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Ajoutons au sujet du th. 2 que dans les conditions (18) et (20)
on a

(24) Ps* = ah K 320N pour x>=>B/M

et dans les conditions (18bis) et (20Dbis) on a '

(24 bis) P(s* > a} L 32¢/0H pour x> B/4H.

L’inégalité (24) s’obtient de (23), en y posant a¢=1/M. L’iné-
galité (24 bis) se démontre d’une facon analogue. En méme temps,
si l’on remplace dans (24) et (24 bis) s* par s, le facteur 32 dang
les membres droits peuvent &tre remplacés par 2 (ef. Kolmo-
goroff, loc. cit.). ‘

La seconde partie du th. 2 permet aussi de généraliser légd-
rement le théoréme sur le logarithme itéré, en I’étendant aux
variables pas nécessairement bornées. Soit X, X,,... une suite
infinie de variables aléatoires indépendantes, & valeurs moyennes
nulles. Admettons que les X, satisfassent anx inégalités (18bis), olt

=H, (v=1,2,...). Posons H,=Max (H1,H,,...,H,) et supposons que

- (25) H,=o0|B,]loglog B,

Dans ces hypotheses, la probabilité de inégalité (3) est égale i 1.

La démonstration de ce théoréme ne différe pas essentiellement
de celle de M. Kolmogoroff. Notons seulement que la dé-
monstration de la premiere partie de (3), & savoir de l'inégalité
lim ...<{ 1, est une conséquence facile de (21 bis).

I1 résulte du th. 1 que le symbole o ne peut pas étre remplacé
par O dans la condition (25).

(B, —> c0),
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Algebraic Characterizations of Special Boolean Rings?).
By
M. H. Stone (Cambridge, Mass. U. S. A.).

In a paper entitled The Theory of Representations for Boolean
Algebras 2), we have introduced and discussed a certain classification
of the ideals in a Boolean ring (or generalized Boolean algebra).
Here we propose to carry out a detailed study of that classification,
with the particular purpose of discovering what types of Boolean
ring can be characterized by properties of the ideal-structure. In
order to make our examination complete, we have to consider many
details of a somewhat tedious and uninteresting nature. For the
convenience of the reader who prefers to pass over such details,
we adopt a synthetic, rather than analytic, form of presentation;
and formulate our results in a series of theorems and tables which,
we hope, can be easily and rapidly surveyed.

1) Parts of this paper (in particular §§ 1, 5, 12 and most of §§ 6, 7, 8, 10, 11)
were written in 1933-4 and communicated to the Polish Mathematical Society
at a meeting in Warsaw on September 12, 1935. Other parts (in particular
§§ 2, 3,4, 9 and certain aspects of §§ 6,7, 8, 10, 11) were obtained in 1936-7 while
the writer was a Fellow of the John Simon Guggenheim Memorial Foundation
in residence at the Institute for Advanced Study (Princeton) as a temporary
member.

%) M. II. Stone, Trans. Amer. Math, Soc. 40 (1936), pp. 37-111. A know-
ledge of this paper is assumed here, and references to it made by such citations
a8 ,R Th. 24%, ,R Def. 8% and 8o on.
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Our central problem and the confributions made to its solu-
tion in these pages are of interest under two different agpects. In
the firgt place, it is known 3) that the classification of Boolean ringy
is equivalent to the classification of the totally-disconnected locally-
bicompact Hausdorff spaces. Accordingly, the present investigation
may be regarded as a test of the power and effectiveness of a purely
algebraic attack upon a problem of topology. The fact that this
attack proves to be a relatively feeble one is hardly surprising but
is perhaps worthy of detailed consideration. In the second place,
it is known that the structural problems of the symbolic (Aristo-
telian) logic of propositions are mathematically equivalent to the
structural problems of the theory of Boolean rings. Speaking more
precisely, we may say that the theory of deductive systems de-
veloped in recent years by Tarski4) is mathematically identical
with the theory of ideals in Boolean rings (with unit). A brief di-
gression at this point will permit us to establish this identity. The
elements a,b,¢,... of a Boolean ring A (even one without unit) may
be regarded as propositions, a-+b and b may be interpreted as
the propositions “a if and only if 5 and “a or b” respectively, and
the equation a=0 may be interpreted as the assertion |-a or “a is
true” °). The propositions “a and b” and “a implies b’ may then
be introduced by the respective definitions a&b=a-+b-+ab=a\/b,
a—~b=b+ab. A subclass a of A is then called a deductive system
if it has the three following properties: (1) if a=0, then aeq;
(2) if aea and bea, then a&bea; (3) if aca and a—bea, then bea.
Obviously, a deductive system a is non-void, by (1), and contains
aVb together with o and b, by (2). Since a—ab=ab-} d(ab)=0, wo

%) M. H. Stone, Applications of the Theory of Boolean to Rings General
Topology, Trans. Amer. Math. Soc. 41 (1937), pp. 375-481, cited hereafter by
the letter A. In the present connection we refer particularly to Chapter I.

4) A. Tarski, Fund. Math. 25 (1935), pp. 503-526, and 26 (1936), pp. 283-301.
Accordingly many theorems of our paper R, especially those in Ohapter II,
duplicate results of Tarski. I regret that due acknowledgement of this con-
nection was not made in R: my manuscript was prepared and submitted for
publication before Tarski's first paper was available; and I did not have the
opportunity to recognize its bearing on my own paper while the latter was still
under press. While hoth theories originated several years before publication,
Tarski’s priority at the points of close contact seems quite clear. See also the
bibliographical indications contained in a footnote in the end of this paper.

%) These remarks are developed in greater detail by M. H. Stone, Amer.
Journ. Math. 59 (1937), pp. 506-514.
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see further than a—-abea by (1) and hence that aea implies abea
for arbitrary b in accordance with (3). Thus every deductive system
a i8 an ideal, by virtue of B Th.16. Conversely, we can show that
every ideal a is a deductive system. Properties (1) and (2) are ob-
vious from R Th.16. To establish property (3) we first note that
aea implies abea for arbitrary b; and we then observe that aea
and b ab=a—bea imply b= (b+ ab)&ab=(a—>b)&abea. In view
of this identity. between ideals and deductive systems, the present
investigation bears directly on the classification of deductive systems.
The fact that the purely algebraic atbtack proves to be relatively
ineffective means, in this connection, that the profounder aspects
of the theory of deductive systems must be studied by the general
methods of topology. The interesting case for the theory of de-
ductive systems is that where the Boolean ring A of propositions
is countable. According to 4, Ch. I, the problem of classifying such
Boolean rings and their ideals, considered as subrings, is the pro-
blem of classifying the cloged subsets of the Cantor discontinuum
and their (relatively) open subsets — or, equivalently, the problem
of clagsifying all zero-dimensional compact metric spaces and their
open subsets. In view of the special significance of the case where
A is countable, we shall show (in §§ 9, 10) how our general results
appear under it. ‘

As we have already indicated, we find only a few special types
of Boolean ring which can be characterized in terms of the ideal-
classification of R. By way of recompense, we find that most of
these types can bo characterized in many different, equivalent ways.
Our special types fall into two main groups. On the one hand we
have a series of distinet types which can all be obtained from in-
finite totally additive Boolean rings by appropriate combinations
of the following operations: selection of a non-normal invariant
subring or ideal, adjunction of a unit, and direct summation. These
types are analysed in § 2. On the other hand, we have two types
(not distinet from those in the first group) which have a fairly ge-
neral structure. They can be obtained from Boolean rings with
unit by the following operations: selection of a special type of prime
ideal, and direct summation. These types are discussed in § 3. The
only countable Boolean rings, other than the finite ones, occurring
under these various types belong to three of the most restricted
types in the fivst group. ‘

Fuondamenta Mathomaticae, T, XXIX. - : ©. 16
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The general plan of the paper is as follows: in § 1 we present
in tabular form the essential data concerning the behavior of ideals
in various specified classes under the algebraic operations and rela-
tivisation; in §§ 2, 3 we discuss the special types of Boolean ring
described in the preceding paragraph; in § 4 we apply results of
our paper A to obtain topological constructions and interpretations
related to §§ 2, 3; in §§ 5-9 we obtain ideal-structural characte-
rizations and properties of various special Boolean rings, chiefly
those deseribed in §§ 2, 3; in §§ 10, 11 we tabulate (and complete)
the earlier work according to the different possible types of ideal-
structure under the fundamental classification of R. Finally, we
show that the tables of § 1 give “best possible” results except for
special types of Boolean ring ocecurring among those obtained in
the earlier sections. The notations of the paper will be taken di-
rectly from R; but we shall allow ourselves on ocecasion to replace
the term “Boolean ring”’ by the term “ring”, since no other type
of ring is considered here.

§ 1. Algebraic Operations on Ideals. From the ideals
a and b we can form ideals a\/b, ab, a’; and, if a is contained in b,
we can perform the operation — relativisation — of presenting
a a8 an ideal in the ring b. We shall devote the present section to
a study of the behavior of ideals in the various fundamental classes
under these algebraic operations. A knowledge of the results iy es-
sential in subsequent proofs. In § 12 we shall show that these re-
sults are ‘“‘the best possible”.

We begin by a consideration of possible inferences about the
classification of a and b from the assumption that a is contained
in b. The only generally valid assertion we can make is the following

Theorem 1.1. If the ideals a and b in a ring A have the property
that aCh, then
(1) aeS and beP imply aeP;

(2) aeP*AP and HeS imply beP*AP.

We establish (1) as follows: if a is simple and b principal, then
a=aqab is principal by R Th. 26. We then obtain (2) as follows: if a
is semiprincipal but not principal, then a’is principal by R Th. 32 (4,);
if b is simple, then b’ is simple by R Th. 30; hence the relation b'Ca’
of B Th. 20 (1) combined with (1) above shows that b’ is principal;
thus b is semiprineipal by R Th. 32; and the fact that a is not prin-
cipal shows by (1) that b cannot be principal.
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We pass now successively to various similar inferences.

Theorem 1.2, The three accompanying tables cxhibit the de-
pendence of the classification of the ideals o', a\V/b, and ab, respectively
and in that order, upon the classifications of a and b: the class of a
is shown at the left, that of b at the top (in the second and third tables )
and that of the resultant ideal in the appropriate row amd column.

PP NI PP SNy
PP BPIP P S NI PIBP P P RJ
PP PP P S NI PP P S NI
G |& |6 6 6 N3 S|P S 6N J
N (N NN NI S NN R RNXRNI
I | I3 I I II I3 I I I

With the exception of the result that ae?M and beS imply
aVbed, the three tables can be filled in by reference to R Def. 8
and R Ths. 23, 24, 26, 27, 30, 31, and 32. We prove the one result
still necessary, in the following manner: if 4 is an arbitrary element
in (aVb)”’, then a(a)=a(a)(®dVDb')=a(a)bVa(a)b'CbV (aVbh)"'b =
=bV[(aVD)'VD]'=DbV (a'b'VD)=bV[aD'V(aDVD)]=bV[a'Vb] =
=bVa"b'=bVab'=bVa=aVbh by virtue of the relations a'’=q,
b\/b’'=e; and we conclude that (a\Vb)'CaVbC(aVh)’, aVb=(aVb)",
aVbeN, as we wished.

Theorem 1.3. The three accompanying tables exhibit the de-
pendence of the classification of a relative to b when aCbh, of ab re-
lative to b, and of a relative to a\/ b, respectively and in that order, upon
the classification of the ideals a and b in the ring A: the class of a is
shown at the left, the class of b at the top, and the relative class of a
in b, ab in b, or of a in a\/b, respectively, in the appropriate row and
colummn.

