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6. Finally we have

Theorem 6. The hypotheses of Theorem 2 are satisfied whenever
f@) is @ fractional integral of positive non-zero order of a Lebesgue
integrable function.

Proof. Let us take f(») to be a fractional integral of order
a>0 of a function g(»). Choose p so that 1< p<<1/(1—a). Then
ple—1)>—1, and we have by (15)

27

fla—kt)—fl) = ‘/ " gl {Pelut t)—We(u)} du.

[

Therefore, if 1/p-+1/p'=1,

e+ t—Fe)P < (f [g(a—— )] dae )""‘"'f. |glr—1)] [P (14 1)— Vo) P du
] d

9

< B / |gle—10)| [Pl 2+ 1) — W) [P Aty
0

where B depends on g and p only. Hence

2 . 27
f [fa+t)—f@)p do < By [ |Palt+1)—Pa(u)lp du
0 0

< Bz iﬁ,

where §>0, by Lemma 3. It is now evident that the hypothesis (6)
of Theorem 2 is satisfied and the theorem is proved.
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Complete normality of cartesian products.
By
Miroslav Katétov (Praha).

All spaces we consider are Haunsdorff spaces.

Theorem 1, Let m be an infinite cardinal. Let P and @ be
spaces such that P X Q is completely normal?). Then either every subset
of Q with potency <m is closed or the pseudocharacter?) of every closed
subset of P is <.

Proof. Suppose there exists an MCQ with poteney <<m and a
be M—M. Let FCP have pseudocharacter >m. Let us put

A=F XM, B=(P—F)x(b).

Then ACF xQ, BCPX(b) whence 4 and B are separated.
Hence there cxists an open GDA such that GB=0. For each y e M
let @, denote the set of all # ¢ P such that (»,y) €@ Clearly ye M
implies G, open, G,DF. The potency of the family {¢,} being <m
we have [] G+F. Choose c¢]]G—F. For any ye M we have

M - .
then (c,'yy) ¢ ¢, whence (¢,b) « @ implying the contradiction GB=0.

1) A topological space is ealled completely normal if any two separated
gets 4, B (i. e. such that AB L AB=0) are contained in disjoint open sets.

Tt is easy to show that a topological space is completely normal if and
only if it is hereditarily normal, i. e. every subspace is normal.

2) Let S be a space, let MCS and let 9 be a family of neighborhoods of
the set 3. The collection 9l is said to be a complete family of neighborhoods of 3
if there exists, for any neighborhood H of the set M, a set 4e% such that
MCACH. The collection 9 is said to be a pseudocomplete family of neighborhoods
of M if the intersection of all 4 e is equal to .

The minimal potency of a complete (pseudocomplete) family of neigh-
borhoods of a set 3 in a space S is called the character (pseudocharacter) of M
in & and is denoted by x(IM) or more_explicitly by yo(M) (respectively, by
w(M) or pg(H)).
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Corollary 1. If P XQ is completely normal, then either coery
countable subset of @ is closed or P is perfecily mormal3).

Corollary 2. A compact (i. e. bicompact) space P is metrizable
if, and only if, the space P XP X P is complelely normal.

Proof. The necessity being evident suppose the condition
to hold true. If P is infinite, it contains a non-closed countable sub-
set. Hence theorem 1 says that the pseudocharacter of the ,diagonal”
D of PXP is countable. The characters in a compact space being
equal to pseudocharacters, there exists a countable basic system {H,}
of neighborhoods of D. For each n there exigt open sets G,,CP
(k=1,...,p,) such that

Pn
DCY G X G CH,.
k=1

It is easy to see that {Gn} is an open base of P so that P is
separable.

I do not know whether, for compact P, the complete normality
of PX P implies metrizability of P. In theorem 1, the hypothesis
of the existence of a non-closed subset of Q is essential, which' is
shown in the following

Example 1. Let P, have potency m >y, Let all points of P,
be-isolated with the exception of a single point co whose neigh-
borhoods are sets (oco) X @ with P,—@ finite. Then the pseudo-
character of oo equals m so that P, is not perfectly normal. Never-
theless we &hall show P, X P; t0.be completely normal. To this end

let us put :
Ay=(c0) X P, Ay =P; X (c0), Ay=P X Py— A, — 4,

We clearly have: if MC4,, NC4; (i=j or i%j) and if the
sets M, N are separated (in P; X P,), they can be separated by
open sets. Suppose now M, N to be two separated subsets of P, X P,.
There exist open sets Gy, Hy (1,7=1,2,3,) such that ’

GUDMAIJ HUDNAI: GI'J'HIYZO'

3) A space is caflled perfectly mormal if it is normal and every closed sub-
space i thif infersection of a countable number of open sets.
perfectly normal space is completely normal (cf. P. Ur i
A perfe y . P. sohn, Uber
die Michtigkeit der zusammenhiingenden Mengen, Math. Ann. 94 (1?;25))
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Putting

G"—'—;'];[Gii: HZ;{IHI'J'

we obtain §DM, HON, GH=0.

