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Enfin, si b et si aucune des suites a et b n’est segment de

’autre, posons:
ha,b)=1.

La fonetion h(a,b) est évidemment un écart dans H, qui devient
ainsi un espace semi-métrique.

Soit maintenant G un espace semi-métrique quelconque de
puissance m. Nous pouvons done poser G:{p§}5<w1. Soit g(py, pe)
Pécart dans G. Posons:

(45) 1(n,8)=9(pmp5)

¢’est donc un écart dans P’ensemble de tous les nombres ordinaux
<< Wz
’ Nous définirons maintenant une suite transfinie {a;};., de
nombres ordinaux <. comme il suit. Soit 2 un nombre ‘ordrinal
donné, 1< w,. D’aprés la définition de Pensemble @, et vu que
@, est formé de fonctions 1} o0 << wy gy, il existe un nombre ordi-
nal a;< D) tel qu’on a les formules (34). On aura donc pour tout
nombre ordinal 1< w, les formules (8) et (9). La suite (finie ou trans-
finie) {ag}ecs est done, pour tout A< w., un point de H: désignons-le
par ¢, et posons @={ Uico,

Soient maintenant p et v>p deux nombres ordinaux < .
On a done ¢,={a}, ., et g={al,, D'aprés la définition de la
fonc’uipn h, on a done h(qy,qv)zfz (u,v), done, d’apres (34) (vu
que p<<v): ° ’

pour n<w; et {<w:

N . h(Q”’Qu)zf(ﬂ,v)l
done, d’aprés (45):

Ma,,8,)=9(p, P,)

ce qui prouve que les ensembles @ et G sont congruents.

- Ilespace semi-métrique H est par conséquent un espace uni-
versel de puissance m, et il est ainsi établi qu’on peut remplacer
dans le théoréme 1 le mot ,métrique* par le mot ,,semi-métrique”.
Pour démontrer qu’on peut le faire aussi dans le théoréme 2, il ne
faut que répéter la démonstration du théoréme 2, en y remplacant
partout le mot ,distance” par ,écart”. Or, les théorémes 3, 4 et 5
modifiés résultent tout de suite des théorémes 1 et 2 modifiés.

Le théoréme 6 est ainsi démontré.

PoUr p< ¥<< sy
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Axiom of choice for finite sets.
By
Andrzej Mostowski (Krakéw)

Accordingly to N. Lusin two cardinal numbers m and n may
serve to a characterisation of every case in which we are using the
axiom of choice. If we apply this axiom to the class K of (mutually
digjoint) sets, then m denotes the cardinal number of K and n is
the least cardinal number surpassing the cardinal numbers of all
elements of K1). :

In the present paper I shall study particular cases of the axiom
of ‘choice which arise by giving n a finite value, whereas m is left
arbitrary. The problem will consist on the study of mutual depen-
dence or independence between these particular cases of the axiom.

In order to formulate this problem more precisely I shall
consider the following proposition:

[n] For every class K of sets with n elements there is a fundion g
(the ,choice-function® for K ) defined for all X from K and such
that Og(X)eX?).

Z={n,,M,,...,n;} being any finite set of positive integers, we
denote by [Z] the logical product of % propositions [n,], (9], vy [Pl

Our problem is now this: » being a positive integer and Z
& finite set of such integers, what are the necessary and sufficient
conditions under which the implication [Z] —[n] holds true?

1) See W. Sierpifiski, Zarys teorji mnogodci (4An outline of set-theory,
polish), 34 edition, 1928, p. 112.

2) This proposition may be called .the principle of choice for sets of
power n“. It is equivalent with the following proposition (,the axiom of choice
for sets of power n*): For every class K of disjoint sets with n elements there is
a set ¥ such that the product X: Y has exactly one element for any X ¢ K.

Proof of equivalency is exactly the same as proof of equivaleney of the-
principle of choice and the axiom of choice in general case. See e. g. W. Sier
pinski, loc. cit., p. 141.
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As T did not success to find a full solution, I shall give here
only a sufficient condition and another (apparently weaker) ne-
cessary condition. In the final section I shall treat some particular
cases for which the necessary condition becomes sufficient and
yields thus the complete answer for the question.

My methods of proofs are chiefly based on group-theoretical
concepts introduced to investigations of the above type by
Fraenkel?). ' :

In order to demonstrate the applicability of these methods, I ghall sketeh.
a proof of the implication [2] — [4].

Let us consider a set with 4 elements 4 = {al,az,a,,,%}, and let 4* be
the set whose elements are all unordered pairs which can be built up of the.
elements of A:

S sv{{av Ao}y {0y, Qa), {0y, @}, {n, @)y {Bg. a4}, {03, a‘}}.

! The ‘proposition [2] implies the existence of a choice-function @ for the
class A*. Hence @ ({zx,y}) is one of the elements # or y for z,y ¢ A. Let n; be
the number of those pairs {w,y}e 4* for which @ ({z,y})=a,, We have then
.+ Mg + M3 + 1y = 6, which proves that numbers #,, n,, n; and n, cannot be
identical. Suppose that n, is the smallest of them, and. let B Dbe the set of
those a; for which n;=mn,. B has at least one and at most three elements.

If B has one element, let ¥ (A) be its unique element. If B has three elements,’

let W(A) be the unique element of 4-—B. If B has two elements, let ¥ (4 )=D(B).
Hence ¥(A4)ed, and we have a rule which permits to select a particular ele-
ment from 4.

We see that a,,a,,a; and a, are indiscernible in 4 or 4*: No permutation
of ay,a,,a3,¢, changes 4 nor A* This is-not true for sets built up’ with the
help of the choice function @, and the asymmetry carried by this function
enables us the choice of an element of A.

No such asymmetry. would be introduced if ¢ were a choice-function for.

a class of sets of the power 3. This is the basis of the proof that the implication
[31514] does not hoid.

The above proof of the implication [2] - [4] was given by Tarski.

I shall use the current notation of group-theory. S, will denote
the symmetric group of degree n (i. e., the group of all permutations
of numbers 1,2,...,n). A subgroup @ of §, will be said to have no
flxpomts, if for any i<{n there is a ¢ e @ such that @(4)==4. The
index of the subgroup H of any group G will be denoted by
Ind (G/H).

%) A. Fraenkel, Journal of Symbolic Logic,.2, 1937, pp. 1-25.
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- § 1. Sufticient conditions.
We shall need some auxiliary definitions and theorems.

1. Definition 1. A set A is said to be normdl, if there are
in A no such X and Y that for some Ty;To...; Tp .
1) o XeTieTye eThe Y.
(p may be =0; (1) says then that X e ¥)*).
-Lemma 1. If A is any set, then:
either (1) there is ewacily one element be A such that for SOME Gy CoyennyCp
(p=20) every a e A—{b} satisfies a eciecre... 6Cp€b
or (i) the class -A* of all differences A— {a} where a runs over A
s normal. . . -

- Proof. Suppose that 4* is not normal, i.e., that there are
a,b e A such that for seme T, Ts, ;T

(1) A— {b}eT;eTzs..eTpeA {a}.

Let us first eonsuier the case p>0. If T, were dﬂerent from b,
we would have T, e 4 — {5}, and (1) would give an impossible relatlon

A—{bYe T Tye - Ty eAVV— {b}. ‘

Thus T,=>b and (1) shows that putting e;=A4— {8} and cpa=1T,
(i=1,2,...,p—1), we have for every a e 4—{b}

[ @.€C €CyE... ECpeD.

Hence there is at least one b .4 for which (i) holds. If there
were twoy say by and by, we would have by e. A —{by}, ba€ A —{bs},
and (i) would give

.

bleclecge. €Cpeby, -Dbreciechie...eCoeby -

against the so called axiom of foundation 3).

I p=0, (1) gives A—{b} e A—{a}. It follows that A — {b}="0,
because otherwise we would have 4 — {b} e A—{b}. Thus aed for
every aeA—{b}. The end of the proof is ‘the same as above.

From this lemma we easily obtain the following

1) It follows from this definition that every set whose elements are not
sets iz nmormal.
5) This axiom states. that there is N0 sequence ;,%,... of sets such that

Tptexy for n=12,... See, e. g.,;"E. Zermelo, Fund. Math. 16, 1930, p. 31,


GUEST


140 "~ A. Mostowski?

Lemma 2. If there is a choice function for every class of normal
sets with n elements, then [n] is true.

Proof. Let K be an arbitrary class of sets of the power .
Divide K in two parts K, and K, including to K, those 4 ¢ K
for which the alternative (i) of lemma 1 holds and to K, the re-
maining A’s. Lemma 1 enables us to distinguish a particular ele-
ment b in any set of the class K. The principle of choice is thus
true for this class.

