14 5 3. Lefschetz.

Considérons effectivement un I, et les tow.e. 1t Kp—IT X IT,,
et soit yeK, On aura Ty=myX &y spel, Par suite, Ty y—gz,
est une t.u.c. Ko—H,, dite projection de T gur Hy,. Les deux
projections déterminent 7, et T est normale (la normalité ne se
pose pas pour T,).

Soit A=A;X A, ol A, est un point fixe de Hn. Lorsque 1%
varie dans une clagse déterminde, il en est de méme de 1. Profitong
en pour ramener Ty, T, & des réduites: 1, Kn.1=A4,. La T’ résultante
est dite )eclmte également.

Soient o) les n-simplexes de K, et supposons 7' réduite. 7', o}
aura alors un degré déterminé m! sur H,. Les m sont les car acl,ﬁru
de T. Toute réduite aux mémes caractéres que T est de méme classe.
(Pest une conséquence immédiate de la méme propriété pour ley 1,

Comme les m! sont les caractéres de 7'y, ils doivent satisfaire
a la condition de normalité pour cette derniére. D’ailleurs, & part
cela, les m sont arbitraires. En effet, supposons qu’on g¢ les donne
avec les m! satisfaisant simplement & cette condition. On. peut alors
se donner T,K; sur H,. Puisque toute Hy, ol #>>1, est inessenticlle
sur Hy, on pourra étendre 1), & K, tout entier.

Il s’agit maintenant de construire T',. A cel effet, on prend
d’abord T,ol=A4,, ot n=0,1. Puis on prendra 1,c} telle qu’clle
recouvre H, avec le degré mi. Ceci définit Ty, done T pour K, tout
entier.

On pourra alors définir Paddition 7'4+ 1" par la condition que
les projections de la somme soient les sommes des projections, et
de méme, de facon év1denbe, pour —1. D’ailleurs, 7' est inessentielle
quand, et seulement quand ses projections le sont. On. éerira alors
T'=0. Ceci donne ainsi liew 4 un groupe additif ¢ Hn &'en TAPPOL-
tant au Théoréme 12, on voit done que 1’on a:

Théoréme 13. Les classes de t.u.c. Ky—>H,xH, donnent liew
& un groupe additif abélien G, et Von a G=Gyn®Gy, (somme directe),
ol les facteurs somt les groupes des projections sur les Hy. )

Ce sont d’ailleurs les Gy, du Théoréme 12, et par conséquent ils
sont isomorphes aux groupes d’homologie ¢, g% des coe yeles.
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On locally bicompact spaces.
By
H. E. Vaughan (Ann Arbor, Mich. U.S.A)), *

The object of this paper is to define and study two classes
of locally bicompact spaces?) which may be considered as genera-
lizations of the class of loeally compact, separable, metrisable spaces.
Both generalizations are based on the well known fact that a cha-
racteristic property of spaces of this class is that of being the sum
of a sequence?®) of compact metrisable spaces, each of which is
interior to the next.

Guided by this, a space will be said to belong to the class 8, %)
if 4t is the sum of a sequence of bicompact spaces each of which is in-
terior to the next, and will be said to belong to the class S, if each of
the bicompact spaces in question has the property that each of its closed
subsets is a Gs °). Evidently the spaces which belong to the class 8,
also belong to the class S;, while the class of metrisable spaces
belonging to either class is exactly that of the locally compact,
separable, metrisable spaces. - . .

1) Alfred H. Lloyd Fellow, University of Michigan.

2) All spaces considered in this paper will be Hausdorff spaces. The word
netghborhood (of a point) will be used to denote any set to which the point in
question is interior. A- space is said to be bicompact if every covering of the space
by open sets is reducible to a finite one, and is said to be locally bicompact if each
point has a neighborhood which is a bicompact space. For a detailed study of
such spaces, see Alexandroff and Urysohn, Mémoire sur les espaces topolo-
giques compacts, Verh. Akad. Wet. Amsterdam, 14 (1929), pp. 1-96.

&) By a sequence is meant a denumerable ordered set which is ordinally
similar to the set of positive integers.

4) It seems undesirable, at thiz time, to add another name to the large
number already in use in the theory of abstract spaces. Such a step can well be
delayed until the definitions have proved their utility.

5) See 2), p. 35, also Cech, Sur la dimension des espaces pa,rfa'atement nor-
maux, Bull. Intern. Acad. Sc. de Bohéme, 1932.
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Theovem 1. In order that a space belong to the class 8y it i
necessary and sufficient that it be locally bicompact and that every
covering of the space by open sets be reducible to o denumerable covering.

Proof. Necessity: Let M= 2, M; where M, is bicompact

and contained in the interior (Wlth respect to M) of M. If & is
a point of M there exists an index ¢ such that @ belongs to M.
Then M is a bicompaet neighborhood of a. If (U) is any covering
of M by open sets there exists, for each 4, a finite subelasy of ()
which covers M;. The sum of all these subclasses is a denumerable
covering of M.

