118 K. Menger.

and define a distance 6(w,y) for every two octogonally rational
numbers # and y of J such that z<<y. We seb 6(y,2)=d(w,y) and
d(m,)=0. If two octogonally rational numbers differ by less than
1/8n, their distances differ by less than 1,27 Hence it is easy to
axtend the definition of §(,y) to any two numbers # and y of &
The length of each end-to-end polygon is 1. The absolute length
of g is unhounded 7).

7) A slight modification of the above construction leads to an are having
the absolute length oo and the length 0. We divide the interval [0,1] into four
instead of eight equal parts and define the distances from 0 to , and from } to
3 to be £, and the distances from 1 to } and from 4 to 1 to be —1. Iteration of this
procedure leads to the indicated result.

Mr. Sheldon L. Levy pointed out that the original example (with divisions
into eight parts) can be simplified. It is sufficient to divide the interval [0,1]
into three equal parts and to define the distance from 0 to  as 3, the distance
from 4 to § as —f, and the distance from £ to 1 as . Iteration of thig procedure
eads to an arc whose absolute length is co and whose length is 1.

Iitinois Institute of Technology, Chicago.
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Group invariant continua.
By
A. D. Wallace (New Orleans, La., U.S.A).

1. We denote by X a compact (=Dbicompact) counected
Hausdorff space. Let Z be a group which is also a topological space.
It is not required that Z be a topological group. Let f be a map
(=continuous transformation) of Zx X into X. Writing Z multi-
plicatively it is assumed that -

f(e_,ob): o for each ® ¢ X, ¢ the neutral element
and .
1o, fle, @) =f(ez',2) for each v e X and 22" < Z.
On setting #(#)= f(z,#) 1t may easily be verified that z is
a homeomorphism of X onto X and that #* is the inverse of # as
a transformation. Accordingly we shall say (somewhat incorrectly}
that Z acts as a group of homeomorphisms on X.
It A is any subset of X we define Z(4) as the union of all the
sets #(4), # ¢ Z. Tt is an immediate consequence that

Z(A)=U 2(4d)=U Z(a).
z€Z agh

A subset A of X will be termed Z-inveriant if Z(4)=A or,
equivalently #(4)=4 for each z in Z. Clearly X is Z-invariant.
In this note we prove among other things the

Theorem. Leét X be metric and locally conmected. 1f Z is abebian
then there ewists o Z-invariant cyclic element. )

The first result of this character was proved by W. L. Ayres[1]
who assumed that Z was generated by 2 gingle map, i.e., that Z
wag eyelic. For other results of this type see [6], Chap. XII, and [5]
and the reference given here to G. E. Schweigert. In addition
to extending this result from the case in which 'Z is cyclic to the

cage in which Z is merely abelian we remove the restrictions that X
be metric and locally connected.


GUEST


120 A. D, Wallace:

We remark finally that this proposition may fail if Z is not
commutative. Let X be the closed unit interval and T the multipli-
cative group of all positive numbers. Let #(z)=a’. Also write
u(z)=1—x so that « is a reflection of X in its midpoint. If Z is
the group generated by « and T, one readily confirms the statement
that no point of X is fixed under every element of Z.

2. We first state

Theorem 1. If X is a compuct conmected Hausdorff space
and Z is an abelian group of homeomorphisms acting on X then there
is 6 Z-invariant subcontinuum of X having no cutpoint.

Sinee X is a Z-invariant continuum it follows from the maxi-
mality theorem of Hausdorff (see, e.g., [4]) that there exists
a collection G of subcontinua of X such that

(2) Each continuum in & is Z-invariant.

(b) For any pair K, K’ of elements of G either KCK’ or K'CK.

(e) If @, is any other collection of continuua satisfying (a)
and (b) and containing @ then G=4¢,.

If H is the intersection of all the elements of ¢ 1t may be
verified that H is a minimal Z-invariant subeontinuum of X. (See,
for example, [3], section 3, and references given there). Since we may
clearly regard Z 2s a group of homeomorphisms acting on H it
follows that Theorem 1 will hold provided we can prove

Theorem 2. If Z acis as an abelian group of homeomorphisms

on X and no proper subcontinuum of X. is Z-invariant, then X has
0o cutpoint.

In the course of the proof of this result considerable use will
be made of the following definitions and theorems, which constitute
an analog of Whyburn’s cyelic element theory- for non-geparable
spagces. Proofs, further results and references to the work of Ayres,
Kuratowski, Moore and others will be found in [3], section 2.
See also in this conneetion [6], Chap. IV.

... We recall first that X is a compact Hausdorst space and hence
§1ormav1‘ A chain iy & subcontinunm ¢ of X with the property that
if, a,b are distinet points of ¢ and no point separates @ from either
6 or b then # is in 0. If X is mefric and locally connected then ,,chain”
fmd ~A-get” are equivalent. The intersection of any fzmjily of chaing
i a c]'nain and the meet of a chain and a subcontinuum of X ik
« continwum. Alsoif B is a comporient of X-—u then RUw is a, chain,
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Further, if X—a==MUN, then MUz is a chain. Deviating slightly
from the terminology of [3], a set P is a prime chain if it is (a)
either a cutpoint or an endpoint or (b) a minimal non-degenerate
chain. If X is metric and locally connected then ,ecyclic element”
and ,prime chain” are equivalent. Two prime chains meeb, if a$
all, in a cutpoint of X. If a subcontinwum of X has no cutpoint
it lies in a prime chain. If p is neither an endpoint nor a cutpoing
it is contained in a non-degenerate prime chain of X.