For every A ¢ K, the class A* of all differences 4 — {a} where
@ runs over A is a normal set with n elements. Accordingly. to our
supposition we may distinguish a particular element ¥ (A4*) of this
class. Denoting by ®(4) the unique element of 4 —¥(A4*), we have
®(4) ¢ A, what proves that @ is a choice-function for the class K,.

Thus there are choice-functions for classes K, and K,, and

consequently there is such a function for their sam, i. e., for the
clags K, q.e.d.

2. For every set X denote by

P(X) the class of all subsets
of X and put ‘

Py X)=X, Pupi(X)=P (fg, Py(X)),
0(X)=Py(X) + Py(X)+ Py(X) + ...
The elements of O(X) will be called objects with the base X.

It TePyi(X) —EP,,(X we shall say that T is of degree ¢g-1;
if T e Py(X), we say that the degree of T is 0.

Lemma 3. If T is an object with the base X of degree q+1,
and U e T, then UeO(X) and the degree of U is <q.

Proof follows immediately from/definitions.

Lemmea 4. If X is o normal set and T e X, then no element
of T belongs to O(X).

Proof. An easy induction shows tham if U is an object with
the base X of degree ¢>0, there are r<g¢ elements Vi Vayooty Ve

such ‘that V¥, e¢X and V, eVye.. sV,e U. Hence, if U were an
element of T, we would have

VieVoe...eV,eUeT, VieX and TeX,

which is impossible, because X is a normal set. If U were of degree 0,
we. would have -U ¢ T-and U ¢ X, T e X, which is again impossible.
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‘Two above lemmas enable us to characterize the objects with
the normal base in the following way:
(i) Objects of degree 0. are identical with the elements of X;
(ii) Objects of degree g-+1 are identical with sets of the objects
of degree less than ¢+ 1, one at least of these objects having
exactly the degree ¢ ¢). :
- Bagy proofs of these assumptions may be omitted here.

The characterisation given in (i) and (i) is more preferable
than the primitive one, because it makes possible proofs and defi-
nitions by induetion. Indeed, from (i) and. (ii) ) follows that in order
to prove that every object-with a normal base X has a given pro-
perty P it is sufficient to show that 1° every element of X hasg this }
property and 29 if all elements of a seb A have the property P,
then A has this property too. Analogous remalks app]v to defi-
nitions by induction.

"It is well to note that (11) ls, in general false for objects Wlth
a non normal base 7).

3. The set. {1,2,..,m} of first n. integers will, for brevity, be
denoted by (n). 4 a,nd B being any two sets of the same power,
we denote by 4 =B the clags of all one to one mappings of A on B.
Tf A has % elements (n finite), then 42 A is the group of all per-
mutations of 4, and is isomorph with 8,=(n)Z(n). (n)24 is the
class of ‘all ome fo ‘one functions defined on (n) and taking on values
from A. I shall use letters f,g,h,... to denote functions of the
cIaBS'AZA and letters ¢,u,7%,... to denote functions of the class.
n) = (n).

w Let A and B be two normal sets of the same power and f
a function of the.class A7 B. For any object X with the ba.se A
I shall define its image f(X) by induction on X:
(i) if X e A, f(X) denotes the value of f for the argument X
(ii)-if /(¥ )is defined for any element Y of X,then f(X E [YeX], ie.-

the set of all f(¥) such that ¥ e X.
It follows easy tha.t ‘f(X) is an objeet with the base B.ﬁ

8) Our ,objects of degree ¢* form the same ag the q“' Jayer (,Schicht“y
considered by Zermelo, loc. cit. 9), p. 36. The difference is only this, that we
do not suppose that the lowest layer is built up from elements which are ot sets.

7) Example: X={a,b,{a,b}}. The degree of {a,b} is 0 though it is a set
of two objects of degree 0. B
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By induction we show that, if 4, B and C are normal sets
of the same power, and if fe A2 B, ge B2 C and X ¢0(4), then

1 {9(X)) = 79(X); FHHX) = X; Ux)=X8).°

It follows at once from these formulas that the set of all
functions fe A2 A4 for which f(X)=X, is a group. This group will
be called the symmetry group of X and denoted by G(X).

Lemma 5. If A is a normal set and X, Y two objects with the
base A, then the symmetry group of the ordered pair <X, Y 9) is con-
tained in G(X) and G(Y).

Proof. If fe 4 2 4, then f(<X,Y)) = {f(X), /{X)>. Hence, if
KX, YD) =<X,Y>, we must have f{(X)=X and /(¥)=1, i.e,
f belongs to G(X) and G(Y).

Lemma 6. If A and B are two normal sets of the same power,
X e0(4) and ¢ ¢ A 2B, then the symmelry group of (X) is pQ(X)p1.

This follows from equivalences:

fetlo@)) =lto(X) =9 (D)} = (p-1e(D)=X) =
={pfp e G(X)) = {f ep@G(X)p~1}.

4. Let 4 be any normal set and ¢ an element of A. The sym-
ametry group of the object {4,a> has of course a fixpoint a. Thus,
if we are able to chooge an element from a normal set 4, we can
-also construct an object X with the base 4 whose symmetry group

has at least one fixpoint. We shall now show that for finite A the
«converse theorem is true:

. Lemma 7. There is a function 6(4,X) defined for jinite normal
seis A and X ¢ O(4A) such that if the symmetry group of X has fin-
points, then O(4,X) belongs to A.

Proof. Suppose that A has n elements. The set 0((%)) of
©objects with the base (n) may, of course, be well ordered. Let
{1) By, By, By, ...
be a sequence formed of all elements of O ((n)).

8) fg denotes the composed function fg(z)= j(g(w)); #~! is the function
inverse to f, and 1 the identical function 1(z)=u=.

] °) The ordered pair (4,B) is detined as {{4}, {4,B}}. Generally, we denote
by <(4;,4,,..., 45> the ordered k-tuplet defined by induction on % as follows:

<Ay Agyeens A = {Ayy KAy Ay ooy A D
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If X e0(4) and G(X) has no fixpoints, we may define 6(4,X)
quite arbitrary (e.g. O(4,X)=A4). Suppose now that G(X, has
fixpoints and let AT be their set. .

Consider the images g—%(X) where ¢ € (n) 2 A. Since they are
objects with the base (n), they must occur in the sequence (1). Let B;
be the first term of (1) of the form ¢—'(X) where ¢ ¢ (n) 2 4, and
let E(A) be the class of all ge(n)Z A sueh that ¢ 1(X)=B, If
@9 € B(4), then 7 }(X)=B;=y~'(X) and therefore pp—(X)=X,i.e.,
pp~—! belongs to the symmetry group of X, which proves that
g~ (a)=a or p~'(a)=yp(a) for any a e AT, We thus see that to
every fixpoint a e AT corresponds an integer n(a, A)=¢—'(a) where ¢
is any function of E(A), and that this integer do not depend of the
particular choice of the function g. Now define 6(4,X) as this ele-
ment a of A" for which n(a,4) has the least possible value.

6(4,X) is thus defined for every X ¢ O(4) and it fulfills the
condition 6(4,X) ¢ A for all X such that G(X) has fixpoints.

5. In light of the foregoing theorem the problem of choice
of an element from a finite normal set 4 reduces to the following:
It is to construct a function ((X) defined for all X ¢ O(4) and such
‘fhat if the symmetry group of X has no fixpoints, then Q(X) is an
object with the base 4 and the symmetry group of (}X) is a pro-
per subgroup of G(X).

Suppose, indeed, that such a funetion (O has been found. We
may then choose an element of A in the following way: consider
‘the sequence :

4, Q4), Q(4)=Q(4), Q(QX4))=Qx4), .

Since the symmetry group of Q%(A4) is a proper subgroup
of G((Q*(4)) (under the supposition that G(Q"(A)) hag no fixpoints)
and since the number of all possible symmetry groups is finite,
there must be a number % such that the symmetry group of (J*(4)
has at least one fixpoint. Putting a,=9(A,O"(X)) we obtain an
element of A.

In order to prove that (under suitable conditions)
a function Q exists, we shall introduce still one new concept:

such

. 6. Definition 2. Let A be a normal set, G a subgroup of A 2 A
and X am object with the base A. We denote by Re(X) the class of all
objects of the form f(X) where | runs over G: RG(X)=KZ§) [f e G1.
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- Lemma 8. If the.symmeiry group of X is a subgroup H of G, then:

(i) Re(X) has Ind (G/H) elements;

(ii) the symmeiry group of Re(X) is G

Proof. (i) Let
G=H+H+fH+..

be a decomposmmn of ‘@ in co-sets with respect to H. We let cor-
respond to a co-set fH the element f(X) of Rg(X). This element
depends of the co-set fH as a whole and not of the particular choice
of f, because for h ¢ H we have fh(X):f(h(X))zj(X).