PP S NI PP S NI P PSR
PIPP PP PIPPPSS| PPPP PP
PP PP CSCS| PIPP PSS PIPPPCC
S PSS GG GPS G ESG| G|P'S G 66
NANRRNRAN| R|ARNRAR| N|NXRNRRAN
IJIIIJIIII|JIIIIJIII| JIIIIIII
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If o and ¢ are arbitrary ideals, then I Th. 22 shows that the
ideal ac in ¢ has orthocomplement a'c relative to ¢; and that the
ideal a’c in ¢ similarly has orthocomplement a’’c relative to ¢. Thus
aef implies a=a", ac=a'’c, 80 that ac is normal relative to
Similarly ae® implies aVa'=e, acVa'c=ec=¢, #0 that ac iy simple
relative to c. Accordingly, all enfries J, 9, & in the threo tubleg
are obviously justified; and, furthermore, wo see that the remaining
entries (actually P and P*) cannot be “worse” than &, Now in
order that ac be principal relative to ¢ it is necessary and sufficient
that ac be principal in 4. In case aCh we take c==D, ace=qb==q.
With the aid of Th. 1.1 (1) we then see that all entries in the firgt
table are justified. For the second table, we take c¢==D and use the
table for ab in Th.1.2, obtaining justification for all the entries B,
Similarly for the third table, we take c=a\/b, ac==a(a\V/b)==a and con-
clude that a is principal relative to a\V/b whenever it is principal in 4.,

We still have to justify the various entries P* in the three
tables. If a is semiprincipal and ¢ is simple, then at least one of
the ideals a and o' is principal by R Def.8 and R Th. 32; and
hence the corresponding one of the ideals ac and a’c must be prin-
cipal by virtue of Th.1.2. Thus we conclude that in ¢ either ac or
its (relative) orthocomplement a'c ig principal. Since ac is simple
relative to ¢ by our preceding results it must be gemiprincipal re-
lative to c. If we take aCb=c¢, ac=aq, we obtain justification for
the entries P* in the first table. If we take ¢=Db, ac=ab, we similarly
obtain justification for the entries P* in the second table. It we
take c=a\/h, ac=q, and note that aeP*, beS imply aVbheS by
Th.1.2, we obtain justification for all entries PB* in the third table,
with the exception of that in the third rew. Tn the exceptional case
we know that o is simple relative to a\/b from our preceding
regults; since the orthocomplement of q relative to a\/Db is
a'(aVb)=a'd and since aeS, beP imply a'beP by virtue of Th. 1.2,
we conclude that a is semiprincipal relative to a\V/b. This com-
pleties our discussion.

Theorem 1.4 The accompanying table exhibits the dependence
of the classification of the ideal o in a ring A upon the classification
of a relative to an ideal b containing it, and the classification of b in A:
the class of a relative 1o b is shown at the left, the class of b in A s

shown at the top, and the class of a in A is shown in the appropriote
0w and column,. :
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If a is principal relative to b, then
it is principal also in 4, as we have ob-
served previously. If b is principal in A4,
it iy a ring with unit; hence if a is simple
relative to b, it is principal relative to b
by virtue of Th. 1.1 (1) and therefore
principal in 4. Thus all the entries P in
the table are justified. The orthocomple-
ment of a relative to b is a’h, of a’b relative to b is a’’b, in accordance
with R Th. 22, Thus if a is normal relative to b we have a=a''b;
by Th. 1.2 the ideal a’’ is normalin 4; and hence, if b is normalin 4,
the product a’b=a is normal in 4 by virtue of Th.1.2. Similarly,
if a is simple relative to b and b is simple in 4, we have a\a'b=Db,
b<<b’==e¢, a’Db’ and hence a\VVa'=a\VVa'(bVb)=(a\/a'b)Va'b'=bVa'h'=
=bVDb'=e, so that a is simple in A. Thus the entries N and S are
justified. Finally, if a is semiprincipal but not prinecipal relative
to b, there exists an element @ in b such that a=a'(a)b, where a'(a)b
is the orthocomplement relative to b of the principal ideal a(a)Cbh;
if b is semiprincipal but not principal in A4, then there exists an
element b in A such that b=a'(b); and hence we find that a=a'(a)b=
=a'(a)a’(b) is semiprincipal but not principal in A by virfue of
R Th.32 or Th.1.2. Taken with the results already established,
this justifies the entry P*.

We now congider the possible inferences about the classifi-
cation of a relative to an ideal b containing it from a knowledge
of the class of b in 4; and also the possible inferences about the
classification of b in A from a knowledge of the classification of a
relative to b. The only generally wvalid assertion we can make ig
a repetition of a previous result:

F
L2 BBV B |3
88
BB | A
IR
il 3. [er

LB OB

Theorem 1.5. If a and b are ideals in o ring A such that aCb
and if b is principal in A, then a is simple relative to b if and only
if 4t is principal relative to b (and hence also in A ).

We still have to study the behavior of prime ideals in a si-
milar way. The remainder of the present section will be devoted
to the necessary investigations. We first have:

Theorem 1.6. If a is an arbitrary ideal and p a prime ideal in
a ring A, then the classification of the ideal ap is determined as follows:
(1) 4f ap=a or if p is normal, then a and ap have the same clas-

sification in A;

(2) 4f ap=ka and p is not normal, then ap is not normal.
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According to R Ths.38, 39, 41, we may make the following
preliminary remarks: one and only one of the relations ap=a and
ap=a is valid; if ap=a and p is normal, then p iy semiprincipal,
p’ is principal, and p\V/p'==e, ap’=p'=o; if ap=ka and p is not nor-
mal, then a'Cp and p'=p. The case where op=a is frivial
We turn therefore to the case where ap==a. First, Iet p be normal.
Then Th.1.2 shows that ap, where p is semiprincipal, belongs
to the same class (or a preceding class) as does a in the sequence
B, P*, S, X, 3. On the other hand, if we write a=a(pVp')=apVyp’
where p’ is principal in sccordance with the preceding remarks, we
see by Th. 1.2 again that a belongs to the same class (or a preceding
class) as does ap in the sequence B, P*, S, R, J. Hence a and ap
have the same classification in 4. Finally we treat the case where
ap=a and p is not normal. Since apCa, its orthocomplement re-
lative to a is given by (ap)a and also by p'a=0. Hence we have
(ap)'a=np, aC(ap)"'. Since ap is contained in a but distinet from a,
we must therefore have ap==(ap)’”’. Thus ap is not normal in
this case.

Theorem 1.7, If a is an arbitrary ideal, p a prime ideal in
a ring A, then the classification of the ideal ap relative to a is deter-
mined as follows:

(1) if ap=aq, then ap is semiprincipal relative to a;

(2) if apFa, then ap is a prime ideal in a which is normal relative
to a if and only if p is mormal in A.

If ap=qa, then ap coincides with the orthocomplement
o’a=ea=aq of the principal ideal n=a(0) relative to a; and ap is thus
semiprincipal relative to a. If ap==a, we can show as follows thatb
ap is prime in a: if o and b are elements of a such that abeap, then
abep and hence aep or bep; now aea and aep would imply aeap
and similarly bea and bep would imply beap; and we therefore
conclude that abeap, aea, bea imply aeap or beap. If ap is
normal in q, then its orthocomplement relative to a is ap’==p
in accordance with R Th. 38; and we conclude that p' =k,
peR. On the other hand, if p is normal in 4, we have p'==0,
ap’=p’==0; and, by R Th. 38 again, we conclude that ap is normal
relative to a.
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Theorem 1.8, If a is an arbitrary ideal and p a prime ideal
in o ring A, then the classification of ap relative to p is connected
with the classification of a in A in the following manner:

(1) if p s normal in A, then the class of ap relative to p is the same
as the class of a in A;

(2) if p is not normal in A aond ap==q, then the class of ap relative
to p is the same as the class of o in A, except for the special si-
tuations described as follows:

(i) ap is never principal relative to p;
(ii) 4f a 98 principal in A and A has no unit, then ap s simple
but not semiprincipal relative to p;
(iil) 4f a 48 simple in A and A has a unit, then a is principal
in A and ap s semiprincipal but not principal relative to p.

(8) if p is not normal in A and ap==qa, then the class of a in 4
determaines the class of ap=a relative to p in accordance with
Th. 1.3, first table, second column; tf ap s principal relative
to p, then a==ap is principal in A; bul, even in the case where
ap 4s semiprincipal relative to p, the ideal a=ap may be non-
normal in A (as in the special instance a=p).

To prove (1), we first note that, by B Th. 38, the normal
prime ideal p is semiprincipal. If we know the class of a in 4, we
can therefore apply Th. 1.3, second table, second column, to find
the class of ap relative to p. As a result we see that, if a is normal
(simple, semiprincipal, principal) in 4, then the corresponding
statement is valid for ap in p. On the other hand, Th. 1.6 (1) shows
that the class of ap in 4 is the same as the class of a in 4. Hence
the second column of the table in Th. 1.4 may be regarded as yielding
the class of a in 4 when the class of ap relative to p is known. As
a result we see that, if ap is normal (simple, semiprincipal, prin-
cipal) in p, then the corresponding statement is valid for a in A.
Combining these results, we find that ap is normal, simple, semi-
principal, or principal in p if and only if the corresponding state-
ment is valid for a in 4.

We now consider (2). If a is normal in A4, then ap is normal
relative to p by Th. 1.3; and also, if a is simple in 4, then ap is
gimple relative to p. On the other hand, if ap is normal relative
to p, the relation ap=a"p taken together with the relation aVp=e
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established in R Th. 39 yields a=aVap=a"aVa' 'p=a"(aVyp)=

so that a is normal in A. Likewise, if ap is simple relative to p,
we have a\/a'#p, aVa'D(aVa)p=apVa'p=p; since p is prime,
we conclude that aVa'=e, ae®. Thus we have shown that ap is
normal (simple) relative to p if and only if a is normal (simple) in 4.
If ap were principal relative to p, it would be principal, and hence
normal in 4; but Th. 1.6 (2) shows that ap is not normal in 4 under
the present conditions. Thus if ap is semiprincipal relative to p,
it is necessarily non-principal relative to p; and its orthocomple-
ment a'p relative to p is therefore principal both in p and in A.
Since a'Cp by R Th. 41 and since a is simple in 4 by preceding
results, the ideals o', a are respectively principal and semiprincipal
in 4. Moreover, a is principal in 4 if and only if 4 hay a unit, as
wo see by reference to R Th. 25. On the other hand, if a is semi-
principal in A4, then ap is simple relative to p and has the ortho-
complement a’p==a’ in p. Since ap is not principal relative to p,
it is semiprincipal relative to p if and only if o' is principal both
in p and in 4. Thus, if A has no unit and a is not principal, then
ap is semiprincipal relative to p; and if 4 has no unit and a is prin-
cipal, then ap is simple but not semiprincipal relative to p. Like-
wise, if 4 has a unit and a is simple, then a and a’ are both prin-
cipal and ap is semiprincipal relative to p. This completes the dis-
cussion of (2).

The statement (3) is obvious.

§ 2. Totally Additive, Totally Multiplicative, and
Related Boolean Rings. In this section we shall study thoge
Boolean rings in which it is possible to form unrestricted (logical)
sums or products; and shall discuss certain special types of Boo-
lean ring which can be constructed from them by simple algebraic
operations. Bach of our fundamental types is thus characterized
by a certain constructive representation. We shall prove further
that each such representation is unique except for isomorphisms
and certain internal modifications. We introduce all our funda.—
mental definitions at once.