8. Turning now to the proof of theorem 2 we assume that Z
iz an abelian group of homeomophisms acting on X, that no proper
subcontinuum of X is Z-invariant and that @, the set of all cutpoints
of X, is not empty. Leb p be some. deﬁnite.point of X—@ (see [3],
p. 491) which will be held fixed during-the ‘course of the proof.

Tor any two points a,beQ—p we write aRb if:b separates a
and p in X. By a standard type of argument we see ‘that

(R-1) aRe is false for every a.
(R-2) aRb implies that bR is false.
(R-3) aRb and bRe¢ imply aRe.

Let g € Q. If, for each ¢' € Q—g, we have neither qRg¢’ nor ¢'Rg
leb Qp=g. If not let @, be a subset of @ such that

(@-1) @y a € @0 Imply @R, O GoRs
(@4°2) Q, is maximal relative to (Q-1).

The existence of @, follows from the maximality principal
of Hausdorff cited earlier.

The proof is divided in two parts according as (Case I) @, l}a,s
only one point g, or a point g¢o-such that g,Eg holds for .each .pomt
in @, or (Case II) @, is non-degenerate and for each point ¢ in @,
there is a point ¢’ in @, such that g'Rg, holds. :

Oase T. There is a separation X—g,=UUV with peV and U
non-void. Suppose that U contains a point ¢ of @. We have, by
definition, gRg, It is then impossible that @, contain ,only' the
point g, But for each point ¢ of Qy—g, We would ha,vg qRq contrgry
to the fact that @, is maximal. Accordingly U gontams no cutpqmt
of X and we have QCVUg,=A. Since each 2 is 2 homeomorph%sm
it is clear that @ is Z-invariant. Thus QCz(A) for each z. Now A is &
.chain and consequently so is each set 2(4). ~Denote by 4—0 the mt‘ezj-
section of all the sets 2(A4). Since an arbitrary intersections of chains
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is a chain it follows that 4, is & chain and thus a continuun. But
clearly 4, is Z-invariant and a proper subcontinuum of X. This
is a contradiction.

Case IL For each ¢ in @, let L(g) be the set of all points ¢’ of ¢,
such that we have ¢'Rg. No set L(g) is empty.

If ¢, ¢ Q, and ¢",¢’ are in L(g,) then g" and ¢’ lie in the samc
component, C(gy), of X—g;. For we may assume that we have ¢''Rg’
by (Q@,-1), so that we have a separation i

*) X—q=WUS with ¢’ «W and pe¥.

Now ¢, must be in § since other wise we would have g Ry’
contrary to ¢'Rgqy, in view of (R-2). Also we have a separation

X—¢=UUV with ¢'eU and peV.

Now WUg' is a continuum containing ¢’ but not ¢, Thus
WU¢'CU. Hence ¢’ and ¢ lie in the same component of X —g,.
Hence C(g,)Ug is a chain, A(q), and L(q) is a subset of A(g,).

If ¢'Rg, holds with ¢,q €Q, then C(¢') e C{¢g;) and hence
A(g')CA(qy). For, there is a ¢ in @, with ¢”Rg’. With the notation
as in (¥) ¢” e WCO(g). But O(¢') is a connected subset of X—g¢”
containing ¢''. Hence C(g")CW.

Let 4 be the intersection of all the sets 4(g), ¢ e%. Suppose
that @ is an open set containing 4. Since X is compact and the
sets A(g) are non-empty, closed and ordered by inclugion A4 ix
nop-e.mpty and there exists therefore a set A(g)CG. Let ¢, ¢' be
points of Q, with ¢’Rg'Rg,. With the notation as in (*) we have
‘WUQ’CA(ql)CG’. Now W is open and its boundary F(W)=W —W
is exactly the point ¢'. Also it follows readily that 4 contains no
cuilapoi;ut of X and so is a non-degenerate prime chain or an end
point. We may indeed argue as follows. If 4 is a point it is certainly
an endpoint and so a prime chain containing no cutpoint of A
Nex!:, 4 contains no point of Q,. For let ¢, be such a point and ¢’
a point of @, for which we have ¢'Rg,. Then A(q')=0¢")U¢'CC.q,) V¢
But ¢ and ¢ are distinct and ¢, is not in C(g,). Hence ¢, 1; not in
fi(q'), a .contradjction. But this argument also shows that A is the
intersection of the sets C(q), geQ,. Hence any cutpoint ¢ in 4 is in
some seb C_(q’) with ¢’ in @, and it is clear that then we have qlig’
for each'q’ in @,. By (@-2) we then have ¢in Q,, & contradiction. Since
A.contamg no cutpoint of X and is a continuwum it is conmined i’n a
prime chain. But 4 is a chain and hence by definition a prime chaii.
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Sinee 4 is a continuum and X is irredueibly Z-invariant
there is a 2, in. Z such that 4 and £,(4) do not infersect. Moreover,
A and z(4) are prime chains and meet in at most a cutpoint of X.
Ag we have seen A contains no cutpoint of X and so the sets in
question are disjoint. It follows (rvecall that X is normal) that there
exists an open set & about 4 with the property that G and zy(@)=z2,()
have no point in common. There is then the neighborhood W of
A constructed above with ACWCGE and F(W)=¢'.