To every co-set is thus attributed an element of Eq(X), and
it is easy to see that every element of Rs(X) is attributed to one
of the co-sets. This correspondence is in addition one to one, be-
cause f(X)=g(X) yields g—1f(X)=2X, i.e., g~'f e H or f egH. The
cardinal number of Re(X) is hence the game ag the number of co-sets.

(ii) ¢ (RG(X)) is the set of all objects of the form gf(X)
where f runs over G- If g e @, the conditions fe G and gf e G say
the same and g(Re(X)) = RE¢(X). If, conversely, g is such that

(RG(X)) ¢(X), then g(X) must be contained in Rg(X), i. e., there
must be a fe@ such that g(X)==f(X). It follows f'g(X)=2ZX,
ie., flge H or gefH. Since fH i§ contained in &, we obtain fi-
nally g e G. Hence G is the symmetry group of Re(X).

7. Defimition 3. We shall say that a positive integer n and o fi-
nite set of such integers Z satisfy the condition (D) if every subgroup G
of 8. without fixpoints contains & subgroup _H such that there is a fi-
nite number 7 of (not necessarily dufferent) proper subgroups Ky Kyyory K
of H sugh that the sum

Ind (H/K,)+Ind (H/Kz)
belongs to the set Z.

Using this definition we shall prove the following lemmsa
concerning. the existence of the function () mentioned at the be-
ginning of section b: .

...—i— Ind (H/K,)

Lemma 9. Let a positive integer n and a finite set of such
integers Z={Ny,Ny,...,nz} satisfy the condition (D), and suppose that
the proposition [Z] holds true. Let &K be a class. of normal sets of the
power n. Under these suppositions there is a function Qg (4,X) defined
for A ¢ K and X e O(4), and such that if the symmetry group -G(X)
of X has mo ﬂa:pomts, Qg(4,X) is an object with the base 4 whose
symanetry “group’ is a proper subgroup of G(X). )
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Proof. Suppose that 4 e K and X ¢ O(4). If G(X) has at least
one fixpoint, we may define’(Q (4, X) as we please, e. g. Qg (4,X)=4.
Suppose now that G(X) has no fixpoints.
(a, Let
1) LT VY YRS

be a (finite) sequence formed of all subgroups of S, and let [(4,X)
be the first term of this sequence which has the form ¢—'G(X)g
with g e(n) > A. Let E(4,X) be the subset of (n) 2 A containing
all ¢’s for which

' @(X)p=T(4,X).

The group [(4,X) does not possess fixpoints, because the
group G(X)=¢l(4,X)p1, where ¢ ¢ E(4,X), has none. In virtue of
the condition (D) there is a group XC/l(4,X) and a finite num-
ber r of (not necessarily different) proper subgroups K, K,..., K-
of X such that the sum

Ind (X/Ky)-+Ind (X/Ky) + ...

belongs to the set Z.

If there are many groups X,Ky,K,,...,K; with this property,
we choose them so that » has the least possible value and further
that the groups X,Kj,Kj,...,Kr occur as early as possible in the
sequence (1).

The number » and groups X,Kji, K, ..., Kr being thus defined
uniquely by 4 and X, we shall denote them by r(4,X) and
X(4,X), K (4,X), Kz(-A X) - K (4, X).

Putting for i=1 :r(A X)

+ Ind (X/K)

hi(4,X) = Ind (X(4, X) /| Ki(4, X))
and

q(4, X) = hy(4, X)F hy(4, X) + ... + hopa,00(4, X),

we follow that g(4,X) is one of the numbers 7y,n,...
form the set Z.

(B) Let Gn (m=1,2,...) be defined in the following way:
0= (n)={1,2,....n}, Co={0p, Ca={Ca}, «+ s Cmp1={Cn}y ..+,

The symmetry group of Oy, is the whole S,.
I put for ¢=1,2,...,7(4, X):

“1:<<1: 2, -“7n>7 01’>’ Di(A;X) =RKi(_A,X)(“i)'

Fundamenta Mathematicae. T. XXXIII. 10

,7 which
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For every ¢ e B(4,X) I put further

B4, X,p) =9 (Dd4, X)), Ti(4, X,9)=Byx(a,x)p1 (Bil4; X,9)),

r{4,X)
S(4,X,p)= 5 Tid,X,9), M(4,X,¢0)=Rex(84,X,0)-
=1

a; is an object with the base (n) with the unit group as the
symmetry group. Accordingly to lemma 8 (ii) D4, X) has K(4,X)
as its symmetry group. Using lemma 6 we follow that th.e Symm?,try
group of Bi(4,X,¢) is pK{4,X)p~1. Since this group is contained
in pX(4,X)p™, we follow from lemma 8 (ii) that the symmetry
group of Ty(4,X,p)is ¢X(4,X)p~" and further that T'(4,X,p) has

Tnd (pX(4, X)g~t{g K4, X)) = Tnd (X(4, X)/K(4, X)) = (4, X)

elements. o
‘We now show that sets T;(4,X,) and Ty(4,X,q) are disjoint,
it ¢==j. Indeed, any element of T:(4,X,p) has a form

w0 (B4, X,9)) = w3 (Dl 4, X)) = gz (Di( 4, )

where y e X(4,X). If T(4,X,¢) and T)(4,X,p) were not disjoint,
there would be in X(4,X) such x, and g, that Wl(Di(A,X)) =
= p1(Dy(4, X)), iy 12 DilA, X)) = 75(Dy(4, X)) or 777, (D (A, X)) =
=D;(4,X). Since a;e D{4,X), it wouldfollow that z;'z,(a) eDj(A,X?,
ie, x4 (a)=={a) where xe KJ.(A,X). Remembering the dgfx-
nition of @; we would thus obtain ;;;19_5_1('0’9’:%( GJ.) or O’I,:Gj, which
is of course impossible. ) ‘ o

Hence T,(4,X,p) and T;(4,X,p) are, in fact, disjoint.

8(4, X,p) has consequently

Ty (4, X) + hy(4, X) + ... + hran (4, X) = ¢(4, X)

elements and the symmetry group of S(4,X,p) is ¢X(4,X)p~L
Since this group is contained in ¢l (4,X)p~! = G (X), it follows by
lemma 8 (ii) that M (4, X,p) has the whole group G(X) as its sym-
metry group. Every element of M(4,X,¢) has!q(4,X) elements,
because it has the form f(8(4, X,p)) where f e G(X).

(y) We saw above that for every ¢e¢E(4,X) and every
AeXK and X e¢O0(4), it G(X) has no fixpoints, then M(4,X,q)is a
class of sets of the power ¢(4,X) where g(4,X) is one of the num-
bers n; (i=1,2,...,,k).
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Let [T; be the class of such pairs 4, X> that 4 e K, X ¢ O(4),
G{(X) hasno fixpoints and g¢(4,X)=n; and let us consider the sum

Q= > > M4,Xy).

(A, Xelli peBE(A,X)

Qi is a class of sets of the power n,. Since n;¢Z and the pro-
position [Z] is true by our hypothesis, we follow that there is
a function @; defined for ¥V ¢ @, and such that @(V)eV.

It follows that [Z] implies the existence of a choice-func-
tion @ for the class @ =Q,+Qy+... - Q. We put namely for
Vv EQ:’—(Q1+ @t ...+ Qi)

P(V)=®(V)

and obtain a choice-funection for the whole class Q.
It is well to remark that we do not use here the axiom of
choice, since the number % of different @; is finite.

(6) We now give the definition of Og(4,X) for 4 ¢ K, X e0(4)
under the supposition that G(X) has no fixpoints.

Let N(4,X,p) be the class of all pairs <V,®(V)>  where
VeM(A,X,p) and g e E(4,X) and let P(4,X) be the class of all
pairs {M(4,X,p), N(4,X,p)> where ¢ runs over E(4,X). Finally
we put

Y= QK(-Aa X)=<P(4,X), X.

The construction of the function Qg being thus finished, it
remains to show that the symmetry group of ¥ is a proper sub
group -of G(X). ‘

Let Ae¢ K, Xe0(4) and let us suppose that G(X) has no
fixpoints. 4 and X being fixed for all what follows, we shall omit
them in our notations and write e. g. S(p) instead of §(4,X,¢).

,,

(¢) Lemma 5 shows, for the first, that the symmetry group
of Y is contained in G(X).

Let ¢ be an element of E. Since S(p)e M(p), the pair
{S(g), ¢(S(zp))> oceurs in N(p) and ¢(S(q:)) e S(p). It follows by
the definition of S§(¢) that there is a number i<{n such that
®(S(p)) € Tilg), i.e., ®(S(p)) has the form iy~ (Bdp)) =gx(D))
where y e K;. The symmetry group of ¢(S(<p)) is therefore gy Kiy—'g—!
since G(D;) =K; (compare lemma 6). The group K; being a proper

10*
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subgroup of X, we follow that xK; 41 is a proper subgroup of
y Xy =X and ¢gKiyp~! is a proper subgroup of ¢ Xp—1. Con-
sequently there is a function f which belongs to pXp~' and does
not belong to gxKiz—lp~.