First we define unrestricted sums and products as follows:

Definition 2.1. A non-void subclass a of & Boolean ring A
is said to have the sum b if b is an element of A with the properties:

(1) b>a for every a in a;
(2) ¥ e>a for every a in a, then ¢>b.
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Definition 2.2, A non-void subclass a of a Boolean ring A
18 said to have the product b if b is an element of A with the propertios:
(1) b<a for every a in a;
(2) if e<a for every a im a, them ¢<<bh.

It is immediately evident that the sum and product of a are
unique whenever they exist. It is also evident that, in case a is
a finite class consisting of elements ay,...,an, its sum and product
are the elements a1\V..\Va, and ay...a, respectively.

In terms of the definitions just given for sums and products,
we next introduce:

Definition 2.3. A Boolean ring in which every non-void subclass
has a sum is said to be totally additive.

Definition R.4. A Boolean ring in which every non-void subclass
has a product is sasd to be totally multiplicative.

The types of Boolean ring to be considered in the present
section are now indicated in the definitions which follow.

Definition 2.5. An infinite, totally additive Boolean ring is
said to be of type (a).

Definition 2.6. A Boolean ring which is isomorphic to a non-
normal ideal a with a’=op in a Boolsan ring of type (a) is said to be
of type (By) if a is prime, of type (B;) if a has an atomic basis ®), of
type (By) if a neither is prime nor has an atomic basis.

Definition 2.7. A Boolean ring whick is obtained by adjunction
of a unit?) to one of type (fr) is said to be of type (B%), k=1,2,3.

Definition 2.8. A Boolean ring which is the direct sum 8) of
two Boolean rings of respective types (*) and (**), is said to be of
type (*, **).

We turn now to a study of totally additive and totally multi-
plicative rings. We begin with conditions for the existence of sum
or product.

8) See R Def. 3 and 4, where sum means the finite ring-sum. Since ab==0
implies a--b=a\/b, R Def. 4 may be interpreted in terms of the finite logical sum.

7) See R Th. 1.

8) See R p. 86.
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Theorem 2.1. If a is an arbitrary non-void subclass of @ ring A,

the subclasses by=a'" and by=/a(a) are normal ideals in A. In order
GEQ
that a have a sum, it 4s necessary and sufficient that by be principal,

the sum of a being the generating element of ;3 and, in order that a
have a product, it is necessary and sufficient that by be principal, the
product of a being the generating element of bg.

From, R Ths. 19 and 27, we see that b, and b, are normal
ideals. In order that ¢>a for every a in g, it is obviously necessary
and sufficient that a(¢)Da. Moreover, the relations a(e)Da and
a{e)Db, are equivalent: for a(c)Da implies a(e)=a''(e)Da’'=Db, and
a(e)Db; implies a(¢)Db,=a''Da, by R Th. 20. Now if a has a sum b,,
we must have a(b)Db; in accordance with the results just obtained.
We can also prove the relation a(b;)Ch, as follows: if ¢eb{, wo have
a(e)Chy, a'(e)Dbi'=D1, a(b)a’(e)Db,Da; since a(by)a’(e) is a principal
ideal, we must have a(b;)a’(¢)Da(b;) by the definition of the sum by;
hence we have a(b;)a(c)=0; now by virtue of the fact that ¢ may
be chosen arbitrarily in bi, we conclude that a(b,)bi=p; and it fol-
lows finally that a(b,)Cb;=Db,. Combining these results, we find
that b;=a(b,), as we wished to prove. On the other hand, the re-
lation b;=a(d,) shows that a(b;)Da and also that a(¢)Da implies
a(e)Db,=a(b;) or, equivalently ¢>b,. Hence b, is the sum of q in
accordance with Def. 2.1. In order that ¢<a for every a in a, it is

evidently necessary and sufficient that a(c)CPa(a)=Db,. Thus,
aeq
if a has a product b,, the relation a(b,)Ch, is valid; and, if ¢ is any

element in b,, the relations a(e¢)Cb,, a(¢)Ca(b,) are valid, so that
byCa(by). Hence we find that by=a(b,), as we wished to prove.
On the other hand, if by=a(b,), the relation a(b,)Ch, is trivial;
and a(c)Ch, implies a(e)Ca(b,) or, equivalently, ¢<\b,. Hence b, is
the product of ¢ in accordance with Def. 2.2.

It is now easy to characterize totally additive and totally
multiplicative rings. We have ‘

Theorem 2.2. The following properties of a Boolean ring A
are equivalent
(1) A s totally additive;
(2)  every mormal ideal in A is principal;
(3) A has a unit and is totally multiplicative.

In particular, every finite Boolean ving is totally additive.
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It is obvious from Th. 2.1 that (2) implies (1). On the other
hand, if we assume (1) and take a as an arbitrary normal ideal in 4,
Th. 2.1 shows that a=a'’ is principal; hence (1) implies (2). Since
4 is a normal ideal relative to itself, (2) implies that A has a unit;
and, moreover, (2) also implies in accordance with Th. 2.1 that 4
is totally multiplicative. Thus (2) implies (3). It is also easy to show
that (3) implies (2). If 4 has a unit, every normal ideal a is the
product of the principal ideals containing it, by virtue of R Th. 27.
Thus if (3) holds, Th. 2.1 can be applied with the result that o is
principal, as we wished to show. The equivalence of (1), (2) and (3)
is thereby fully established. A finite Boolean ring is obviously to-
tally additive, since it contains only finite subclasses.

Theorem 2.3. The following properties of a Boolean ring A
are equivalent:

(1) A ds totally multiplicative;
(2)  every normal ideal in A is simple;
(8) every principal ideal in A is totally additive.

In particular, every Boolean ring with an atomic basis is totally
multiplicative.

First let us prove that (1) implies (3). Let a(a) be an arbitrary
principal ideal in 4. Then it is evident that, considered as a ring,
ale) is tobally multiplicative. Since a(a) has a as its unit, Th. 2.2
shows that a(a) is totally additive. Next we show that (3) implies (2).
If a is a normal ideal in A and a(a) is an arbitrary principal ideal
in 4, then aa(a) is a normal ideal relative to a(a) in accordance
with Th. 1.3. Thus (3) implies by Th. 2.2 that aa(e) is principal
in a(a) and hence also in A. By B Th. 26, we find that a is a simple
ideal. Finally, we show that (2) implies (1). Let a be an arbitrary
non-void subclags of 4, let a, be a selected element of a, and let
b= P a(a) be the normal ideal considered in Th. 2.1. By hypothesis,

aeQ
b, must be simple. Moreover, since by=Dbsa(a,), we see by R Th. 26

that b, must even be principal. Hence A is totally multiplicative
in accordance with Th. 2.1. The equivalence of (1), (2), and (3)
is thus established. If a Boolean ring has an atomic basis, then
every principal ideal is obviously finite. Hence (3) above is
satisfied by virtue of Th. 2.2; and it follows that the ring is totally
multiplicative.
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We next prove two fundamental imbedding theorems.

Theorem 2.4. Let A be a Boolean ring; B the class of all its
principal ideals, considered as a Boolean ring in accordance with
R Th. 31; and N the class of all its normal ideals, considered as a
Boolean ring in accordance with B Th. 29.

Then N is a totally additive Boolean ring; and the correspondence
a<>a(a) carries A isomorphically into the subring P of N in such,
@ way that the sum (product) of a subclass of A is carried, when it
ewists, into the sum (product) in N of the corresponding subclass of P.

In particular, A is totally additive if and only if it is 2somor-
phic to MN.

In R Ths. 29 and 31, we have already shown that the indicated
correspondance carries 4 isomorphically into 3, that ¥ is a subring
of M, and that N has the property that its normal ideals are all
principal. By reference to Th. 2.2, we now see that M is totally
additive. If 4 were isomorphic to R, it would obviously be totally
additive; on the other hand, if 4 were totally additive, then the
relation N=P would hold by Th. 2.2 and the isomorphism between
4 and P would reduce to one between 4 and N. Now let a be an
arbitrary non-void subclass of 4, and let 9 be its correspondent
in B under the isomorphism U<—>P. Then the normal ideals b, and b,
associated with a in the manner described in Th. 2.1 are the sum
and product respectively of the class U in N. First let us consider b;.
A member a(a) of U obviously satisfies the relation b Da(a) since
b,Dq; and, if ¢ is a normal ideal with the property that cDafa)
for every a(a) in %, we have ¢Da, ¢’=cDa’’=b,. Thus b, is iden-
tified as the sum of U in M. The discussion of b, is similar. It is
obvious that b,Ca(a) for every a(a) in U; and if ¢ is any ideal,
whether normal or not, the relation cCa(a) holding for every a(a)
in A implies ¢C /” a(a)=b,. Thus b, is the product of 9 in N. Th. 2.1

aeq

now shows that, if a has sum b,, then b;=a(b,) is the correspondent
of b, under the isomorphism A<-+P; and that, if a has product by,
then by=a(b,) is the correspondent of b, under this isomorphism,

The theorem just established is significant in two senses. In
the present context, it is important because it provides us with
a construction for totally additive rings and shows that all possible
tofaally additive rings can be obtained by the construction des-
cribed: one has merely to start with an arbitrary ring and pass
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to the ring of its normal ideals. It has an additional interest in that
it shows that an arbitrary Boolean ring can be imbedded in a to-
tally additive ring with preservation of all sums and products,
even the infinite ones, which are already present ?). From R Th. 29
wo can now read off the algebraic behavior of sums and products
without further difficulty.

Theorem 2.5. Let a Boolean ring A be contained as an ideal
ain a totally additive Boolean ring B. Then the ideal o'’ in B is a Boo-
lean ving A, containing A as the ideal a; A, is totally additive; A is
totally multiplicative; and in A, the ideal a has the property that a'=no.
Newt, let a Boolean ring A be contained as an ideal a with a'=p in
a totally additive Boolean ring B; and let A, be a subring of B con-
taining A. Then A, contains A as the ideal a; A is totally multipli-
cative; and in A, the ideal o has the property that o'=o. Finally, let
A be a totally multiplicative Boolean ring contained as an ideal with
a'=0 in a Boolean ring Ay and let P and N be the Boolean rings
of the principal ideals and of the normal ideals, respectively, in A.
Then the correspondance a—-ala)a carries A isomorphically into P
and A, isomorphically into a subring W, of N; P is an ideal in N
with the property that P'=0; and W, contains B. In particular, if
A=A, this correspondence imbeds A as the ideal B in N, with P'=0.
In order that A, be totally multiplicative, it is mecessary and sufficient
that A, be an ideal in N. In order that A, be totally additive, it is ne-
cessary and sufficient that Wy=RN; and A, is then isomorphic to N.
Consequently, if A, and A, are totally multiplicative Boolean rings
contained as ideals a; and a,, with a;=0 and a;==0, in totally ad-
ditive Boolean rings B, and B, respectively, then any isomorphism
A>A, can be emtended to an isomorphism By<>B,. Taken together
the preceding results characterize the totally multiplicative Boolean
rings as the ideals a, with a’'=o, in totally additive Boolean rings;
and show further that, ewcept for isomorphisms, a totally multiplicative
Boolean ring has essentially only one representation as such an ideal.

If A is contained as the ideal a in-the totally additive Boo-

lean ring B, we show as follows that A is totally multiplicative:

if b is any ideal in A, it is an ideal in q and hence also in B; if b is

, 9) This result is given by Mac Neille, The Theory of Partially Ordered
Sets, Harvard doctoral dissertation (1935); a summary is given in Proceedings
of the National Academy, U. S. A., vol. 22 (1936), pp. 45-50. From letiers,
I understand that Tarski has obtained this result independently.
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normal relative to .4, then b=D0b'q; since b’ is normal in B, it must
be principal in accordance with Th. 2.2; by Th. 1.8 it must there-
fore be simple relative to 4; and hence A is totally multiplicative
in accordance with Th. 2.3 (2). Considered as a ring, the ideal o'’
is totally multiplicative by the result just established. Ag a normal
ideal in B, it is principal and therefore has its generating element
as unit. By Th. 2.2, it is a totally additive ring. Obviously A is
contained as an ideal a in a’’; and its orthocomplement relative
to o' is a’a’’=p. Hence the first part of the fheorem iy established.

