=¢(-’”,y;z)

for all y and 2. Further, it is evident from the definition of this
function that it is general recursive.

Let §, be a system consisting of the recursion equations for @
and everything which can be deduced from them by the use of
extensionality and substitution of constants for variables.

Let 8, be the class of all formulae of §; which contain no free
variables.

Let S, be a system consisting of all formulae of 8, and every-
thing which can be obtained from them by means of the rule:

From ,,...n_, where ,n¢ is a numeral, infer ,,(Ez)(...# )%
where ,,z is a variable not occurring in ,,...n __*

‘We shall show that Sy can define its own truth.

It is evident that S, is a system, i. e. that the class of Godel-
numbers of theorems of S, forms the range of values of a general
recursive function, say a. Further S,, and hence Sg, is clearly complete
and consigtent, in the sense that all true formulae expressible in the
notation of 8, and §;, and no others, are provable in §, and S
respectively. Hence the class of true statements of S, coincides
with the class of theorems of S,

Rosser 4) has shown that the range of values of every general
recursive function coincides with the range of values of some primitive

3) R. Péter, Konstruktion nichirekursiver Funktionen, Math. Ann., 111
(1935), pp. 42-60. ’

4) B. Rosser, Bxtensions of Some Theorems of Gédel and Church, Journal
of Symbolic Logie, 1, p. 88, Lemma I, Corollary 1.
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recursive function. Hence we may suppose o primitive recursive.

We have

@ 15 the Godel-number of a true statement of S;=(Ey) (w=a(y))
=(By) (e=p(y,0))
=(By) (v=2>(m,y,0))

for some primitive recursive § and for some m and this is clearly

expressible in §;; hence S; can define its own truth.
Q E.D.
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A Proof of the Completeness Theorem of Godel.
By

H. Rasiowa (Warszawa) and R. Sikorski (Warszawa).

In this paper we shall give a new proof of the following well-
known theorem of Godel?):

(*) If a formula « of the functional caleulus is valid in the
domain of positive integers, then a is provable.

Three ideas play an essential part in our proof: Mostowski’s
algebraic interpretation of a formula « as a functional the values
of which belong to a Boolean algebra; Lindenbaum’s construction
of a Boolean algebra from formulas of the functional calculus; and
a theorem on the existence of prime ideals in Boolean algebras,
the proof of which is topological and uses the well-known category
method.

1. The functional calculus. By the functional calculus
(of first order) we understand the system which can be briefly
described as follows:

The symbols of the system are: individual variables @y,s...;
functional variables Ff, F,... with k arguments (k=1,2,..); and
constants. The constants are: the negation sign ’, the disjunction
sign 4, the existential quantifier 3, and the brackets.

*k

F}‘(I&, -3 i8 2 (elementary) formula of this sj'stem; if cand g
are formulae, then a-t+f, ¢’ and ) a are also formulae.
3

1} K. Godel, Die Vollstindigheit der Axiome des logischen Funkiionen-
Kalkiils, Monatshefte fiir Mathematik und Physik 37 (1930), pp. 349-360. See
also D. Hilbert and P. Bernays, Grundlagen der Mathemalik, Band II,
Berlin 1939; and L. Henkin, The completeness of the first-order functional ealculus,
Journal of Symbholic Logic 14 (1949), pp. 159-166.
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