We shall show that f does not occur in the symmetry group
of ¥ which will prove that G(¥)=6G(X) (since ¢ X¢~!C G(X)).

(n) From the definition of § we obtain
@) Hle(8()) + @(8e)),  1{S(@) = So),

because the symmetry groups of (IJ(S(q:)) and S(p) are respectively
pzKiz—'p— and g Xg—. It follows that j(<S(p), ®(S(g))>) does not
oceur in N(¢). Indeed, otherwise we would have f((S(qﬂ, (D(S(q),‘)}):
=V, ®(V)> where VeM(p) and consequently also V==_8(p) and

f(¢(S(<p))) — (V) = ®(3(p)) against (2). This proves that

(3) H{¥(g)) == No).

‘We shall show that f((M(gz), N(q))>) does not occur in PT In
fact, it F{<M(g), N(p)>) were in P, there would be a p e such
that f(<M(p), Nig)p)=<M(y), N(y)>, i. e.,

(4) f{M(g)) = M(y),
(5) 1 (@) = N (w).

But f occurs in G(X) and consequently J(M(p))=M(p), because
the symmetry group of M(p) is G(X). (4) yields thus M(g)=M(y)
which proves accordingly to the definition of N(p) that N(p)=N(p).
From (5) we obtain now f(N(zp)) =N(¢) against (3).

We have thus proved that f((M((p), N(tp)>) does not occur
in P and we follow that f(P)==P. Since f(X)=X, we obtain finally
(Y)Y, q.e. d.

8. We may now formulate the main theorem of § 1:

Theorem I. Condition (D) is sufficient for the implication
[Z] —[n].

Proof. Accordingly to lemma 2 it is sufficient to prove that
if the proposition [Z] holds true, then there is a choice function
for every class K of normal sets of power n.
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Let 6(4,X) be the function defined in lemma 7. As we saw
in lemma 9, the proposition [Z] implies the existence of a function
Og(4,X) defined for all 4 ¢ K and X e0(A4), and such that it G(X)
has no fixpoints, then Qg(4,X)e0(4), and the symmetry group
of Ox(4,X) is a proper subgroup of G(X).

Let us define for every A ¢ K the sequence S,(4) in the fol-
lowing way

Si(A) =4, Smpi(d)=Qg(4,8.(4)).

There must be for every 4 ¢ K a number m< 2"' such that
the symmetry group of 8,(4) has no fixpoints. Otherwise groups
G(S,,.(A)) would form a descending sequence

G(S,(4)) D @(8(4)) DE(8y4) D . - .,
GH{82(4)) + G(S(4)) + §(Sy(4)) = . . .

with at least 27 terms, which is impossible sinee the number of
different symmetry groups does not execeed 27-—1.

Let m(A) be the least integer such that the symmetry group
Of Sum)(4) has fixpoints and put

B (4) = O(4,8ma(4))-

Accordingly to lemma 7, we then have @(4)¢ 4 for every A ¢ K.
Hence @ is a choice function for K, q.e. d.

9. We shall now apply theorem I to obtain another sufficient
condition for the implication [Z] — [n].

Definition 4. We shall say that a positive integer n and a fi-
wite set Z of such integers satisfy the condition (S) if for every decom-
position

n=p,+p,+...+0,
of n into a sum of (not mesessarily different) primes there is in Z
a number divisible by one at least of the primes p;: r-pie Z.

Theorem 1I. Condition (S) is sufficient for the implication
[Z]—>[n] 0).

Proof. It is sufficient to prove that (D) is a consequence
of (8).

10) This result has been first obtained by Mrs. W. S8zmielew by an en-
tirely another method in a paper to appear in Fundamenta Mathematicae.
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Let us suppose that (8) is satisfied, and let & be a subgroup
of 8, without fixpoints. Let 4,,4,,...,4, be the domains of tran-
sitivity of @, and let m; denote the number of elements of A:
(i=1,2,...,8). All these numbers are greater than 1, because G would
otherwise have fixpoints. Let p; be any prime factor of n; (¢=1,2,...,5).

The number # = n, -+ Ny ... +1; may be decomposed into
a sum of primes in the following manner:
=P+ Pt Pt Dy F Pyt Py A DD D

SO —,

ns/ps times

ny/py times ng/py times

In virtue of (8) there are thus numbers ¢ <s and 7 such that
r-p,eZ. Every permutation ¢ ¢ G induces a permutation ¢* of the
set A4;. All permutations ¢* thus obtained form a transitive per-
mutation group G* of degree m; homomorph with G. It follows
that the order-of G* is divisible by pl.ll), and since the order of ¢
is divisible by the order of G*, we follow that the order of @ is di-
visible by p,. ) o

- Accordingly to the Cauchy’s well-known theorem ) ¢ must
therefore contain a permutation ¢ of the order p,. Putting

H={1,0,0%97"  E,=Ky=..=K = {1}

we get a subgroup H of G and 7 proper subgroups of H such that
the sum ‘

Ind (H/K,)+ Ind (H/K,) +...+ Ind (H/K,) =7p;
belongs to Z. This proves that » and Z satisfy the condition (D).

§ 2. Necessary conditions.

10. In the foregoing section we studied conditions sufficient
for the implication [Z] —[n]. This section will be devoted to a study
of the necessary ones. It will be well to point out an entirely different
character of both problems: If we have to prove the sufficiency
of a condition, say €, we must show that if this condition is satis-
fied, the proposition [n] follows from the axioms of set-theory and

) 11) The' order of a transitive permutation-group is always divisible by
its degree. See e.g. A. Speiser, Theorie der Gruppen von endlicher Ordnung,
20 edition, 1927, p. 112.

12) This is the special case of the Sylow’s theorem. See Speiser, loc. cit.,
p. 64.
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the proposition [Z]. In the proof of necessity of C, however, we
must show that if C is not satisfied, [n] is independent from the
axioms of set-theory and from the proposition [Z]. We could say
that proofs of sufficiency have a mathematical and proofs of ne-
cessity a meta-mathematical character.

We shall relate our meta-mathematical investigations to the
axiomatic set-theory of Zermelo®) in the precise formulation
due to Quine). We may, if we wish, extend this system adding
to it the axiom of substitution 13). ’

11. We need the following group-theoretical definitions. If &
is any group, we denote by G% the set of all infinite sequences

¢ = (g1, P2y Pas -+

whose terms belong to @. Greek letters p,y,d,... will always denote
elements of G%; v, will denote the p™ term of the sequence g.

@ will become a group if we define the product gy through
the formula pyp = [y, Paa, Pa¥ar ) -

@° will denote. the subgroup of G* ‘containing such ¢'s that
almost all g are equal to the unity of @ (i. e., 7,= 1 for all p=>py).

Definition 5. We shall say that a positive integer n and
a finite set Z of such integers satisfy the condition (K) if for every
subgroup G of S, without fizpoints there is a group HCG° and
a finite number v of (not necessarily different ) proper subgroups
Ky, Kyy...., K, of H such that the sum

(1) Ind (H|E,) + Ind (H |K;) 4 ...+ Ind (H|K;)
is contained in Z.

12. Our main result concerning necessary conditions iy given
by the following

Theorem ITL Condition (K) is necessary for the implication
[Z]—~[n]

In order to prove this theorem let us suppose that n and Z
do not satisfy the condition (K), i. e., that thereis a group GCR,

13) E, Zermelo, Math. Ann., 65, 1908, p. 261-281.
1) W. V. Quine, Journal of Symbolic Logic 1, 1936, pp. 45—57.
15) See A. Fraenkel, Binleitung in die Mengenlehre, 82 edition, 1928,
p. 309.
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without fixpoints such that for any subgroup H of G° and any
proper subgroup K,,K,,...,K; of H the sum (1) does not belong
to Z.

We have to show that [»] is, under this supposition, inde-
pendent from the axioms of set-theory and from the proposition [Z].
For this purpose we shall construet a model in which all axioms
and the proposition [Z] are satisfied, but the proposition [n] is not
satisfied. Speaking more precisely, we shall give a new meaning
to the primitive concepts of set-theory

»€  uset”y  individual™ 1)

such that all axioms and [Z] will become true propositions 7),
whereas [n] will become a false one 8).

The new meaning of ,¢“ will be identical with the old one.
In order to define the new meaning of two other primitive concepts
we must introduce some definitions.

18. Let N;={1,2,3,..,n}, N,={n+1,2+42, ..
Ni={(k—1)n+1, (k—1)n+2,..., kn}, . . .

The sum N =DN,+ N,+ N+ ... is the set of all positive
integers.