The second part of the theorem offers no difficulty. If 4 i
an ideal a, with a'=p, in a fotally additive Boolean ring B, then
4 is totally multiplicative, as we have already seen. If now A, is
& subring a, of B such that q)Da, the class a=aay is an ideal in qy;
and the relation ayDa permits us to caleulate the orthocomplemoent
of a relative to qy a8 a’'ay=pn, a8 we see by direct use of B Det. 7,

The third part of the theorem remains to be discussed. Undor
the assumptions made, we proceed as follows. By Th. 1.3, the ideal
a(e)a is normal relative to a. The correspondence a—-a(a)a there-
fore carries 4, into a subclass A, of N; and, since aea implies
a(a)Ca or a(a)a=a(a), it carries 4, in particular, into P. Thus Ay
contains P. The relations a(a)a\a(b)a=a(a\V/b)a, a(@)a-a(b)a==a(ab)a
show %) that the correspondence from 4, to 2, is a homomorphism
in accordance with B Th. 42. It follows that %, is a subring of 9.
In order to show that the homomorphism A,—, is actually an
isomorphism, we have only to observe that a—»a(a)a==p implies
a(a)Ca’=p and hence a=0. We must now verify the assertion
that the orthocomplement of P in N iz the clags O congisting of
the zero element o alone. If b is in P, it is & normal ideal relative
to a and satisfies the relation ba(a)=p for every « in a. Thus, taking
@ as an arbifrary element b of b, we find that a(b)=Dba(b)=0, b=0
and hence conclude that b==p, as we wished to show. Up to this
point we have not used the hypothesis that 4 is totally multipli-
cative. Now, in order to prove that P is an ideal in N, we bring
it info play. When A is totally multiplicative, Th. 2.3 shows that R
coincides with the Boolean ring & of all simple ideals in 4. From
R Th. 30, we know that P is an ideal in N=6. Since all our hypo-

) 1t must be observed that the sum in N is the normalized sum of R Def. 9;
but, when, as here, the sum of two ideals is normal, it is equal to their norma-
lized sum.
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theses are fulfilled by taking A as a totally multiplicative ring and
pufting A,=4, we can then represent A isomorphically as the
ideal B, with P'=0, in the ring R=S; and Th. 2.4 shows that %
is totally multiplicative. We thus obtain the imbedding theorem
described above. Now, in general, if %, is an ideal in R, it is totally
multiplicative, by results established above; and its isomorph A,
is also totally multiplicative. On the other hand, if 4, is totally
multiplicative, we can show that %, is an ideal in R. Since %, is
& subring, we have to prove that, if a(a)a is an arbitrary element
of Ay and b an arbitrary element of N, then a(a)ab is an element
of A, — that is, is representable in the form a(b)a where beA,.
Since b is a normal ideal in q, it is an ideal in 4, with ab=b. Thus
we may regard a(a)b=a(a)ab as an ideal in the principal ideal af(a)
in 4,. By combining our hypothesis with Th. 2.3 (3), we see that
the class a(a)b has a sum b in a(a). According to Th. 2.1 the prin-
cipal ideal a(b), considered in a(a), is given by a(b)=a(a)b’’, since
a(a)b”” is the second orthocomplement of a(a)b relative to a(a) in
accordance with R Th. 22. Since b is normal relative to a, we have
b=b""a. Thus we find that a(b)a=a(a)b”’a=a(a)b=a(a)ab, as we
wished to prove. Using the result just established, it is easy to de-
termine under what circumstances 4, is totally additive. By Th. 2.2
(3), we see that A4, is totally additive if and only if %, has a unit
and is an ideal in N. Obviously A, has these properties if and only
if it is a principal ideal in M. If A, is & principal ideal in N, then
the relation WOP implies Wy=WDOP"'=0'=N and hence WAy=N;
and, on the other hand, if W=N, then A, is obviously a principal
ideal in M, with e as its generating element. Thus 4, is totally ad-
ditive if and only if =N. When the latter relation holds, 4,and N
are evidently isomorphic. Now let us consider the case of two to-
tally multiplicative Boolean rings 4, and 4, contained as ideals
a; and a,, with ai=p and a:=p, in totally additive rings B, and B,
respectively. We denote by PB(4,), P(4ds), N(4,), and N(4,) the
associated rings of ideals. By the preceding results there exist
isomorphisms Bj«->N(4;) and By9(4,) carrying 4, into P(4,)
and 4, into PB(4,) respectively. Now any isomorphism A,<>4,
obviously establishes an isomorphism PB(4,)«>P(4,) and an ex-
tension of it to an isomorphism N(4,)«>N(4,). Thus if we combine
the isomorphisms By«=>N(4,), By+N(4,) and N(4,)>N(4,), we
obtain an isomorphism By+»B, which carries 4, into 4, in the
same way as the postulated isomorphism 4,<4,.
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The characterization of all totally multiplicative Boolean. rings
follows at once from the preceding results, as stated in the theorem.
So likewise does the essential uniqueness of the representation in
terms of ideals. .

The results up to this point are sufficient to seftle the logical
status of the types (a), (8y), (B2), (Bs); and are also essential to an
analysis of the composite types formed from them. Before pro-
ceeding to this further analysis, it is convenient to state the in-
formation now available about the simple types. We have:

Theorem 2.6. The four types (a), (B1); (Ba); (Bs) of Definitions 2.5
and 2.6 are distinet and exhaust the infinite totally mulliplicative
Boolean rings. A Boolean ring A belongs to type (a) if and only if
it is am infinite totally multiplicative ring with unit. It belongs to one
of the three types (By), (Bs), (Bs) if and only if it is a totally multipli-
cative ring withowt unit. It belongs to the type (By) ¢f and only if it
satisfies one of the following two equivalent criterias

(1) P is a prime ideal in N;
(2) PEP*=C=N.

rasi It belongs to the type (By) if and only if it has an infinite atomic
asis,

If a ring A4 belongs to any one of the four types (a), (8y), (Bs); (Ba),
then Th. 2.2 (3) and Th. 2.5 show that 4 is totally multiplicative.
If it belongs to type (a) it has a unit, by Th. 2.2 (3), and is infinite.
If it belongs to any one of the types (By)y (Ba)y (Bs), it is isomorphic
t0 a certain non-normal ideal a. Since ¢ is not normal, it is not
principal and therefore has no unit. Consequently A has no unit
and, by R Th. 1, must be infinite. We thus see that the type (a)
ig distinet from the aggregate of the three types (By), (B2)y (Bs); and
that in studying these types we may confine our attention to in-
finite totally multiplicative rings.

If 4 is such a ring, the condition that it be infinite being
automatically satisfied if it has no unit, we ghall show that it be-
longs to just one of the four types. First, if A has a unit, then Th. 2.2
shows at once that it ig of type (a). With this the characterization
of type (a) is completed; and it iz evident that the only rings of
types (By), (Ba), (Bs) are fotally multiplicative rings without unit.
If 4 is such a ring, we proceed to imbed it a8 an ideal a with a'=p
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in & totally additive ring B in aeccordance with Th. 2.5. We can
do so in essentially only one way; and the most convenient way
is to identify 4 with the ideal P in 9. Since A and its isomorph P
are infinite, N is also infinite and hence of type (o). Since 4 has
no unit, P is not principal in N and, by Th. 2.2 (2), cannot be nor-
mal in 9t. The preliminary conditions of Def. 2.6 are thus satis:
fied. Now it is evident that the given ring 4 is of type () if and
only if P is a prime ideal in N; moreover, if we recall our earlier
result that a ring of type (f,;) is necessarily a totally multiplicative
ring without unit, we see that the necessity of criterion (1) for
type (B;) is now established. On the other hand the sufficiency of
this criterion is so far established only for totally multiplicative
rings without unit. A brief digression will enable us to remove this
difficulty. If 4 is any ring with P a prime ideal in R, the known
relation P'=0 shows that P is not normal and, in particular, not
principal. Thus 4 has no unit and P==P*. By R Th. 32 we know
that P* is a subring of N. Since.it contains the prime ideal P but
does not coincide with it, we must have P*=N. In consequence
S=N, and 4 must be totally multiplicative by virtue of Th. 2.3 (2).
It now follows that A is of type (). In this proof, we have found
that criterion (1) implies the relations P==P*=G=N of criterion (2);
but, conversely, these relations show by B Th. 32 that P is a prime
ideal in P* and hence also in N. Having justified our two criteria
for type (B,), we resume our discussion of the case of a totally multi-
plicative ring A4 without unit. Our next step is to show that if 4
has an atomic basis, it is not of type (B,). Turning our attention
to the ideal P in N, we see that P has an atomic basis B. Obviously
the ideal generated by B in N is P. By R Th. 20, we see that B""DOP
and hence that B'CP'=0, B'=0. By R Def. 5 and 7, the latter
relation means that B is a complete atomic system in N. Since every
normal ideal in N is principal, R Th. 62 shows that N is isomorphic
to the Boolean ring of all subclasses of a fixed (here necessarily
infinite) class E, the correspondent of B being the system of all
one-element subclasses of E. If we now choose b and ¢ as elements
of N corresponding to two disjoint infinite subclasses of H, we see
that bc=p but that neither b nor ¢ is in P. Hence P is not a prime
ideal in N, and A is not of type (8,). It follows that the types (8,)
and (f;) are distinet. It follows also that in a ring of type (j;) the
relation P*==& must hold: for the relation P*=G=N would imly
Fundamenta Mathematicae, T\ XXIX. 16
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that P is prime in N=P*. To determine whether 4 iy of type (B,)
or not, we therefore have only to ascertain whether 4 hay an ato-
mic basis or not. Obviously a totally multiplicative ring without
unit, being infinite, cannot have a finite atomic basig. On the other
hand, any ring with an atomic basis is totally multiplicative by
Th. 2.3; and, if the atomic basis is infinite, the ring obviously can-
not have a unit. Hence any ring with infinite atomic basis iy of
type (B;). The characterization of rings of type (f;) is thereby
completed. Finally we observe that the remaining type (f,) was
50 defined as to take in all those totally multiplicative ringy without
unit which are not of types (f;) or (f;). The proof of the theorem
is thus brought to a close.

The study of the various composite types depends not only
upon the preceding results but also upon some further information,
which we shall present next. We first give a few elementary pro-
perties of direct sums.

Theorem 2.7. If a Boolean ring A is represented as o direct
sum A\ A,, then:
(1) A, and A, are simple ideals in A;
(2) A is totally multiplicative if and only if A, and A, are totally
multiplicative;
(3) A has a wnit if and only if A; and A, both have umits;
(4) A s totally additive if and only if A, and A, are totally additive.

If a Boolean ring A is represented as a direct sum A¥\ ds where
At is obtained from a ring A, without unit by the adjunction of a wnit, then:
(1) Ay, Az AL, and A,V A, are ideals in A; the ideals AT and A,
are simple; the ideals A, amd A,\ A, are non-normal; and the
ideal A\ A, is prime;
(2) A is totally multiplicative if and only if A, is of type (B;) and A,
s totally multiplicative;
(3) 4 has a unit if and only if A, has wnit;
(4) A is totally additive if and only if A, is of type (By) and A,y i
totally additive.