I do not know whether there exists a space P such that P X P
is completely normal, contains a non-closed countable set, and
is not perfectly normal.

Theorem 2. If all spaces Py X..XP, (n=1,2,...) are per-
oo

fectly normal, then the space P= P, is perfectly normal as well.
n=1

Proof. Let ACP be closed. Let s, denote the projection of P
onto Py X...XP, There exists a continuous function g,(y) on
P, X...X P, such that 0<{ga(y)<1 for all y and g.(y)=0 if, and
only if, ¥y em,(4). For z e P let us put

8

) <
fla)= Fn Fald).

3

Fn(@) = gn(Tal)),

Il
L

Clearly f(x) is a continuous function on P such that 0<{flz)<<1
for all & and flz)=0 for any wed. If @ e P—4, then, for a con-
venient m, we have ,(w)non em,(d), whence jn(z)>0 and
f(z) >0. Hence f(z)=0 if, and only if, e A. This proves the theorem
since, by a well known theorem of Urysohn, P is perfectly normal
if, and only if, there exists, for every closed ACP, a continuous
fonetion f such that f(z)=0 if, and only if, v ¢ 4.

Theorem 3. Let the spaces P, (n=1,2,...) contain more than

one point. The space P=P P, is completely norimal if, and only if,
=1
it is perfeetly normal.

Proof. Urysohn having shown every perfectly normal space
to be completely normal, let P be completely normal. We may
suppose P infinite so that it contains (the discontinuum of Cantor
and, therefore) a countable non-closed set. The same holds true
for any ‘:E P,. Applying now corollary 1 we see that the spaces
PIX...X_P,, are perfectly normal. By theorem 2, the same must
hold true for P.

Fundamenta Mathematicae, T. XXXV. - 18
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Theorem 4. The curtesian product of a countable number of
countable regular spaces is perfectly normal.
==
Proof. Let P='R P,, P, being countable and regular. The
=1
spaces Py X...> P, (n=1,2,...) are countable and regular, hence,
as shown by Urysohn, perfectly normal and it suffices to apply
theorem 2.
Example 2. 1f the spaces P, ... X P, are completely normal,
honcd
the space 2 P, need not be completely normal. Choosing P,=P;
=1
for all @, where P, denotes the space of example 1, we may easily
show (analogously as for P,x P, in example 1) that P, > .. v P,

oo

are completely normal. On the other hand, the space B P,, where
r=1

P,=Py, is not perfectly normal, for its subspace P, is not. Hence

R P, is not ecompletely normal by theorem 3.

n=1
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On Area and Length.
By

L. C. Young (Cape Town).

1. This paper is concerned with intrinsic definitions of area
and of length. Although the definitions are new, they are obtained
by combining ideas which are quite familiar to anyone working
in this field: the ideas of Banach [1, 2] which have been the basis
of researches on area for twenty years [2, 14, 11, 12] and which
consist in effect in introducing our intrinsic definitions in a special
case (the case of a surface situated in a plane); and the well-known
theory of measure of Carathéodory [5,8]. Moreover the old
definitions, based on simplicial approximations, have long been
regarded as unsatisfactory: examples of space-filling curves which
constitute surfaces of zero area though of positive volume have
been known for forty vears; the examples recently produced by
Begicovith [3, 4] are even more conclusive.

The value of a particular definition however, depends mainly
on its usefulness as a tool, and in this connection thé Lebesgue-
Fréchet definition of area has rendered great services. It has shown
itgelf quite satisfaetory for Lipschitzian surfaces (often misleadingly
termed .rectifiable”) and has led to important semi-continuity
theorems in the Calculus of Variations. Above all, it has had suffi-
cient depth to serve as background to Banach’s fundamental methods
already referred to.

The greater part of these results and methods remain when
we adopt instead the present intrinsic definibions. We show in par-
ticular that the definitions agree for Lipschitzian surfaces. Moreover
the new definitions are framed for the purpose of developing tools

which are needed as & preliminary to the study of »generalized

18*
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