For any # of & numbers =(1), n(2),...,
and fill up the whole set ;. Putting

a(k—1)ntj) = k—1)nta(@)  (1<i<n, k=1,2,..),

we extend the permutation = over the whole N. The extended =
transforms every N, (k=1,2,...) in itself.
Let £ be any ordinal and let ¢ e G°. We shall define a set K;
and the meaning of ¢(z) for # ¢ K¢ by transfinite induction on &.
For £=0 we put K,=XN; the meaning of ¢(z) for xe K, is
defined by the assumption g(z)=g,(x) for e Ny (k=1,2,...).

y2n}, ...,

n(n) are well defined

16) ,Individual® means here the same as ,Urelement in the Zermelo’s
system, i. e., an object which can be an element of a set, but which is not a set
itself.

¥7) 1. e., propositions which are consequences of axioms usually admitted
in mathematics. We add to these axioms the axiom of choice. Accordingly to
Godel’s famous result we do not introduce thereby any contradiction if it was
not already contained in the primitive axioms. See K. Gédel, Proc. Nat.
Acad. Sei., 25, 19389, pp. 220-224,

18)'I.e., a proposition whose negation is true in the sense explained in
footnote 7).
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Assume that £>0 and that for <& sets K, are already de-
fined. Assume further that the meaning of g(x) for ze Y K, is de-
tined too. n<E

Let M; be the class of all subsets of the sum Y K,:
=P(3 K,)-
7<t
For we M:—)) K, define g(x) as the set of all ¢(y) where y
is an element of wn<{1§his definition is exact, because from y ez ¢ M,
follows y exC Z_K and g(y) is defined. Finally define K; as the subset

of M, contammg every « for which the following invariance-
condition is satisfied:

(2) thereis an integer q suchthat if ¢ ¢ @° and g, =p,=p;=
then ¢(x)=
The inductive definition for K and g(x) is thus accomplished.
The following lemma can be easily proved by induetion:

ce=p,=1,

Lemma 10. Following propositions hold:

(i) If 2 e K; and ¢ e G°, then o(x) e K¢;

(ii) if @ ¢ K; and @,p e G°, then 9a(w(w))=zpzp(m) and g1 (tp (m)):m;
(i) f @ e K¢, £>0 and {t e x} = {p(t) € 2} for every t, then x =p(z).

It is further easy to show that K:C K, for {<z and that
from yexzeK; follows y e K;. The least property of K is called
transitivity.

‘We may now define the new meaning of ,,sets“ and ,individuals®.
As individuals in the new sense we assume the elements of K, and
a8 sets in the new sense the elements of any K with £>0.

14. Before going further we shall still introduce a convenient
termmology 19),

Let = be any concept definable in terms of t;he primitive
concepts e, ,individual® and ,set”. If we replace these primitive
concepts by their new meanings, we obtain a new concept =* which
is, in general, different from =. This new concept will be called
Lpseudo-=%. We can thus speak about ,pseudo-inclusion®, ,,pseudo-
product” ete. Pseudo-individuals resp. pseudo-sets mean the same
as individuals resp. sets in the new sense.

18) This terminology has been introduced by K. Goédel in his lectures
at the University of Vienna in 1937.
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If the pseudo-concept =* related to pseudo-sets or pseudo-
individuals @,¥,2,... coincides with the primitive concept = related
to x,%,%,..., we shall say that = is an absolute concept. Examples
thereof are given in the following

Lemma 11. Following concepts are absolute: (i) inclusion;
(ii) product of two sets; (iii) the relation between two sets: their produc
has exactly k elements (k=0,1,2,3,...).

We have now to prove that we get true propositions if we
replace in the axioms of set theory all concepts by the correspondent
pseudo-concepts. It will be sufficient to outline this theorem for
two axioms, since its detailed proof has been given elsewhere 20).

15. One of the axioms states that if z isa set, there is another
set y=P() (class of subsets of @) such that, for any ¢, ¢4 if and
only if ¢ is a subset of z.

In order to show that this axiom remains valid for the new
sense of the primitive concepts, we must show that if z i§ a pseudo-
set, there is another pseudo-set y such that if ¢ is any pseudo-indivi-
dual or pseudo-set, then ¢ey if and onlyif ¢ is pseudo-included in .

Let us assume as % the class of those subsets of # which are
pseud0~se’cs themselves. It is plain that if tis a pseudo-individual
or a pseudo-set, then tey if and only if ¢ is included or (what is
by lemma 11 (i) the same) pseudo-included in z.

It remains to show that y is a pseudo-set. Assume that # e K.
Every subset of » being an element of M¢,,, we follow that y C K ;14
and consequently y e Mgy,.

By our hypothesis there is further a number ¢ such that
if pe@ and p=p,=..=¢ =1, then p(z)=2. Suppose that ¢ ¢ G”
and ¢,=g¢,=.. =g =1 If tCm, then ¢(t) Co(x)=x and vice versa.
By lemma 10 (i) ¢(¢) is a pseudo set if and only if ¢ is one. Thus
t{tey} = {p(t) e y}, i‘ e., ¢(y)=y, which proves that y satisfies the
invariance-condition (2) and is consequently a pseudo-get 21),

2} A. Mostowski, Fund. Math. 32, 1939, p. 221-252.

1) The relation ..y is the class of all sub-seis of z* i8 not absolute in the
sense introduced in 14. It follows that if we only know about a domain D of sets
that it contains P(x) with every of its element z, we cannot still be sure that the
axiom .for any set x there is the class of its sub-seis* relativized to the do-
main D is valid. This is one point which I do not understand in the works
of Fraenkel abeut-the independence of the axiom of choice. See footnote ?)
and the litterature quoted in this paper.
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16. As the second axiom for which our theorem will be proved
we choose the axiom of substitution. It states that if x is a set
and =(u,1) is any relation between sets or individnals £, u, and if there
is for any u e« exactly one ¢ such that =(u,t) holds, then there is
a set y such that ¢ ey if and only if an-u ez exists for which the
relation =(u,?) holds.

In order to eliminate the concept of an ,arbitrary relation® 2}
we admit only such = which may be defined in terms of primitive
relations:

(3) W0 ew”, Lvis an individual®, v is a. sei”

and of logical operations:.

negation, conjunction and quantifiers (bounding sets or individuals ).

It is well to remark that =, which is involved in the formulation
of our axiom, may depend upon another sets or individuals a,b,...,k
which play the réle of parameters. y is then a funection of » and
of these parameters.

We shall need the foﬂowmg .

Lemma 12%). Let =(u,t,a,b,...,k) be a relation of the above
type and let =*(u,t,a,b,...,h) be the corresponding pseudo-relation.
Let further u,t,a,b,. ..,h be pseudo -sets or pseudo-individuals and
@ eG°. Then

(@) D08, by ey B = Z¥{p(0), 6(1), 0(@), PB); ey p())-

Proof. The lemma is of course true for the primitive re-
lations (3). If it is true for relations = and H, itis also true for re-
lations

mon-=* and .= and H.

It remains to prove that if (4) holds for a relation =, it holds
also for the relation oo o

H(usd,by...h) = 2 Z (1, 0yDy 5 R).

22) If we wish to retain this concept, we must give to our system of axioms.
a larger logical basis (variables of the second type). The proofs of independence
are still possible, but must be modified a little, because it is necessary to rela-
tivize to a model not only the primitive concepts of axiomatic system but also
the logical concepts.

23) This lemma is essentially due to A. Targki and A
Ergebn. eines math. Kollog., 7, 1934, pp. 15-22.

. Lindenbaum,
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Suppose that pseudo-individuals or pseudo-sets wu,i,b,...,h
fulfill H*(w,t,bd,...,k). There is then a pseudo-set or a pseudo-indi-
vidual ¢ such that =*(u,t,a,b,...,h) and hence by (4)

=* (mu),w(t),qo(a),qa(b), )

There is thus a pseudo-individual or a pseudo-set a'=g(a)

such that Z*(p(w),p(t), &', p(b); .. p(h), i. 6. H*(p(w), p(t), p(b), ..., p(R).
This proves the implication

H* (1,1, by ey B) — H*{p (1), 9 (£), @ (B), .., ().

Replacing here ¢ by ¢! and u,%,b,...,k resp. by g(u), p(t),9(b),
-.,¢(h) we obtain the converse 1mphcat10n and lemma 12 is proved.
‘We pass now to the axiom of substitution. We have to show
that if # is a pseudo -set, &,b,...,h are pseudo-sets or pseudo-indi-
viduals and. Z(%,t,a,b,...,h) is a relatlon of the type described above
such that for any u ez there is exactly one pseudo-set or pseudo-

individual ¢ for which =*(u,t,a,b,...,h), then there is a pseudo-set y
such that

{5) tey if and only if there is an u e » for which =*(u,t,a,b,...h).