In particular, the ring A* obtained by adjunction of a unit to
aring A wzthout undt is totally additive if and only if A is of type (By).
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By R Th. 51, the summands 4, and 4, are simple ideals 0y
and a, respectively in the direct sum A=4,\/ 4,. If a is an arbitrary
ideal in 4, then a=aa,V aa, If a is normal in 4, then aa, and aa,
are also normal in 4 by Th. 1.2. Conversely, if ao; and aa, are nor-
mal in 4, then so is a. To prove this, we begin by calculating (ag)"”
and (aay)”. We write (aa;)"'=(ag;)"a,\/(aa;)"'a,; here we may regard
the first term on the right as the second orthocomplement of the
ideal aa;=(aa,)q, relative to a; in accordance with B Th. 22 and
hence find that (aq;)”’a;=a"a;; and similarly we may regard the
remaining term as the second orthocomplement of the ideal
o=(aa;)a, relative to a, and hence find that (aq,)’a,=p. Thus we
have (aq,)"=a’’q;; and, in the same way, (aa,)'=a’a; Now, if
ag; and aa, are normal, we have a==aa,\/ao,= (aa,)"”V (aq,)" =
=a"a;Va'a;==a', 80 that a is also normal. Next Ths.1.2 and 1.3
show that aa, is normal in 4 if and only if it is normal relative to
the simple ideal a, containing it; and likewise that aa, is normal
in 4 if and only if it is normal relative to a,. Thus, a is normal if
and only if an; and aa, are normal relative to a; and a, respectively.
It is now easy to discuss the conditions under which 4 is totally
multiplicative, using the test of Th. 2.3 (2). If a is any ideal con-
tained in a, and normal relative to a,, then the preceding results
show that a==an;Vaa, is normal in 4. Hence, if A is totally multi-
plicative, a is simple in 4 and, according to Th. 1.2, is also simple
relative to a;. Thus a;, and a, likewise, are totally multiplicative
rings. On the other hand, if a is any normal ideal in 4, aq; and aq,
are normal relative to o; and a, respectively. Hence, if q;, and a,
are totally multiplicative, aa; and aa, are simple relative to a, and a,
respectively and, according to Th. 1.3, are simple also in A. It fol-
lows that a=aq,V aa, is simple in 4. Thus 4 is totally multiplicative.
We have thereby proved that A4 is totally multiplicative if and
only if 4, and 4, both are. If 4 has a unit, both simple ideals q,
and a, are principal so that 4, and 4, both have units; and, if 4,
and A4, both have units, then so does their direct sum 4. An easy
application ¢f Th. 1.2 (2) to the preceding results now shows that 4
is totally additive if and only if 4, and 4, both are.

In the direct sum AfV Az, the summands Af and A4, are simple
ideals as before. Moreover, by R Th. 37, 4, is a non-normal prime
ideal in A}. Hence we see that A4, is a non-normal ideal in 4; and
also that 4,\/ A4, is a non-normal ideal in 4, by virtue of the results
established in the preceding paragraph.

16*
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To show that 4,V 4, is prime, we proceed as follows. Let ¢
and b be elements of 4 with abed,\/ 4,. We can then write ¢= ty by,
b=a,+ b, where a;,a, are in A} and. b, b, are in Ay It is then clear
that ab=a,a,+b,b, where a4, is in 4, and b,b, in Ay By virtue of
the fact that 4, is prime in A¥, at least one of the elements Qyy e
is in 4,; and then the corresponding element & or b must belong to
4,V 4,. Accordingly 4,\/4, is a prime ideal in 4. If ‘we apply the
results of the preceding paragraph, we see that AtV A, hag a unit
if and only if 4, does: and, since AY, being a ring with unit, is
totally multiplicative if and only if it is totally additive, that A
is totally multiplicative (totally additive) if and only if 4, is totally
multiplicative (totally additive) and A} totally additive.

To complete our discussion we must show that a ring A* ob-
tained from a ring 4 without unit by the adjunction of a unit is
totally additive (or, equivalently, totally multiplicative) if and
only if 4 is of type (f;). Since 4 is a non-normal prime ideal in A*,
the assumption that 4* is totally additive immediately identifies A
a8 of type (B,) in accordance with Definition 2.6 and Theorem 2.6,
On the other hand, if 4 is of type (f,), it can be imbedded as a non-
normal prime ideal in a totally additive ring B. 1t i§ evident that B
coincides with its subring generated by the prime ideal 4 and the

unit of B. Hence B Th. 1 shows that 4* is isomorphic to B and
thus totally additive.

. In further applications of direct sum representations we find
the following definition useful:

Definition 2.9. If a Boolean ring A is represented in two ways
as o direct sum:

A=A4,VA4,, A=4,V 4,
where

4,= 1V By, 'A3=BIV'B4)

4,=B,VB,,  A&=B,VB,

then each representation is said to be obtained from the other by inter-
chamge of the direct summands By and B,

The connection hetween the results of Th. 2.5 and represen-
tations by direct sums is now easily discussed. We have:
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- Theorem 2.8. The following assertions concerning a Boolean
ring A, are. equivalent:

(1) A, contains an ideal o with a'=o which, considered as a ring,
18 totally multiplicative and which together with an 6lement ay
not in a generates Ag; v .

(2) there ewists a totally additive Boolean ring B containing a sub-
ring By which is isomorphic to A, and which is generated by
an ideal b, with b'=o, and some element b, not in b;

(3) there ewist totally Wmltiplimtivc Boolean rings A, and A,, where
A, has no unit, such thut 4, is isomorphic to a direct sum AFV A,
of the kind discussed in Theorem 2.7.

In (1) the ideal a is not uniquely determined in geneajal but is
necessarily prime, so that aq 18 free to vary outside a; and in (2) the
ring B is mecessarily isomorphic to T{4,) in sueh o way that th(_: cor-
respondent of B, ts P(A,), but the correspondent of b in %('AO)'%' @ot
uniquely determined in general. The representation (3) is szefu'nse
not uniquely determined. It is possible, however, to pass rewfrsz{)ly
from a representation of any kind to one of any other by the following
processes: if a representation (1) is given, we pq.mi B=3(4,), Be=P(4,),
b=P(a) and by=a(a,) to obtain a wepresentc.wwn (2), and 1_11=a(wo)c},
Aqs=a'(a) to obtain a representation (3); i¢f a representation (2) is
gtven, we take o and a, as the respective cowaspondems.of b and b,
under the isomorphism Ag<>B, to obiain a 7"ep.resentatwn (1‘), and
put Alza(bo)b, Ao=0a'(by)b to obtain a mpresenmm(wi (3); and, *'Lf.a, re-
presentation (3) @8 given, we put a=A;V A, ag=ef, where el is the
unit of A¥, to obtain a representation (1), and B;%(Al)\(ift(Ag),
b=PB(44)V P(4,), by=e; where ¢, is the umt.()]‘ N(4,), to obtam a re-
presentation (2). In order that a Boolean ring (9”ep7tesentable. n these
equivalent forms be totally multiplicative, the following conditions are
separately necessary and sufficient:

(1) alag)a is a ring of type (By);
(2) alby)b is a ring of type (By);
(3) A, 45 a ring of type (f.).

First, let 4, have a representation (1). Then the subring of 4,
generated by a and a, consists of all elemen‘ﬁg a and ayta, wl?ere
aea; and coincides with 4,. Consequently 4,/a is a two:elerr{ent ring,
and a is prime in A. The relation a’=o ghows that a is not normal.
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By Th. 2.5 the correspondence a—a(a)a carries 4, isomorphi-
cally into a subring Ay ef MN(a), a isomorphically into the
ideal P(a) in N(a). On the other hand the correspondence c—a(a)
defines the isomorphism 4<>P(4,). Combining these corresponden-
ces we obtain an isomorphism PB(4,)<>W, which leaves P(a), as
a common part of PB(4,) and U, invariant. We shall show now
that this isomorphism can be extended to the rings R(4,), N(a).
From Th. 1.3, we know that the correspondence b—ba carries a nor-
mal ideal b in 4, infto a normal ideal relative to a. Moreover, if b
is a normal ideal relative to a, the relation b=b"a is valid and the
normal ideal b in 4, is carried by the above correspondence into
the prescribed ideal b in a. If we apply B Th. 22 to the ideal
(6 VDhy)a= (byaV/bsa)a in a we find that (b, Vby)""a==(bya\Vbya)"a.
Hence the relations b,—»bya, b,—bya imply

b;b,—b,a-bsa, (b1 VD) "—(b;aV bsa) 0.

In words the second relation becomes: the normalized sum i car-
ried by the above correspondence into the normalized sum, relative
to a, of the correspondents of the original summands. This cor-
respondence therefore defines a homomorphism R(A4),—~R(a). If
b—ba=p, then bCa’=p, b=n. Hence the indicated homomorphism
%s an isomorphism, as we wished to prove. We now see that PB(a)
is an ideal in (4,) as well as in P(4,). Hence we obtain a repre-
sentation (2) for 4, by putting B=9%N(4,), By=P(4,), b=R(a),
by=a(a,)eN(4,).

. Assgming still that 4, has a representation (1), we note that q,
being prime, must contain a'(a,) in accordance with R Th. 41.
’Thus we may represent 4, as the direct sum a(ae)Va'(a,) and a
ag th'e _dlrect sum  a(a)aV a'(ag)=a(a,)aV a'(a,)a. Since a is totally
multiplicative, both a(ay)a and a'(ap) are totally multiplicative by
Th. 2.7. Since a is prime and non-normal in Ay, Th. 1.7 shows that
a(@p)a is prime and non-normal relative to a(ay). Hence a(a,) is
ge.nerafced by a(ap)a and a, — that is, arises from the ring a(a)a
without unit by the adjunction of the element @y a8 unit. Thus if
we put A;=a(ay)a, A,=a'(a,), we have Af=a(ay); and find a ro-
presentation (3) for A,. ‘

Next we suppose that A, has a representation (2). According
to Th.' 2.5, the representation of By in terms of b and b, is a repre-
sentation (1);. and there iy an isomorphism B«>N(b) carrying b into
P(b) and B, into a subring B, of N(b). The results of the preceding
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paragraph show further that there is even an isomorphism B«>%(B,)
carrying B, into PB(B,) and b into B(b), where P(b) is an ideal not
only in PB(B,) but also in N(B,). The isomorphism As>B, shows
that the correspondents a and a, of b and b, respectively provide
a representation (1) for A, This isomorphism induces an isomor-
phism N(A4,)<>N(B,) carrying P(4,) into P(B,) and thus leads
to an isomorphism B<«»>M{4,) carrying B, into P(4,) and b into
the ideal P(a). We therefore see that the given representation (2) is
isomorphic to the one constructed from 4, in the manner described
in the preceding paragraph. Since B, is not an ideal in B, except
in special cases, we have a(by)B,V a'(bo)BoCla(be)V a'(by)1By=B, by
R Th. 15 (5), but cannot replace the inclusion by equality without
further argument. Since a(by)B,V a'(be)B, contains a(by)bV a’(by)b=b
and also by, it is evident that it contains, and hence coincides with, B,.
Accordingly we see that B, is represented as the direct sum
a(by)ByV a'(bg) By where a(by)B, has b, as its unit. The ideal b in B, is
represented at the same time as the direct sum a(b,)bV a'(by)b. Since
b and b, provide a representation (1) for B, the results of the pre-
ceding paragraph show that, on pubiing 4,=a(b,)b, 4s=a'(h,)b, We
obtain A¥=a(by)B, and By=AfV A4, Thus B, and its isomorph 4,
have a representation (3).

