On the functional equation f(& +y)=[(x) + f(y)-
: oy
H. Kestelman (London).

§ 1. If f(x) is a real function and satisfies

1) fw+y)=fx)+fy) for all real » and y,
and f(x) is measurable in some interval, then it is known that
2) fl@)=xf(1).

In a recent volume of Fundamenta ') two new proofs of
this were given, together with references to earlier proofs by Fré-
chet, Sierpinski, and Banach. We give another proof below,
which is quite elementary and assumes less than measurability
for flx

Theorem 1. Suppose f(x) is a real additive function (i. e. (1)
holds) and f(z) is bounded on a set B of positive measure. Then (2)
holds 2).

Proof: By a theorem of Steinhaus?), there is a positive
number 8 such that if |©|< 6, then & =z—y for suitable z, y in E,
and so, by (1), if M is the upper bound of |f| on H,

[10)|=fte—y) | = /(=)—1(y)| <2M;
hence, by (1)

(3) lo]<é/n  implies |f(o)|<<2M/n (n=1,2,...)-

Let £ be any real number; if r is rational and |r—é&|<<d/n,
we have by (1) and (3) for n=1,2,...

(&) — L) = [{(§—r)+ (r— (L)
which means f(&)=£&f(1).

| <@MA+[f(1)]8)/n,

1) A. AlexieWwicz et W. Orlicz, Fund. Math. 33 (1945), 314.
2) See .Addendum.
3) H. Steinhaus, Fund., Math. 1 (1920), 93.
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Corollary 1. If f(x) satisfies (1) and is measurable in some set
of positive measure, then (2) holds because the set of & for which )<
has positive measure if N is large enough.

Corollary 2. Every discontinuous solution of (1) is unbounded
on every set of positive interior measure.

§ 2. It may be appropriate to give an dementary proof of
Steinhaus’ theorem in the Buclidean space E,.

Theorem (Steinhaus). Let C be a closed bounded sel in R,
with |C|>0. Then a positive number & exists such that

(4) every veclor v in R, satisfying [v]<<d may be expressed as x—y
for suitable x, y in C.

Proof: Let: U be an open set covering ¢ and satisfying
JU—C|<<4|C], let & be the (positive) distance between the closed
sets ¢ and R,—U, and let » be any vector with o]<é. If €, is the
set of all z for which w+ ve C, we have to show CC,==0. Since |v]<< 6,
we have C,CU and so

[U—Co| =|U—0]<3{C];

hence the set of points of U which are not in ¢ or €, has measure
less than |C], which means |CC,| >0.

It will be noticed that the assumption in Theorem 1 that |B]> 0
was only made in order to justify the analogue of (4). It is not neces-
sary for the truth of (4) that |C|>0. For example, if ¢ is the set of
all real numbers in [0,1] which have decimal expansions (in scale 10)
which miss the integer 5, it is easy to prove that C is closed and
null. If now x=0,aa,... is any number in (0 1), it is the difference

“between two numbers in C, e.g.

p= 2 0,107 — 2 ¢, 107"
r=1

r=1

‘where b,=6 and ¢,=1 whenever a,=353, and b,=a, ¢,=0 if a.+35.

On the other hand, (4) is not always true if C'is null and perfect.
The set of all numbers in [0,1] which have decimal expansions (in
scale 10) which use only the integers 0 and 1 is perfect, but clearly
the difference between two such numbers can never be 5-(1077)
where n is an integer. It is easy to show (see § 3) that if B is a set °
in R, for which a sphere U exists such that U—EU is of first ca~
tegory, then (4) holds with B in place of C; such sets ¥ can be null.
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§ 3. The argument of Theorem 1 can obviously be applied fo
additive operations defined in normalised vector spaces. Let § be
such a space; if ECS and there is a positive number ¢ such that
every point » of § with |Jo|<C§ can be expressed as v=o—y where »
and y belong to E, we shall write Fed (the ,set of distances” of B
contains a full sphere).

Theorem 2. Let U(x) be an additive opergtion with domain
and contradomain 8, and S, respectively, both normalised vector spaces.
Suppose U(z) is bounded on a set B and EeS. Then U(z) is homoge-
neous, i.e. Ultw)=tU(z) for all real i. ’

Proof: U(x) being additive, U(ra)=rU(x) whenever » is ra-
tional, and it follows easily that r may be replaced by ¢ if U(w) is
continuous at the null element of 8;. Let M be the upper bound
of |U(z)|| on E. By hypothesis, there is a positive number § such
that if @] <4, then 6 =z—y for suitable # and y in E, and so

0@ =T (e—y)|=[U(z)—T )< 2.
It now follows from the additive property of U(x) that
lel<ém implies [T <2Mn  (n=12,..),
and this shows that U(z) is continuous at the null element of §,.

Corollary: If f(x) is a vecior in R,, defined for all vectors
in Rm, and if each of the coordinaie axves of R, contains a linear & set
(e. g. a sel of positive measure) on which f(x) is bounded, then the
solution of the functional equation fx-+y)=f(z)+ f(y) is

f((tntzy ey tm)) :ré’ltrlr

where Ayy...,An are arbitrary constant vectors in R,.

Corollary: If Ulz) is an additive operation defined for all

complex numbers 2( =c-1it) and ||U(2)| is bounded on two linear & sets,

one on the real axis and one on the imaginary agis, then
Ulo+iz)y=aU(1)+7U3).

If the space S is complete, then any set E for which a sphere U
exists such that U—EU is of the first category is an & set. To see
this, let ¢ be the radius of U and let ¥ be a concentric sphere of
rading §¢. Plainly VE is of the second category (¥ being complete),
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whereas the set of all » satisfying #+v e U—EU is of the first ca-
tegory, » being any chosen vector with [»|<}e. Hence T'E includes
points £ such that &+ve U—ETU; but &4vel, since [oj<ip
and &e¥; hence é+-ve E, and this completes the proof.

Addendum. The result of Theorem 1 is not new; I am grateful
to the Editors for peinting this out by referring me to a paper by
A. Ostrowski, Jahresberichte d. Deutscher Maihematiker Vereinigung
(38) 1929, p. 56, in which the linearity of f{zx) is shown to follow
from (1) and the slightly weaker assumption that f(x) is bounded
above on some set of positive measure. Ostrowski’s proof is however
different from that given above; his slightly better vesult may be
derived in the manner of Theorem 1 as follows.

Suppose f(x) real and additive and that f{z)<<M<co ona set B
of positive measure: we deduce that f(z) is bounded in some interval.
Since mE>0, there must be a number a and a positive number 7
such that if By =E(a—7n,a) and E,=E(u,a-5), then mE, and mE,
both exceed }#. Plainly E, and the reflection of E, in a (i. e. the
set of y satisfying (2a—y) ¢ E,) have in common a set £; with mE;>0.
By Theorem 2, there is a positive number ¢ such that if |@]<4, then
@=g—y for suitable z and y in E;; since @ =+ 2a—y—=2a and
2a—1) € By, we have by (1) f(@)<2M—f(2a). Bince —f(@) =f—0),
it follows that f(@) is bounded for |@]<d. :
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