For o ¢ denote by f(u) the unique ¢ for which Z*(u,1,a,b,..., k),
and let y be the set of all f(u) where % runs over z. Since it is obvious
that this y satisfies (5), we have only to show that y is a pseudo-set.

Suppose that w e K;. If u e, then f(u)is a pseudo-set or pseudo-
individual and there are ordinals % such that f(u) e K,. Let {{u)
be the least such #, and let { be the least ordinal exceedmg all &(w)
with % e». Then f(u) e K¢ for every uew, i. e. 2 YCKp or ye My,

We now show that y satisties the invariance-condition. Let
q(x),q(a),...,q(h) be numbers such that

(6) play=a, pla}=a, ..., ph)=h

for any g e@° for which the first g(x),q(a),...,q(h) terms @, are
equal to 1. Let g be the greatest of the numbers g z), (@), ..., q(h).

If ¢ is such that ¢,=g,=...=p,=1, we have equalities (6 ). I shall
show that ¢(y)=y. In fact

ey} = S(uen) - (35wt ab, .., W]}
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this is by lemma 12 equivalent to
Sl ep@) - 12*{up(),p(a),p(@), .0 () 1
or in virtue of (6) to

2{(“ € L) - [E*('”ﬁ(p(t);a:b) (L) h‘)]} =

Hence {tey}={p(
is really a pseudo-set.

{o(t) ey}
t)ey}, i.e. y=¢(y), which proves that y

17. It is almost obvious that the proposition [n] will become
false if we replace the primitive coneepts by their new meanings.
Indeed, since the axiom of choice for sets of power » is a conse-
quence of [n] (comp. the footnote 2)), we follow that if [n] were
true in our model, the axiom of choice for sets of the power n would
be true too. In virtue of lemma 11 this would mean that for every
pseudo-set z whose elements are disjoint sets of the power n, there
is a pseudo-set y such that if zex, then y -z has exactly one element.
This consequence is false. The pseudo-set z={N,,NoN,,...} satisfies
namely all hypothesies and there is no corresponding pseudo-set y,
because if y has exactly one element @, in common with ¥, (k=1,2,...),
then y does not satisfy the invariance-condition. In fact, let ¢ be
any integer. Since @ has no fixpeints, there is a e G such that
(@gt1) F Ag41, and putting

p=[11,.

q ﬁmes

1,7,1,1,...]

we obtain an element pe @’ such that ¢ —=g,=

=g,=1 and
o(y)==y. Hence y cannot be a pseudo-set.

18. In order to accomplish the proof of the theorem III we
must still show that if z e Z, the proposition [2] remains valid in the
model. In view of lemma 11 and footnote 2) this means that for
every pseudo-set X whose elements are disjoint sets of the power 2,
there is a pseudo-set ¥ such that if P e X, the product ¥-P has
exactly one element.

Suppose that X is a pseudo-set

(7) X e K,

that every element of X has z elements and that U-V=0 if U=V
and U,VeX.
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It follows from (7) that there is a positive integer ¢ such that
@(X)=X for any pe @ for which ¢ =p,=..=p =1. Let [ be
a subgroup of G consisting of all ¢’s for which ¢ =g@,=..=¢ =1.

For U,V ¢ X we write U~V if there is a @ el such that
¢(U)=V. Since this relation is of course reflexive, symmetric and
transitive, it induces a decomposition
{8) X=2R

Red
of X into the classes of abstraction Red of ~. Thus 4 is the fa-
mily of all classes of abstraction and the relation ~ holds between
two elements U,V of X if and only if they belong to the same
summand R of (8).

Applying the axiom of choice (see footnote 17) I select from
every Red a particular element and call it Er. Hence

{9) Ere RCX for Red
and consequently
(10) Er has z elements.

Let Hp be the subgroup of [ containing all ¢’s such that
o(Br)=FEr and let us write U~V if U,V e Ex and if there is a
@ e Hp such that ¢(U)=V. We may again decompose Ep into a
sum of classes of abstraction of ~:

(11) Br=8,+8:+... + 85

The number 7 of these classes (which will, in general, be dif-
ferent for different R) is finite in virtue of (10).

Using again the axiom of choice, I select from every S; a par-
ticular element T; and denote by K; the group of those ¢ Hg
for which @(T;)=1T,;%).

T shall show that §; has exactly Ind (Hg/K,) elements. In:
deed, let

1 2
{12) Hy= K+ 0K; - 0K+ ... + 0K,
‘be the decomposition of Hy into co-sets. Elements
p
Ty

‘(13) -TJ': 5(Tj)r ";(Tj) 10y

24) Kj is, in general, not self-conjugate.
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are all contained in §;, because the relation ~ holds between them

and 7. They are all dlfferent beca,use from 19(T~)_z9(_’l’j) would
follow 19‘119(.’1’) T; or 19 1'!9‘6.Kj7 i e, ﬁeﬁK Hence S; has at
least p+1=Ind (Hg/K;) elements. On the other hand, if Ue ),
there must be & ¢ ¢ Hr such that ¢(T;)=TU. Hence ¢ belongs to
one of the summands ;)Kj of (12). Hence qn=7§1p, where p ¢ K;, and
consequently U:—é("‘/)(Tj)):é(Tj). We follow that S; has no elements
different from the elements (13),i. e., S; has exactly p+1=Ind(Hz/K,)
elements.
Formulas (10) and (11) yield now

2 =1Ind (Hg/Ey)+Ind (Hp/Ey) + ... + Ind (Hg/E,),

and since z e Z, we follow from the hypothesis made at the beginning

f 12 that one at least K; is equal to Hg. This means that in
every Eg there is at least one U such that ¢(U)=U for every ¢ e Hx.
Using still once more the axiom of choice, I select from every Eg
one such U and I call it Uz. For every Red we have therefore

(14) R Ure Eg,
(15) ¢(Ug)=Ur for geHp.
Define now @z as the set of all ¢(Uz) where ¢ e/ and put
Y =2 Qa.
ReA

We shall show that this ¥ has desired properties.

For the first, Y is a pseudo-set. Indeed, from (7), (9) and (14)
we follow that Uge K: (transitivity of K:). Hence, Qr C E; by
lemma 10 (i) and consequently YCK; or ¥ e M:y. If pel, then
9(Qr) = Qr, because p(Qr) is the set of all pp(Ur) where p e/, and
the conditions pp e/ and ¢ e[ are equivalent. From this we follow
that ¢(¥)=Y. Y satisfies thus the invariance-condition, i. e., it
is a pseudo-set.

It remains to show that if P e X, then P-¥Y has exactly one
element.

Suppose that P ¢ X. There must be a summand R of the decom-
position (8) such that Pe R, i. e., P ~ Hp. Consequently there is
a el suchthat p(Eg)=P. Since UreEr, wehave ¢(Ug)ep(Ep)=P;
on the other side ¢(Uz)e ¥ by definition. This proves that P-Y¥
containg at least one element ¢(Ukg).
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We shall now show that this element is unique, i. e., that
it WeP-Y, then W=g¢(Ux).

Suppose that WeP Y. Since We Y, there is a Sed such
that W e Qs and it follows that W has the form y(Us) where pel.
Since W ¢ P=p(Er), we have y(Us) ¢ ¢(Er) or

(16) 9(Us) € Bg.

On the other side ¢~l9(Us) e p~'yp(Es) by (14). The sets Hg
and ¢-Yy(Hs) are therefore not disjoint. Being both elements of X
they must be disjoint or equal. Consequently ¢—'y(Bg)=Fg, which
proves that Hr ~ Hg. But Fre R, Ege S and the relation ~ holds
never between two elements of different classes of abstraction.
It follows thus R=2S and (16) gives w(Ur) e o(Ez). But 9(Uz) ew(Er)
by (14); ¢(Er) and y(Eg) have therefore an element in common
and since they are both elements of X, they must be identical.
This gives y(Er)=¢(Hg) or ¢~ 'y(Er)=Eg, i. €., o~y ¢ Hz. By (15)
we obtain now ¢ y(Ur)="Uz, i.e., 9(Ur)=9(Ur) or W=g¢(Uz).
Every WeP-Y is therefore identical with ¢(Ug), i. €., P-Y has
exactly one element.

The proof of theorem IIT is thus accomplished.

19. We shall now draw some consequences of theorem III.

Definition 6. We shall say that o positive integer n and fi-
nite set Z of such integers satisfy the condition (M) if for any decom-
position of n into a sum of primes ' k

1) - n=p,+ Dyt ...+,
there are s non megative integers g,,q,,...,q, Such that the sum
P8+ P8t + P4, 5 contained in Z.

Theorem IV. Condition (M) is necessary for the implication
[Z]—[n].