We start now with the assumption that 4, has a representa-
tion (3). We may, without loss of generality, identify 4, with ATV As.
Th. 2.7 shows immediately that on putting a=4,VA4, and a;=ef,
where e} is the unit of A¥, we obtain a representation (1) for A,.
If we now use this representation to reconstruct a representation (3)
of 4, as in the preceding paragraphs, it is obvious that we recover
the given representation (3). By Th. 2.5 we know that A=A/ A,
is iscmorphic to the subring of M(a)=N(4,VA4,) generated by
the ideal P(a)=P(4;V 4,) and the element a(ag)=a(el)eT(4A;V 4,).
Since A, and A, are simple ideals in the direct sum 4,V 4,, they
may be regarded as elements a; and a, of 9(4;V4,). Since they
satisfy the relations a;Va,=e=A,V 4, and aa,=0, they define a
direct sum representation of (4, 4,). By Th.2.7 and our present
hypothesis, we know that M(4,VA4,)=6(4;V4,), N(4,)=S(4,),
N(A,)=6(4,). Now the direct sum representation of S(4,\V4,)
is easily caleulated on the basis of B Th. 51 and Ths. 1.2, 1.3, and 1.4.
Woe find that each element of S(4,V 4,) is represented as the sum
of components which are unrestricted elements of S(4,) and S(4,)
respectively. In particular, an element of P(A4;\V 4,) is represented
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as the sum of components which are unrestricted elements of §3(4,)
and P(4,) respectively. Thus we find that J(A,;\/ A,)=T(4;)VRN(4,),
P4,V A)=P(4,)VP(4,). Moreover the element a(ay)=a(el)eI(4, V 4)
is easily identified with the unit ¢; of (4,). Hence, if we put
B=9(4,)V R(4,), b=P(4,) V PB(4,), by=¢e;, Wwe obbain a repre-
sentation (2) for 4, Since we obviously. have a(b,)b=P(4,) and
a'(by)b=P(4,), the reconstruction of a representation (3) from
the representation (2) just found yields a representation essentially
the same as that assumed at the outset.

In view of Th. 2.7 we see that a ring A, represented in the
form (3) is totally multiplicative if and only if 4, is of type (f,).
The correspondences between the three different representations
thus lead to the equivalent conditions stated above for A4, to be
totally multiplicative. :

The effect of Th. 2.8 is to show that all the Boolean fings A
obtainable from totally multiplicative rings without unit by a lea.si[;’
possible proper extension can be constructed in either of two equi-
valent Ways: as specific subrings of infinite totally additive rings
or as direct sums of the form (3). Naturally, our interest now cen-
t;:;rs ﬁn the rings 4, of this form which are not totally multiplicative.

e have:

- Zjheorem 2.9. A non-totally-multiplicative 'Boolean ring A
which is representable in any of the three equivalent forms (1), (2) (3t))
of Th. 2.8 has in each case a representation which is UNLGUe m’ the
following sense:

(1) for a representation (1), the ideal a is uniquely determined;

(2) for a representation (2), the isomorphism B«>N(A,) carrying
B, into P(4,) carries b into a uniquely determined ideal in N(A,).

(3)  for two representations (3), A=AFN A=A/ A, the direct sums
A, VA, and A;\ Ay are obtained from each other by an exchange
of totally additive direct summands.

In case .A(, also has a wnit, the various representations can be
reduced to umique forms by the following normalizing conditions:
(1) for a representation (1), ag=6;
(2)  for a representation (2), by s the unit in B:
(3) for a representation (3), A is o one-element ;ing so that
A=Af=A/A,.
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Let there be given two representations (1) for a ring Ay in
terms of ideals a, and a, respectively; and assume that A, is not
totally multiplicative. Then by Th. 2.3 there exists a non-simple
normal ideal ¢ in A,. According to Th. 1.3, the ideals a;c, a¢ are
normal, and hence simple, relative to the totally multiplicative
rings a; and a, respectively. Thus we have the relations:

Ve,
Since a, and a, are both prime we conclude that a;=cV ¢'=a, With
this result we have established the uniqueness-assertion of the
theorem. In view of the results of Th. 2.8, the uniqueness assertion
for representations of the form (2) follows immediately; and that
for representations of the form (3) is proved in part, to the extent
that Ag=AF\/ A;=—A¥\V A, is now seen to imply a=4,\V 4,=4;V 4,
Since the two representations Af\/A» and A§V A4, correspond to
representations (1) given by a, @, and a, by, Where a, and b, are any
suitable elements not in a, we have:
Az =a(by)a,
A 4= a'(bo),

oV a ¢ = ay, AotV st = ay.

A= alay)a,
A= a'(a),

by the results of Th. 2.8. If we now introduce

By= a(ao)ﬁ(bo)‘i: By=a'(ag)a’(by),
By=a(ay)a’(be), By=a'(ag)alby),

we see immediately that 4,V A4, is obtained from AV A, by ex-
change of the direct summands B, and B, in accordance with Def. 2.9.
By Th. 1.2, B, and B, are principal ideals in 4, and in a; hence
both are totally additive rings by Th. 2.3 (3). Thus the uniqueness-
assertion for representations of the form (3) is established. In view
of Th. 2.7, any exchange of totally additive direct summands within
a=A,\/ A, is permissible. :

In case A, has a unit we may obviously take az=e in the
representation (1). It then follows that in any representation (2),
the subring B, contains the unit of B: for the isomorphism B—Jt(4,)
carrying B, into the subring PB(4,) of N(4,) obviously takes the
unit of B into the unit a(e)eP(4,) of M(4,). Accordingly, we may
take b, as the unit of B. Finally the representation (3) corresponding
to the choice a,;=e is evidently given by Ag=Af=A¥\ A where
A,=a(e)a=a and 4,=a’(¢)=a(0)=0. :
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We can now give our series of fundamental types in full.
‘We have:

Theorem 2.10. The infinite Boolean rings constructed from
(infinite) totally additive Boolean rings by the selection of ideals,
finite direct summation, and at most one unit-adjunction applied to
a ring without unit fall into emactly nine distinct types — namely, the
types (a)J (ﬂl)s (182)7 (/33)’ (ﬁj)y (ﬁf)y (ﬂ;,ﬂl), (ﬂfﬂﬁ)i and (ﬁ:; /33) A T’i%g
of type (a), (By)y (Ba)y (Bs)y (B5), or (BF) has a unique representation as
a member of this type; a ring of type (B%,p1) or (B5,p:) has a repre-
sentation as a member of this type which is unique except for an ex-
change of totally additive direct summands between the two underlying
components; and a ring of type (B3, Bs) has a representation as a mem-
ber of this type which is unique except for an exchange of finite direct
summands between the two underlying components. As a special case
under type (B,), we note the type (By,p,); any ring of this type
has a representation as a member of this type which is unique except
for an exchange of totally additive direct summands between the
underlying components. Other constructicns of these types of ring
are given in Th. 2.8

The types (a), (1), (8.), (Bs) have already been discussed in
Th. 2.6. Since they exhaust the infinite totally multiplicative rings,
we have to show that the five remaining types ave distinct and
exhaust the rings treated in Th. 2.9. Th. 2.7 enables us to discuss
the rings of type (*,**) more exactly. They are all infinite and to-
tally multiplicative. Such a ring is of type (a) if and only if it is of
type (a,a). Similarly such a ring is of type (By) if and only if it is
of type (By,a). It is easily seen that such a ring is of type (B,) if and
only if each of its components has an atomic basis; in other words,
if and only if the ring is of type (B Bs)- Consequently, the rings
of types (Bya) (Bya), (BB (BaBr)s (Basfr)y (BarBa)s (Bayfa) are all
included under the type (f,). It is obvious that we could retain
some cf these special types for the purpose of subdividing the type (,).
As none of them except the type (By,f1) has any further interest
a8 an individual type in this paper, we shall not do so. So far as
tl'xe type (B, 4,) is concerned, it appears as a special case under types
dm.eussed in the following section. We shall therefore prove the
umqueness-assertion concerning the representation as member
of this special type. If A VA=A,V A, are two representations
of a ring 4 of type (3,4,), we put:
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A1= B1\/B2: A3=B1VB45
AZ:B3VB4, 4‘142 Ba\/Bin
where B, = 4,4, By=A4,44,
Bg—_- A2A4, B4= A2A3-

Since 4, and 4, are simple ideals in A their intersections B, B,, B:'t’ B,
with the simple ideals 4, and A, are simple in A and also in which-
ever of the ideals 4,4, contains them, as we see by reference
$o Ths. 1.2 and 1.3. Now according to Th. 2.6, the fact that A, and 42
are rings of type (f,) implies that the ideals BI,B2,.BP,, B, are semi-
principal in whichever of the ideals 4,4, contains them. S_lnee
neither 4, nor 4, has a unit, only one of the two ideals contained
in each of 4, and A, can be principal. Our notation can be. 80 a..d—
justed, by proper assignment of the indices 3 and 4, that ?’3? is prin-
cipal in 4, and B, in 4, Thus B, and B, are totally additive rings
in accordance with Th. 2.3 (3). We have therefore proved that each
of the given representations arises from the other by an exchange
of totally additive direct summands. Th. 2.7 shows furthermore
that any such exchange is permissible, in that it leaves each com-
onent of type .

P Next v?:(f cé]f;i)der the types (BY), (%), (B%). Th.2.7 shows that
a ring of one of these types is totally multiplicative if and only
if if; is of type (Bf); and is then of type (a). Thus Th. 2.9 shows that
the two types (%) and (f%) are distinct and together exhaust the
rings with unit considered there.

We now consider the composite types (5%, p1), (B%,B2); (BF,Bs),
(%, B1), (P, B2), (B%,Ps). Th.2.7 shows that no r'ing of_any of these
types is totally multiplicative or has a unit. It 1s obvupus therefore
that these types exhaust the rings without unit 0011s1d'ered ‘under
Th. 2.9. Since the representation of one of the lafter rings in ?he
form A}V A, is unique except for exchanges of totally addl?:lve
direct summands between the components A; and A,; al}d since
Th. 2.7 shows any such exchange to be permissible — we find l;ha,t
the type (f%,p1) isincluded under the type (B%,p1), the -types (B%,Bs3)
and (B, ) under the type (B3, B2). We discuss as typical 1‘:]lae case
of type (B%,B1). Shifting a direct summand of type (a) from tie eom-
ponent A4, of type (p,) to the component A, of type (f;), we obtain
a new representation in which, according to Th. 2.7, 1lzhe compo-
nents A, and A, are now of types (Bgya) and (B,) respectively. Snfme
the type (fsa) is included under type (B5), the new representation
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exhibits the original ring as a member of type (8%, 51). Th. 2.7 shows
that no ring of type (%, f1) is & member of either of the types (B, f2)
and (Bg,ps): for an exchange of totally additive direct summands
between the components of a direct sum replaces a component
of type (5,) by one of type (B,). For a similar reason no ring of type
(B3, Ps) is a member of either of the types (55, B) or (%, p1). In fact,
a totally additive direct summand in a ring of type (f;) is necessa-
rily a principal ideal in the ring and must therefore be a finite ring.
Hence the only exchange of totally additive direct summands bet-
ween the underlying components of a ring of type (B, s) is an ex-
change of finite direct summands; and such an exchange obviously
leaves both components with finite atomic bases. We thus conclude
that the three types (8%,p1), (53, 5:), (B%,ps) are distinet and together
exhaust the rings without unit considered in Th. 2.9. We have pro-
ved incidentally that the representation of a ring as a member of
any of these three types is unique in the sense described above.