In applying Theorem I of [2] we observe that it is not necessary
to assume that the space be metrie, but merely that it be a compact
connected Hausdorff space. The existence of an irreducibly zy-in-
variant continuum may be shown using the Hausdorff maximality

_principal instead of separability. Accordingly there is at least oner

prime chain which is invariant under z,

Remark: 1Tp to this point the commutativity of Z has not
been used.

Let P be the union of all the prime chains invariant under .
If E is any one of these and z¢Z we have ze( By =22 Eg) = ¢(E)-
Thus #(E)CP and so Z(E)CP. It follows that Z(P)CP. Also, since Z
is a group, we have PCZ(P). Hence P is Z-invariart. Let € be the
smallest chain containing P. It follows quite readily that ' is
Z.invariant. Thus ¢ being a continuum we get C=X.

Let E be any #,invarient prime chain. Then F cannot lie
wholly in W since W and z,(W) are disjoint. Since ¢’ is a cutpoint
and E is connected E cannot contain points in both W and X—W.
Taus no such set meets W and hence PCX—W=8U¢g’ (notation
as in (¥)). But SU¢ is a chain containing P and so CCX—W. This
is a contradiction and so X has no cutpoint.

Tn virtue of Theorem 1 and the results on chains we may state

Theorem 8., If Z is an abelian group of homeomorphisms
acting on X then there exisis @ Z-inverient prime chain.

4. There are certain related problems of some interest. Is
Theorem 3 valid if ,abelian” is replaced by compact” or even
»eompact and totally disconnected”? It is perhaps of interest to
observe that no use was made of the topology in Z in any of the
above proof. If Z is cyelic and X locally connected it is known 51
that the existence of a Z-invariant endpoint implies the existence
of a second Z-invariant peint. Is this proposition valid if Leyclie’”
is replaced by .abelian” or compact”?
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. In the example given earlier the group I' is connected and
leaves only the endpoints invariant. But we have

Theorem 4, If Z is connected and X metric then every endpoint
and non-degenerate prime chain is invariant. '
' To-see this let p be a non-invariant endpoinb so that for ,some
= the points p and z(p) ave distinet. Then some point » separates p
and 2(p) in X. Bub Z( (p)=/(ZXp) s connected and so. containg .
Thus # is the image of p under & homeomorphism go that must
be both and endpoint and a cutpoint, an absurdity. Let P be a non-
invariant pnme chain containing more than one pomt Now P is a
continnum and no - point scpamtes any two points of P in X.
Accordingly P contains a non cutpoint, #, of X. But some point y
of X separates P—y and 2(P)—y and from an argument similay
to the ahove we see that # must be a cut point.
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Sur certains espaces abstraits.
Par

Jan G.-Mikusiidski (Wroctaw),

1. Soit 4 Vensemble des fonctions réelles f(w) finies sur un
ensemble donné @. On dira qu'une suite f,(x) (n=1,2,...) de fonc--
tions de A satisfait & la condition (K), lorsqu’il existe une fonction
g(m) € A, telle qu'on a sur G, quel que soit ¢ naturel,

(1) qlfm(®) —Ta(®)| <gl®) pour m et n suffisamment gra-nd5.

Pareillement, on dira que f,(z) satisfait 4 la condition (H'),
lorsque l'inégalité (1) a liea presque partout dans G.
Cela posé, on a les théorémes suivants:

Théoréme 1. Si Vensemble - se compose de toutes les fondtions
qui sont borndes sur chacun des ensembles @'une suite Gy (v=1,2,..}"
o0

telle que 2, G,= @, alors la condition (K) est nécessaire et suffisante

=1
pour que la suite fn(m) converge uniformément sur chacun des en~
sembles G,.

Théoréeme 2. 8i Vensemble A se-compose de fonctions continues:
dans un cnsemble ouvert G, la condition (K) est nécessaire et suffi-
samte pour que la suite fn(®) converge uwniformément dans Vintérieunr-
de @, ¢'est-G-dive uniformément sur tout compact contena Gans @

Théoréme 3. Si Vencemble A se compose de toutes les fonctions
mesurables (L) et finies sur un ensemble @ mesurable (L), la eondition
(K’) est nécessaire et suffisante pour que la suite f(2) converge presque
partout dans G.

Théoréme 4. Si Vensemble A se compose des fonctions p-som-
mables (p>0) sur un ensemble G, mesurable (L), la condition (K')
est mécessaire et suffisante pour gque la suite f.(x) converge presque
pariout dans G et que la suite des modules [falm)] soit. bornée presque:
partout par une fonelion p-sommable.
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