Proof. It suffices to prove that (M) is a consequence of (K).
Let us suppose that n and Z satisfy the condition (K), and let (1)
be a decomposition of # into a sum of primes. Let ¢ be the per-
mutation

(L2 p) (01,242 oy DrED,) - -
. (p1+p2+ sae +ps——l+1; p1+pg+ e +ps-1+2; seey %)7

and let G be the eyclic group composed of all powers of ¢. The order
of @ is equal to the product of all different Ps.
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Since @ has, of course, no fixpoints, then there is accordingly
to (K) a subgroup H of G“ and a finite number r of proper. sub-
groups K, K,,...,K, of H such that the sum

Ind (H/K,)+Ind (H/K;) 4 ...+ Ind (H/K,)

is contained in Z. It follows in particular that the indexes Ind (H/K;)
are all finite, )

In order to prove the theorem IV it is now sufficient ‘to
show that if KCHC G” and if Ind (H/K) is finite and greater than 1,
then Ind (H/K) is divisible by one of the primes p,, py,...;p X

Let ‘
(2) H=E+¢"E+¢PWE+...+¢WK

be the decomposition of H in co-sets of K (p-}—l Ind (H/K))
Every' 9@ is a sequence [¢P,¢Q,¢@,...] where almost all ¢ are
equal to the unit 1 of G.

Suppose that ¢? =1 for j>g, and let g be the greatest of the
numbers g, q,,-- oY/ Let H* be the subgroup.of H containing all
such ¢’s that @, 1=@,2=...=1 and let K* be the common part
of H* and K. It follows that ¢®,e®,...,¢(” are contained in H*.
We shall show that the decomposition of H* mto co- sets with
respect to K* is

(3) H* = K* + gOK* + g@K* ... 4 pPK*,

Indeed, if ¢ e H*, then ¢ ¢ H, and there is an ¢<{p such that
peg®K or p=g¢Wy, where peK. It follows that ¢,=¢Py,
for k=1,2,... and. since @, =¢P=1 for k>g¢, we have also y,=1

for k>gq, i.e., pe H*. Hence y e K*, and we follow from g=¢dyp
that ¢ e p@K*,  H* is therefore the sum. of co-sets

E* gOK*, @K%, . .., gK*,

and these co-sets are disjoint, because they are contained in the
corresponding co-sets K, ¢OK, ¢@K, ., ¢PK.
Formula (3) is thus proved and we have

(4) Ind (H*/E*) = p+1=Ind (H/E).

H* and K* may be treated as subgroups of the direct pro-
duct GX G X ... X G=G7 of order h%. Ind (H*/K*) is thus a divisor
of BY i, e., it must be divisible by one at least p;; By (4) we follow

that Ind (H/K) is also divisible by one at least p; ¢.e. d.
Fundamenta Mathematicae. T. XXXIIL. 11
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90. Theorem V. If[Z]—[n] and if m is the greatest of the num-
bers occuring n. Z, then n-<8m?

This theorem states that, for given Z, there is only & finite
number of » such that [Z]—[n].

Proof. Suppose that [Z]-—[n] and n>8m? By the so called
Bertrand’s postulate 26) there are primes p,q such that

(1) m<p < 2m<g < 4dm.

By the elements of the Theory of numbers there are further
integers g,» such that pu-+gv=1. Putting &=un, n=yn we obtain

@) . pitam=n. :
I shall show that there are non-negative &# for which (2)
holds. Indeed, if e. g. £>0 and n< 0, we denote by 2 the least positive

integer for which 5+ 2Ap>0 and we have obviously 0<{n-+Ap<p.
If £—2¢ were <0, we would have by (1)

n = p(§—Aq) + ¢(n+2p) < g(nt+ap) <'pq < 8m?

against the hypothesis. Therefore £—1¢>0, and integers &'=¢&—iq,
n'=n+A4p are both non-negative and satisfy (2).

Let £ and % be any non-negative solutions of (2). » may then
be decomposed into a sum of primes

n=p+p+...+p+g+g+...+¢

£ times

N tim s

- Since [Z]—[n], the condition (M) must be satisfied. It follows
that for some non-negative integers x,x,..., %5, dyadg...; Ay the sum

oY Bk 7y A I o 7y Y B o Y S S N

i8 contained in Z. Thiy sum must hence be not greater than ,
which is of course impossible, because p and g both exceed m.

§ 3. Some particular cases.

21. The first particular case we shall consider is that of Z
having the form {1,2,...,m}=(m). The proposition [Z], which we
ghall, for brevity, denote by [m]!, represents then the principle of
choice for sets of at most m elements.

g %) Proof of this theorem may be found, e. g., in Serret’s Cours &’ Algebre
“Supérieure, 273 edition, 1854, pp. 587-600.
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Theorem VI, Condition (M) is necessary and sufficient for
the implication [m]!—[n]2).

Proof. Necessity follows from theorem IV. In virtue of theo-
rems IT it remains to show that the condition (M) for Z={1,2,...,m}
implies the condition (8).

" Let us suppose that (M) is satisfied and Iet be N=P,+Py -t D,
where p,,p,...,p, are primes.. By (M) there are g¢,,4q,,...,4, such
that p,g,+p,g,+..--+p,4, belongs to Z, i. e,

0< P8y +P0,F ... +DL <M
It follows immediately that for an i<{s we have p,<m, i. e,

p, € Z. Hence the condition (S) is satisfied, q. e. d.

22. Let us denote by u(n) the greatest prime p such that =
is expressible as a sum of primes not less than p.

It is easy to see that condition (M) for Z={1,2,...,m} says
the same as m>»u(n). We may hence express theorem VI by the
equivalence

ey (]t = [n]) = (m > p(n).

The following table gives values of u(n) for lowest n:
m | 2 3 45 6 7 89 10 11 12 13 14 15 16 17
un)| 2 3253733 5 11 5138 7 5 51T

w |18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
,u('n)]71977112311 7 13 7 11 29 13 31 13

‘We note the following properties of u(n):

@) %l/% < pln) <n (follows from theorem V);
(3) uln) is always prime; p(n)=n if and only if m is prime;
(4) if n+2 and nd, then p{n)>2,

Proof of (4): for n<32 the values of u{m) are given in the
able. For n>32 the left side of (1) egceeds 2. }
From (4) and (1) we obtain immediately .

) The proof of sufficieney has been given by Mrs. W, Szmielew;
comp. foot-note °). o

11*
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Theorem VIL Implication [2]—[n] holds if and only if n=2
or n=4. .

Another consequence of (1) and (3) is

Theorem VIII, [m]! —[n]! ‘if and only if there is no prime p
between m and n. )

Proof. If m<p<n and if p is prime, then w(n)>p by (2) and
(3) and consequently even the implication [m]!—-[p] cannot be true.
If, on the other side, there is no prime between m and n, we have
wx)<m for z<n and all implications [m]! —[z] (x<n) are true,
i e., [m]i—>[n]h

23. We shall now prove

Theorem IX. Condition (M) is necessary and sufficient
for the implication [Z]—[n] in the following cases:

() n is prime; (i) n<<1B;  (iii) n=16, 18.

The proof is based on some lemmas.

Lemma 13. [nk]—[k] for every positive integers n and k.
~ An .easy proof will be omitted here.

Lemma 14. If A has m elements and B n elements, A-B=0,
and if we know to realize the proposition [km--1In] where k and 1 are
non-negative integers mot both 0, them we may choose an element
from A+B.

Proof. Consider the set 4* of ordered pairs {4,a> where a ¢ A
and 1=1,2,...,k and the set B* of ordered pairs {j,b> where b ¢B
and j=1,2,...,I. The sum A*4B* has km-+In elements, and we
can by the hypothesis select a particular element p of A*B*.
p+is an ordered pair whose second member belongs to A+B and
may be taken as selected element of A-+B.

" Lemma 15%). If p is a prime, & has n-p elements (n=2,3,4,...),
and if we know o realize the proposition [p], thenwe can define effectively
@ decomposition A=A+ A, into a sum of two disjoint non-empty sets.

Proof. Let 4 be the class of subsets of 4 having exactly p
elements. From every X ¢ 4 we can by supposition choose an ele-
ment X*. For aeA denote by m, the number of X ¢4 such

that X*==4¢. Hence, the sum of-all n, is equal to the number of ele-

27) This lemma and its proof are due to A. Tarski.
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ments of Z, i. e, to ('npp ) Since this number is not divisible by p

and the number n-p of all n, is divisible by p, we follow that not all n,
can be identical. Hence, denoting by 4, the set of those a e A for
which n, has the lowest possible value and putting 4,=4—4,,
we obtain the desired decomposition.

Lemana 16. If p is a prime, A has n-p elements (n=2,3,...),
and if we know to realize the proposition [n-p—1], then we can define
effectively a decomposition A=A+ A,+...+ A, into a sum of a
finite number of disjoint sets of the power >1.