The results established in the preceding paragraphs show that
the operations admitted here cannot produce any composite type
oth_er than the nine explicitly investigated: for example the com-
posite type ((By, f2)" Ba), (o (B, (B1; B2)))) is seen to reduce first to
the type (67, 4y); (@ (fy,s))), then to the type ((8%,8,), (a,B,)), then
to*the 6yDe ((B1,65); B2) or (B, (By, o)), and thus finally to the type
(ﬂz., B2). It is essential, of course, that not more than one unit-
adjunction is allowed in the process of domposition.

' A. further refinement of type could be introduced by the con-
81(161‘?;131'011 of the systems of atomic elements, if any exists, in totally
fnulmphcative rings. While we shall not consider such a ’refinement
in the remaining sections of the paper, it seems appropriate to
complete‘m.lr investigationg of totally multiplicative and related rings
by examining the part played by atomic systems. We have: |

e mf};leorem'g.'IL-With respect ?io the existence of atomic elemenis,
ally multiplicative Boolean rings may be classified as follows:

(1) rings without atomic element;

(2)  rings with complete atomic systems;

(3)  direct sums of the preceding two kinds of ring.

B ‘Any totallg{ mu.ltiplicative ring A comtaining an incomplete
omac system s is uniquely representable as o direct sum s'\/s' where

s' and 5" are totally multiplicative ri j
resmectiocly _ D wngs belonging to classes (1) and (2)
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The proof consists in establishing the last statement of the
theorem:. By R Th.19 the classes s’ and s'' in 4 are ideals; by
R Ths. 20 and 27 ,both are normal in 4; and by Th. 2.3 (2) both are
simple in A. By hypothesis s'#p, s''4=p. It is clear that s’ contains
no atomic element; and it is easily shown that the orthocomplement
of s relative to s’ Ds is s's’’=p and hence that s is a complete atomic
system in s”’. Since s’ and s'’ are simple ideals in 4, we can repre-
sent A as the desired direct sum A=s"\/s'’ in accordance with
R Th. 51 and Th. 2.7. .

We conclude by recalling a known algebraic criterion for th
existence of a complete atomic system in a totally additive Boo-

lean ring 1?).

Theorem 2.12. In a totally additive Boolean ring A the fol-
lowing properties are equivalent:
(1) A contains a complete atomic system s;
(2) ¢f W is any non-void family of two-element subclasses a of A
and if B is the family of all those subclasses b of A which are

coniained in Ya and have exactly one element in common with
aeA
each a in WA, then the distributive law is valid:

P Se=§ Pa
aed aea  beB aeb

In order that a Boolean ring A be isomorphic to the Boolean
ring of all subclasses of a fiwed class B, it is necessary amd sufficient
that it be totally additive and have the equivalent properties (1) and (2).
In such a Boolean ring, the following gemeral form of the distributive
law is valid: if A is any non-void family of non-void subclasses a
of A and if B is the family of all those subclasses b of A which are
contained in Sa and which have exactly one element in common with

. aeA
each a in A, then P S“=S Pa
aed aea  beB aeb ‘

We here use the symbols \§ and P to indicate product and
sum as defined in Def. 2.1 and 2.2. First let us show that (2) im-
plies (1). Let each class a consist of an element o and the corres-
ponding element o', and define the family U by permitting o to
run over the entire ring 4. Of course each class a occurs twice in .

11y A, Tarski, Fund. Math. 24 (1935), pp. 177-198 especially p.196. The
result was found in collaboration with. A. Lindenbaum.
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We then have e=/ Sa=S a. Hence the subclass s of 4
acd aea be®B aed

consisting of those elements b such that b= }B7a=f=0 for beB is cer-

ae
tainly not void. We shall show that s is a complete atomic system.
From our definition of the classes b, we see immediately that, if ¢
is any element of 4 and b any member of B, then b contains either
¢ or ¢'; and that, accordingly, either ¢ Pa: Pa or ¢ fb)a=0. In
: ae

ach aeb
particular, if ceA and bes, then either ¢ch=>b or ¢b=0. Hence s is
an atomic system in A4 in accordance with R Def. 3. Now it is evi-
dent that e=Sb. By Th.2.1 we have s''=e¢, 5'=n. It follows that
bes

the atomic system s is complete in accordance with R Def. 5.

By R Th. 62, a Boolean ring A which is totally additive and
satisfies condition (1) is isomorphic to the Boolean ring of all sub-
classes of a fixed class E; and convergely, in such a ring the final
statement of the theorem is easily proved: an element of F belongs
to P Sa if and only if it belongs to some « in each class a; an

ae¥ aea

element of E belongs to S }b) a if and only if it belongs to every a
be®B ae

in some class b; and thus the definition of the classes b in terms
of the classes a implies the desired equality. It follows that in a fto-
tally additive Boolean ring (1) implies (2) as a special case of the
equality just proved.

§3. Barrier Ideals and Associated Types of Boolean
Ring. In the present section we shall introduce a new class of
ideals — the barrier ideals — and two associated special types of
Boolean ring. Our choice of terminology is dictated by topological
reasons which will be developed in the following section. The two
definitions fundamental for the purposes of the present section are:

Definition 3.1. An ideal a in a Boolean ring A is said to
be a barrier ideal if a==e, a'=o, and there ewist normal ideals b and ¢
such that a=b\/c, be=n. The class of all barrier ideals in A is denoted
by B, the class of all other ideals in A by G.

o .De_ﬁnfi»tfion 3.2. A Boolean ring A is said to be of type (o)
if it 4s isomorphic to a prime ideal p, in o Boolean ring with wnit,
such that pnoned, p eC.
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‘We begin with the consideration of the properties of barrier
ideals.

Theorem 3.1. In order that a be a barrier ideal it is mecessary
and sufficient that a=b\/b’ where b is a non-simple normal ideal;
and it is mecessary that a be mon-normal.

If a=bVb’ where b is a non-simple normal ideal, then a=e,
a’=(bVb')'=bD""=p, and a=b\/c, be=p where beN and c=Db'eN.
Hence aeB. On the other hand, if a is a barrier ideal, the proper-
ties given in Def. 3.1 show that bc=bp, b'¢’=(b\/¢)’=a'=0 and hence
that c¢CB'Cc’=c, c¢=b’; and we therefore have a=bVDb'sfe so
that et but bnon eS. The relations az=e, a’==p show that a’'Fa
and hence that a is not normal.

Theorem 3.2. The classes B and € satisfy the inclusion re-
lations NCE, BCI4N; and the class B is void if and only if 4 s
a totally multiplicative Boolean ring.

The present theorem is an immediate consequence of Th. 3.1
and Th. 2.3 (2).

Theorem 3.3. If a, is a barrier ideal and a, a simple ideal
such that a=a,\/ay,==e, then a is also a barrier ideal. In particular,
if a is any non-prime barrier ideal then there ewists a barrier ideal b
such that BDa, b=Ea.

Let a,=b,\/bi=e where b,eM; and let a—=a,\Va,s=¢ where
a,eS. The ideals b=b;\/a, and c=az2b; then belong to N by virtue
of Th.1.2. Moreover they satisfy the relations

a=(b1 Vb)) Var=(b1V @) VbV as)=b1 V@V biaz=bV¢,  be=0.
By hypothesis, a==e¢; and we have also a'=(aVa)=aia=0.
Thus q is a barrier ideal in accordance with Def. 3.1. If a is a non-
prime barrier ideal, there exists an element ¢ not in a such that
b=aVa(a)4=e. Then b is a barrier ideal by the preceding results,
and b contains a as a proper subclass.

Theorem 3.4. If a,, n=1,..,N, are barrier ideals such that
amVan=e for m==n, myn=1,..,N, then ar..an is a barrier ideal.

We begin with the case N=2. By Th.3.1 we can write
ai=Db;Vbi, az=b2\/b, where b, and b, are normal. We introduce the
ideals a=0;a,y b=Dbibs\VVbibs, c=Dbsby\/bibs. Since aCa e, Wwe
have a==¢; and the relations ai=a;=0 imply ¢’=p in accordance
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with B Th. 28. It is evident that
bV = (b1 V1) (b2\Vba) = =0,

Henee it is sufficient for us to prove that b and ¢ are normal. We
recall that the orthocomplement of any ideal product c c, relative
t0 ¢, may be calculated either as (cic)'c: or as cicz so that
{t10) 2 =¢i c3; in parbicular, ¢ c;=0 irhplies C1 te=C2. Applying these
remarks we obtain the relations

b1bs = (byb2) by = (biba) by,
bib2 = (b1 b2) b2 = (bibs) b1,
(b1B3) (b1 bs) = b1 V by, (b1b2) (b1Vb2) =01V ba,
(b1bs) (b1 B2) = b1V bz, (B1b2) (b1 b2) = b1V ba.

Combining the four sets of equations on the left, we have

b= (bsb3 V bibs) \V (BsB3 \V Biba) = (Byba) (B1\V/Ba) \V (B1B5)’ (b1 \/B)
= (51bz)'(bibé)'(b1\/b'1ng\/B-’z)= dlarVag) =

and combining the four sets of equations on the right we have,
similarly, c=b’. Thus b=c'=b", c=b"=c", as we wished to prove.

If the theorem holds for N=2,..., M, it holds also for N =M 1.
In fact, the ideal aj..ay is a barrier ideal; and the relation
Qe GV @ =(a:1V apy1) .. (aarV anps) =e¢ is valid. Hence the result
of the preceding paragraph shows that aj... ayaa.; is a barrier ideal.
The theorem is therefore established for N=2,3,.

It is also possible to establish a pa;rtml converse of the pre-
ceding result. We have:

Theorem 3.5. If ay,...,an areideals suchthat a,+e for n=1,...,N
and if ai...ay is a barrier ideal, then the condition

bec=0o.

Byby = (b3 by) by = (b115) By,
b1 55 = (b1 Ba)' s = (b bj) b,

(1) for m==n there ewists a simple ideal Dmn satisfying the relations
‘ 0nVOmn =6,  0nDDma
;timplies that ay...,ax are barm‘ervz'deal;e ‘
The condition (1) is eqm'valent to the condition
(1) there exist simple ideals D, n=1,...,N, such that a"Vb,z——e,
uV..Voy=e, dubi=0 for m==mn, m,n=1,..,N.
The conditions (1) and (1') are satisfied if the ideals ai,...,0a

are distinct prime ideals; and also if A is a ring with. unit and the

tdeals ay,...,ay have the property that .\ a.=e for m==n,
myn=1,..., N. A
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First let us prove the equivalence of the conditions (1) and (1°).
f (1’) holds, we may put Dmn=DbDm since anVbm=e and

bm:(an\/bn)bmzanbmcan 77’&,%:1,...,1\7;

and we thus obtain (1). On the other hand, if (1) holds, we obtain (1)
by induction. For N =2 we obtain the desired result by setting
D1=D012, Do=D1: for we obviously have

aVdi=a1Vbn=e, VDD biVin=¢,
D1VDe=ce, D1Dy=0.

If we have established the desired result for ¥=2,...,,M, we
treat the case N=M-+1 as follows. By hypothesis there exist simple
ideals ci,...,cpr such that aVo=e, uV..Var=e, tmtz=0 for
m=En, m,n=1,..., M. We introduce the ideals d=D0dy,a+1V ...V Du, 3211,
dn=cd for n=1,..,M, Ddup:1=0d'. By Th.1.2, the ideals, d,d’,dn,

=1,...,M are all simple. It is evident that

BV e Vg = (6 Vo Vi) BV =DV =

and that dmd.=o0 for m==n, m,n=1,.., M+1. Since d,m+1Cd for
n=1,..., M, we have a\/dr={(0.V t){0:VD)=0anV 0DV Dn,ar1=t¢,
au+1V Ou+10d\Vd'=e. Hence (1’) follows from (1) in the case N=M +1.
The proof of the equivalence of (1) and (1') is now complete.