Sufficiency: Suppose that M is locally bicompuact and that
every covering of M by open sets iy reducible to a denumerable
covering. Then, since each point of M iy contained in an open set
whose closure ) is bicompact, there exists a denumerable covering
(Un) of M Dby sets having this property. Let M,=0U,. Supposing
that My, My,...,M; have been defined so that each is bicompaet
- and contains the preceding in its interior, let F= M — M M,.
This is & closed subset of the bicompaet space M, and hence ig bi-
compact. As a consequence there is a finite subfamily of (U,) which
covers F;, and the sum of the closures of these sets is a bicompact
space N;. Let Mipi=M;+N;+U;1. Then Mis is a bicompact
space containing M; in its interior. Since My containg Uiy,

. M={,ZI M.

Corollary. If G is an Fy subset of a space which belongs to the
class Sy every covering of G- by open sets is reducible to & demumerable
covering.

Proof. A closed subset of a space which belongs to the class 8,
also belongs to the class 8, and, by the preceding theorem, hasg
the desired property. From the nature of the property itself it
follows that it holds for F, sets.

It has been shown by Alexandroff?) that the class of locally
bicompact spaces is identical with the class of open subsets of

%) If A is a subset of the space M, thé closure of A is the set obtained from
A by adding its limit points and is denoted by ..
7) See 2), p. 70.
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bicompact spaces. The spaces belonging to the class §, allow of a
similar characterization, as follows:

Theorem 2. In order that o space belong to the class 8, it is
necessary and sufficient that it be an open Fs subset of a bicompact space.

Proof. Necessity: This follows at once from the theorem of
Alexandroff quoted above and from the fact that a bicompact
space is closed in every space in which it is topologically imbedded 8).

Sufficiency: Suppose that M is a bicompact space, F=[] Gy
i=1

a closed Gs subset of M. Let H=M and H,=G,. Suppose now, that
Hiy,Hs,...,H; have been determined in such a way that H; is an
open set containing ¥, contained in @;, and whose closure is contained
in H; 1. Since M is normal ®) there exists an open set Hf}y containing F
whose closure is contained in H;. Then H;1=G+1H¥4 is an open
set containing I, contained in Gy, whose closure is contained in H;.
Evidently F:ﬂ1 H, and, if M;=M—H, M——F:%’Mi. Since, for
each 4, M; is a closed subset of M, M;is bicompact and; since the
closure of H; is contained in H;_i. the interior of M; contains M; ;.
Consequently M —F is a space belonging to the class S;.

As suggested by the proof of the preceding theorem, one of
the most important properties of bicompact spaces is that they
are normal. The next theorem shows that this property holds also
for the spaces which belong to the class 8.

Theorem 3. A space which belongs to the class 8; is normal.

Proof. Let M =Z,'M,- where M; is bicompact and interior
i=1

to M. Let E and F be disjoint closed subsets of M and let
E=ME, Fi=M;-F. Let Gy=H,=0. Since M, is normal there
exist open sets GI and H containing G,+E, and H,+F, respeetively,
contained in M, and having disjoint closures. Let G+=G1 [ M. —M—M,],
and Hi=Hf [M,—M—M,]. Then G, and H, are open sets con-
taining Go+ B, and H,+F, respectively and such that G.+ B, and

H,+F, are disjoint. SuppospeJipR that open sets Go,G4,...,Gi,

8) See 2), p. 47.
%) See %), p. 26.
Fundamenta Mathematicao. T. XXX1.
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Ho,Hy, ..., H; such that G; and Hy contain Gt By and Hpq -y
respectively, are contained in M1, and "h_z_wu tihe property that
Gi+ Bryy and Hi--Fiq arve digjoint, Then G- By and L 0y,
are disjoint closed subsets of Mpe and there exist open wets (I,
and Hf. containing these sets respectively, contnined in My and

having disjoint closures.

Hiy=HYy [Migs—M—Mis]. These are open sets containing

Gi+ By and Hi+Fipq respectively, contained in My, and such
00

that Guy+ Bipr and Hipq+Fups are disjoint. The sets r::l;:(}/ and

oo
H=}H; are disjoint open sets containing K and I respectivoly.
=

As might be expected, the distinetion between compact and
perfectly compact 1%) sets disappears when econsidering spaces which
belong to the class S;.

Theorem L. HEvery compact subset of a space which belongs
o the class S, is perfecily compact.

Proof. Let M be a space which belongs to the clasy 8, and
let E be a compact subset of M. By Theorem 3, M iy normal and
hence ) ¥ is a closed and compact set. From the corollary to The-
orem 1 it follows that every covering of £ by open sets is reducible
to a denumerable covering while, since & is a compact space, every
denumerable covering can be reduced to a finite covering 12),
Hence F is a bicompact space and F, being a subset of B, is
perfectly, cormpact 13),

It will now be shown that the first three theorems have precise
analogues in the case of spaces belonging to the class §,.