Proof. Accordingly to the hypothesis, to every a e A corres-
ponds an element f(a) choosen from the set 4 -—{a}. We have thus
a function f(a) defined for a e 4 and such that f(a)=Fa.

If the set of values of f coincides with 4, then f is a permu-
tation of 4 and can be decomposed into eycles. In every cycle there
is more than one element, because f(a)==a. If the number of cycles
is greater than 1, they define a decomposition of A of the desired
type. If f is a single cycle, we consider f* instead of f and obtain

.2 permutation for which the number of cycles is p>1, and in every

c¢ycle there is n>1 elements.

If f is not a permutation, we denote by 4, the set of values
of f. Sets 4, and 4A—4, are both non-empty and we have a de-
composition 4 =A4,+4 (4 —4,). It is already of desired type,if 4 —4,
has more than 1 element (4, has never one element, because j(a)=Fa).
In this exceptional case we have 4—A4,={a} and may put

A=(4,—~{{(a)})+ {a,f(a)}-

24. We pass now to the proof of theorem IX.

Suppose that n and Z satisfy the condition (M) and that [Z]
is true.

If n is prime, Z must contain a number of the form -k and
we follow by lemma 13 that [n] is true.

If n=4, Z must contain at least one number of the form 2i.
Using lemma 13 we get the proposition [2] and, by theorem VII,
the proposition [4].

If #=6, Z must contain at least one number of the form 2i
and at least one number of the form 3j. Lemma 13 yields propo-
sitions [2] and [3], i e., the proposition [3]! from which we obtain[6]
by theorem VI.
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Let us suppose that n=8 and that A has 8 elements. Z con-
tains in this case numbers of the form 2% and 31+ 5m; we have thus
propositions [2] and [3I+5m] at our disposal.

Accordingly to lemma 15 we decompose A into a sum A=A4,+4,
of two non-empty disjoint sets. The notation can be arranged so
that 4, has at least as much elements as 4,. 4, can therefore have
1,2,3 or 4 elements. In the first case we take the unique element
of A, as the distinguished element of A. In the second case we can
select an element from 4, in virtue of [2]. In the third case we may
ehoose an element from A=A4,+ 4, using lemma 14. In the last
case we choose an element a from A, and an element b from A4,
using the proposition [4], which is, as we already know, the conse-
quence of [2]. We obtain thus a decomposition 4 ={a,b}-+(4d—{a,b})
and we may apply the same reasoning as in the first or second case.
Hence we can always choose an element from A.

Cases n=10, n=12 and n=18 may be treated in similar
manner as n=_8. For n=10 Z must contain numbers of the form
24, 8j, 3k+1Tl, for n=12 numbers of the form 2¢, 5j, 5k-+ 7l and
for n=18 numbers of the form 2¢, 3j, 5k+413I, Tp+1lg.

Treating the case n==18, it iz well to remember that [6], [8] .

and [9] are consequences of [2] and [3] (see theorem VI).

A little more complex are cases n=9, 14 and 16.

Congsider first the case n=9. Z contains then numbers of the.
form 3%k and 214 7m; we have thus propositions [3] and [2I4 Tm]
at our disposal. Let 4 be a set with 9 elements. Using lemma 15
we decompose A4 into a sum A=A4,+4 4, of two disjoint non-empty
sets and suppose the notation to be arranged so that 4, has more
elements than 4,. A; may therefore have 1, 2,3 or 4 elements.
In the first and third case we can immediately choose an element
from 4,. In the second case we choose an element from the sum
A=A,+ 4, using lemma 14. In the last case we apply lemma 16
to 4, and obtain a decomposition of 4, into a sum of a finite number
of disjoint sets of the power >1. Since 4, has 4 elements, only the
decomposition A;=A'4 A" into a sum two of sets of the power 2
is possible. Accordingly to lemma 14 decompositions

A=A"4(A"+4,) and A=A"+ (4 +4,)
define two elements a,b of A. We have thus
. 4 ={a,b} + (4—{ab})
and may proceed further as in the first or second case.
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For n=9 the theorem is thus proved.

If n=14, Z must contain numbers of the form 2¢, 7j and
3k+111. Remarking that 3%+ 111=3(k+21)-+ 51, we follow that [8]
is.a consequence of [Z]. Hence we have at our disposal proposi-
tions [2], [7], [8] and [3k+4117).

Suppose that A has 14 elements. As in the foregoing cases,
we decompose 4 into a sum A=A4;+ 4, of two non-empty disjoint
sets and suppose again that 4, has at least as many elements as A4,.
The number » of elements of 4, may therefore be equal to 1, 2, 3,
4, 5,6 or 7.

In cases »=1,2,3,4,7 we can choose an element from A
without difficulty.

If v=6 we decompose 4, into a sum A4, = A"+ 4" of two

) disjoint non-empty sets using lemma 15 and proposition [2]. If one

of the sets 4’,4” has 1 or 2 elements, the choice of an element
from this set is already possible. If A" and A" have both 3 ele-
ments, we consider the decompositions

A=A +(4"+ 4,), A=A"+ (A" +4).

to which corr;aspond two well-defined elements a,b of A in view
of lemma 14 and of proposition [3%k-11l]. Hence

A= {“7b}+ (A‘“{“,b})
and we are in the same situation as for »v=2.

It remains the case »=>5. 4, has then 9 elements and we may
apply lemma 16 to the set 4, obtaining a decomposition
1) Ay =B;+By+...+ B,
into a sum of disjoint sets of the power >1. Let us denote by
b, the number of elements of B; (i=1,2,...,q) and by b the least
of these numbers.

If not all b; are equal to b, we may decompose 4, into a sum
of disjoint non-empty sets

Ay = A3+ A3,

taking as 4; the sum of those B; for which b;=b and as A7 the
gum of the remaining B;. Arranging now the notation so that As
has less elements than A7, we obtain the decomposition

A=Aj+ (41 + 47)
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in which A5 has 2, 3 or 4 elements and return o to cases »=2,3 or 4
discussed previously.

Tf all b; are equal to b, then b=3, g=3 and (1) takes the form
Ay=B,+B,y+ B, where By, B, and B; have 3 elements. Consider
the decompositions:

4 =B+ (By+ By + 4y)
A= By+ (By+ By + 4i),
A=B3‘|'(B1+Bz+f11);

to which correspond 3 elements a,b,¢ of A in virtue of lemma 14
and of proposition [3k--111]. We write now down the decomposition

A ={a,b,c} + (4—{a,b,c})

and return so to cases »=1,2,3 in which we can already accomplish
the choice.

Case n=14 ig thus discussed in full.

In case n=16 the reasoning is the same as for n=14. Z contains
in this case numbers of the form 2¢, 3j+13%k and Bk-111.

Theorem IX is thus proved completely:

Results of this section suggest a supposition that condition ()
is in every case sufficient for the implication [Z]—[n]. I was no$
able to solve this question even in the case n=15 and Z={3,5,13}.
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Sur les fonctions de plusieurs variables
Par

Wactaw Sierpifiski (Warszawa).

Le but de cette Note est de démontrer que les fonelions de
plusiewrs variables ol toutes les valewrs des variables, ainsi que celles
des fonctions, appartiennent & un ensemble fiwe quelcongue se vedui-
sent par superpositions aux fonctions de deuw variables. Plus préci-
sément ) .

Soient: F un ensemble donné, m un nombre naturel, ¥, 1a famille
de_toutes les fonetions de m variables f(#1,@s,...,2n) définies pour
# € B ot i=1,2,...,m (autrement dit: définies dans le produit car-
tésien E™) et ne prenant que des valeurs appartenant 4 E. Soit S
1a famille de toutes les fonctions de Fy-t-Fy+... qui sont des super-
positions d’un nombre fini de fonctions de la famille F,. S est
done la plus petite famille de fonctions qui contient F, et telle que si
les fonctions f(y,®s...,Tm) b G @t 1y Baety oy Tmin) APPartiennent
3 S et si la fonction h(z,y) appartient & Fy, la fonetion

h(ﬂwly$27 ey Tm)y §(E et 1 B2, - --7wm+n))
appartient & S8, de méme que les fonctions qu’on en obtient en
échangeant ou en identifiant entre elles certaines de variables
X132y oy Lrmtn-

Notre théoréme équivaut ainsi & la formule
1 F.CS8

Nous allons démontrer la formule (1) séparément pour F fini
ot E infini. Pour F infini, notre démonstration fera usage de 'axiome
du choix; or, pour ¥ fini, elle est plus compliquée que pour B infini.

Soit done E un ensemble fini contenant an moins deux éléments
distincts. Je démontre d’abord deux lemmes.

pour m=2,3,...
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