Theorem 5. In order that a space belong to the class S, il is
necessary and sufficient that it be locally bicompact and that every
covering of any subset of the space by open sets be reducible 1o « de-
numerable covering.

1) A set is called compact it every infinite subset has a limit point; it is
called perfectly compact if, to each infinite subset &, there corresponds a point
o such that every neighborhood of & contains a subset of B huving tho same care
dinal number as the set E itself.

1) See 2), p. 57.

12) See 2), p. 7.

13) See 2), p. 8.
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Proof. Necessity: Let M=>M; where M ¢ 1s.a bicompact
i=1

space contained in the interior of M;.; and has the property that
each of its closed subsets is a Gs. As before, M is locally bicompact.
Also ), if H is any subset of M y Bi=M;E, and (U) is any covering
of E by open sets, a denumerable subfamily of these sets serves
to cover E; and Eis, itself, covered by a denumerable subfamily of (7).

Sufficiency: Let M be a locally bicompact space having the
property that each covering of any of its subsets by open sets is

[~=]

reducible to a denumerable covering. Then, asin Theorem 1, M=} M;
=1
where M; is bicompact and contained in the interior of M ir1. Bvi-
dently M; also has the any-to-denumerable covering property,
from which it follows ) that every closed subset of M; is a Gs.

As an analogue of Theorem 2 one obtains the following:

Theorem 6. In order that a space belong to the class S, it is
necessary and sufficient that it be an open subset of a bicompact space
in which every open set is an F.. S

Proof. Necessity: Let M=2)M; where M; is a bicompaét
’ =

space confained in the interior of M4 and has the property that
each of its closed subsets is a Gs. Since M is locally bicompact there
exists ) a (unique) bicompact space M and a point @, such that
M=M —(ay). It is sufficient to show that each closed subset F
of I is a Gs. Since, from the structure of M, the point a, of M is
of denumerable character %), every closed subset of M which does
not contain @, or which has a, as an isolated point is a G5 Sup-

pose then that F is a closed subset of M which has ap a8 a limit
point, and let F;=MF. Then F1=QG§ where @} is open and

o0
containg G, and ay=[][Gy where Gy is open and contains Gop1.
i==1

14) See ?), p. 38. ) '

18) The character of a point in a neighborhood space is the least cardinai

number y such that there exists a family of neighborhoods of the point, z in

number, which is equivalent to the family of all neighborhoods of the points.
See ?), p. 2.

2%
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(53]

Let Gy=G%.and, for i>1, let Gy=Gf—M; 1. The set (w'./m}{f»‘u

is an open subset of M which contains F. Now suppose that o iy
oa

a point of [JG;, distinet from @, There exists an index 4 such that
=t

a belongs to M; and hence does not belong to any of the sets ¢y

oo |

. . 0 al .
for k>i. As a consequence, & is a point of the set /1 L(l/,_/. Since
= b1

1 is finite there exists a %k'<¢ such that a belongs to @4y for an
infinite number of indices j and, hence, to [Fy. Since a, iy, by

hypothesis, a point of F, it follows that ,lf’m/[[[(iy, or, I8 Gy in M.

Sufficiency: It follows, ag in Theorem 2, that an open subset
of a bicompact space in which every open set is an #, belongs to
the class §,. That such a space belongs to the class 8, is then a con-
sequence of the obvious fact that, if M is a space each of whose
closed sets is a G4, any subset of M is a space having the SAIM6,
property.

Corollary. Every closed subset of a space which belomgs 1o the
class S, is a Gs.

For the spaces which belong to the class S, Theorem 8 can
be replaced by the following stronger theorem:

Theorem 7. A space which belongs to the class 8, is completely
normal.

Proof. This follows at once from the preceding cofollewy
and from a theorem due to Urysohn 16),

A large number of properties may be shown to hold for spaces
which belong to the class S, largely by noting that they are pro-
perties of those bicompact spaces in which every closed set is a Gs.

Some of the more important are gathered into the following
theorem:

1) P. Urysohn, Uber die Méchtighkeit der cusammenhdngenden Mengen,
Math. Ann. 94 (1925), pp. 274-83, note 41y,
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Theorem 8. A space which belongs to the class 8, has the fol-
lowing properties:

1. It is of demumerable character.

2. The set of points of the space is denumerable or has the cardinal
number of the continuum.

3. Hwery non-denumerable analytic set contains a perfect set and
has the cardinal number of the continuum.

4. Every clairsemé set is denumerable.
. Bvery mon-denumerable set contains a condensation point.
. Bvery closed set is the sum of a perfect set and o denumerable set.
. Bvery well-ordered decreasing sequence of closed sets is at
most denumerable.

1 S Ot

Proof. 1. This follows from the fact that the space is locally
bicompact and every closed set is a Gs.

2, 3 and 6: These are properties of bicompact spaces in which
every closed set is a @5 which, of their own nature, extend to spaces
which belong to the class S,.

4, 5 and 7. These properties are equivalent to the property
that every closed set is a @ 7).

) See 2), pp. 35-41.
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