If the condition (1), or the equivalent condition (1'), is sa-
tisfied and a;...ay is a barrier ideal, we can write ai...av=DbV¢,
be=n, beM, ce in accordance with Def. 3.1. Using condition (1’) °
we put b, =b\/bp, C,=cd, for n=1,...,N. By Th.1.2 it is clear that
b, and c, are normal ideals. It is obvious that

bn\/ Cn =5\/D;z\/ Cbn =b\/£\/bln=al--- aN\/b,,n‘_—(a]Vb;'l)"‘ (aNVb;z);

and hence the relations a,Vd,=(a,\/da) (az\V/dn) =as\/ dndr=0a, and
VoD am\/ dm=e, m=Fn, imply b,Vc.=a, It is evident that
bntn=0. Since a,Daj...ax, we have a,C(ai...ay)'=b, a,=b. Accor-
dingly, a, is a barrier ideal if a,==e, n=1,...,N.

If ay,...,ax are distinet prime ideals, then for m==n there exists
an element an, belonging to a, but not to an. If we set dmn=a(Gnn),
we have am\/Dun=e, anDdmn for m==n, m,n=1,...,N. Thus con-
dition (1) is satisfied in this case.

If A has a unit ¢ and the ideals a,...,an satisfy the relations
anVa,=e for m==n, m,n=1,...,N, we know that for m==n there
exist elements d@m,a, such that anVa,=¢, ameanm, a.ea,. If we put
dmn=a(an), We have am\VdmDa(an)Vala)=a(e)=e, 02D dm.- Hence
condition (1) is satisfied in this case also.

Fundamenta Mathematicae. T. XXIX. 17

for m==n,
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Ths. 3.1-3.5 give us information about the existence and
construction of barrier ideals. While it will not be applied in de-
tail, it provides a background for the further discussion.

We shall now characterize the Boolean rings of type (w). We ha,ve:

Theorem 3.6. The following properties of a Boolean ring A
are equivalent:

(1) A4 is a ring without unit in which every simple ideal is semi-
principal;
(2) A is a ring of type (w).

A ring of type (o) is totally multiplicative if and only if 4t is
of type (By).

Starting with the remark that a ring of type (w) cannot have
a unit, we may proceed under either of the conditions (1) and (2)
t0 adjoin & unit to 4 as in B Th. 1; in this way we obtain a ring 4*
which is uniquely determined except for isomorphisms and which
confaing 4 as a prime ideal p in accordance with R Th. 38. If (1)
holds, then R Th. 39 shows that p is not normal; and if (2) holds
then by definition p is not normal. If (1) holds, then p cannot be
a barrier ideal. If it were we could write p=DbVDb’, be N, in accor-
dance with Th.3.1. Thus b would be simple relative to p and by (1)
would thus be semiprincipal relative to p. Accordingly, one of the
ideals b and b’ would be principal in p and hence also in A4*.
The fact that b=b"" and the fact that 4* has a unit would thus
imply that both b and b’ were principal ideals. In this way we would
reach the contradiction that bVb'=e. On the other hand, if p is
not & barrier ideal, then (1) holds. If bCp is any ideal simple re-
lative o p, then b is an ideal in A4* and

bll\/blj(blf\/bf)p :bl/p\/rblp :b\/brp :p

by virtue of B Th. 22. Since p is not a barrier ideal, Th. 3.1
shows that b”Vb's=p. The fact that p is prime therefore implies
b"Vb'=e. Accordingly the ideals b’ and b’ are simple, and hence
principal, in the ring 4* with unit. By R Th. 41, we have either b’ Cp
or b'Cp. In the first alternative, b"'=b""p=b"(b\Vb'p)=b"b\/b"b'p=b
so that b is principal both in 4* and in p. In the second alterna-
tive, b’=Db’p is principal both in A* and in p. Hence we see that b
is semiprincipal relative to p. The equivalence of (1) and (2)is
thus established.
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By combining the preceding results with Ths. 2.3 (2) and 2.6,
we obtain the final assertion of the present theorem.

A characterization of rings of type (w,w) is given by the fol-
lowing result:

Theorem 3.7. The following properties of a Boolean ring A
are equivalent:

(1) A is isomorphic to the product of prime ideals p; and p, in a ring
with undt neither of which is a normal ideal or a barrier ideal;

(2) 4 is of type (w,w).

A ring satisfying (1) or (2) has no unit. A ring of type (w,w)
is totally multiplicative if and only if it is of type (B, f1).

First we show that (1) implies (2). Identifying A4 with the
product p,p, in the given ring A* with unit, we select an element
a of 4* belonging to p, but not to p,, and note that by R Th. 41
the element o’ belongs to p, but not to p,. We can then represent
A* as the direct sum ala)Va(e'), and A as the direct sum

pipa(a(a)Vala')=pia(a)Vpzala’),

in accordance with B Th. 51 and Th. 1.3. We wish to prove that
the rings p,a(e) and pya(a’) are of type (w). Evidently it is enough
to treat the first. Here we have to show that p,a(a) is an ideal
which is prime in a(a) but is neither a normal ideal nor a barrier
ideal relative to a(a). Th.1.7 shows that p,a(a) is prime and non-
normal relative to a(a). If p,a(a) were a barrier ideal in a(a), we
could write p;=bV ¢, bc=0p, where b and ¢ are normal relative to a(a).
We should then have p;=p;(a(a)Va(a'))=pala)Va(a)=bV (cVa(a'))
where b,c¢, and cVa(e') are normal relative to 4%, by virtue of
Ths. 1.4 and 1.1. Since b(cVa(a'))=p, the ideal p, would be a bar-
rier ideal in 4% contrary to hypothesis. The proof that (1) implies (2)
is therefore complete.

On the other hand (2) implies (1). If A=4,V A4, where 4,
and A4, are of type (w), we adjoin units to 4; and 4, obtaining
rings Af and A¥. We then introduce the ring with unit A*=AF\ AZ
and the subrings p,=A4,V 4%, py=A4FV A, By Th. 2.7 both p, and p,
are non-normal prime ideals in A*. Their product is obviously
the given ring A. We thus have to prove that neither p, nor p, is
a barrier ideal in A*.

17%
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It is enough to treat p,. If p; were a barrier ideal, we could
write p,=b\/¢, be=n, be®, ceM. Considering A{ as a principal
ideal a(a) in A*, the ideals ba(a) and ca(a) would be normal
relative to a(a) by Th.1.3. Moreover they would satisfy the rela-
tions p,a(a)=ba(a)V ca(a), ba(a)-cala)=0. Since p,a(a) coincides
with A4,, it is & non-normal prime ideal in Af. We thus conclude
that p,a(a) would be a barrier ideal relative to a(a), against our
assumption concerning A4, as an ideal in Af. Hence p, cannot be
a barrier ideal in A*. With this we complete our proof that (2)
implies (1).

It is evident from Ths. 2.7 and 3.6 that no ring of type (w,w)
has a unit; and, from Ths. 2.7 and 3.6, it is clear that a ring of type
(w,w) is totally multiplicative if and only if it is of type (fy,f,).
According to Th. 2.10 the rings of type (f;,p,) appear as a special
case under type (fs).

The types () and (o,w) are by no means so sharply limited
as the various types discussed in § 2, as we see by virtue of the
following result:

Theorem 3.8. If A, is a Boolean ring of type (w) or (w, w), and
if A, is an arbiirary Boolean ring with unit, then the ring A=A4,\/ 4,
is of the same type as A;.

First, let 4, be of type (w). By Th. 2.7, the ring 4=4,V 4,
is a non-normal prime ideal in the direct sum Af\As. If it were
a barrier ideal, then the arguments used in the second paragraph
of the proof of Th. 3.7 could be applied, since A4, has a unit, to
show that A4, is a barrier ideal in Af; but by hypothesis 4, is of
type (w) and therefore cannot be a barrier ideal in A{. Hence 4
is of type (o). If 4, is of type (w,w), then A=A4,,\VVA,, where 4,
and 4., are of type (w). If we write A=A,V A=A,V (4;,V 4,)
and apply the result just proved, we find that 4 is also of type (w, w).

Later, in §8, we give a further characterization of rings of
type (w,w). For the present we content ourselves with the follo-
wing remark:

Theorem 3.9. The types (v) and (w,w) are distinct.

By definition & ring 4 of type (w,w) is the direct sum 4,\/ 4,
of rings of type (w). Since neither A, nor 4, has a unit, each is a non-
semiprincipal simple ideal in 4 by virtue of Th. 2.7. By Th. 3.6
the ring 4 cannot be of type (w).
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§4. Topological Aspects of the Two Preceding Sections.
In the present section, we shall add some topological comments
upon the general concepts introduced in §§ 2,3. We shall presup-
pose an acquaintance with our paper A establishing the funda-
mental connections between Boolean rings and general topology.

We first indicate the topological origin of the totally additive
rings.

Theorem 4.1, If Ay is the complete basic ring of a Tyspace
R and ax is the ideal of nowhere dense sets in Ax, then the quotient-
ring A(R)=Awlax is totally additive. Comversely, if A is a totally
additive ring, then there exists at least one Ty-space R such that A(R)
48 isomorphic to A.

The complete basic ring Ag is the ring generated by am and
the open sets in R. It obviously contains ax as an ideal 12), If q is
any non-void subclass of Ag, we define a corresponding open set a,
as Ya'~'. Since a=a'~' (mod ax), the relation aya’~'=a'"" implies

aeq

a,a=a (mod ax), for every a in a. If b is an element of Ay such
that ba=a (mod an) for every a in a, we have b'a=b"ba=0 (mod an),
o~ =")"a'~" =ba=0 (mod ax) for every o in a. Since b’
and &'~ are open sets the relation b~'a'~' =0 (mod ax) implies
b~'a’—'=0. Hence b—'a,=0; and, since b—'=0>' (mod aw), b'ay=0
(mod ax) or, equivalently, ba,=a, (mod ax). Now if a(R) is & non-
void subclass of A(R), its antecedent a in Ay under the homomor-
phism Ag—>Ax/an=A(R) defines an element @, in the manner just
described. Let ay(R) be the image of a, in A(R). We shall show
that ay(R) is the sum of a(R) in the sense of Def. 2.1. If a(R)ea(R),
its antecedents a in Ay satisfy the relation aga=ga (mod ax); and
we see therefore that a,(R)a(R)=a(R) or, equivalently, ay(R)>a(R)
for every a(R) in a(R). If B(R) is an element of A(R) such that
b(R)>a(R) or, equivalently, b(R)a(R)=a(R) for every a(R) in a(R),
then its antecedents b in Ag satisfy the relation ba=a (mod ax)
for every a in a. By the preceding results ba,=a, (mod ag).
Hence we find that b5(R)ay(R)=ae(R) or, equivalently, b(R)>ay(R).
Thus a,(R) is the sum of a(R); and A(R) is a totally additive
ring.

12) For a detailed discussion of the complete basic ring, see A Ch. II,
Ths. 24 and 25.
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We now let 4 be an arbitrary totally additive Boolean ring,
and take R as its representative bicompact Boolean space '3). Then
A is isomorphic to the Boolean ring of all closed-and-open sets
in R; and the ideals in A4 are represented by the open sets in R.
The normal ideals in A are precisely those represented by regular
open sets in R. Now Th. 2.2 (2) shows that all the normal ideals
in A are principal. Hence the space R has the property that ifs
regular open sets are precisely the closed-and-open sets. Thus we
see that, in Ay, the regular open sets constitute a subring isomor-
phic to 4. On the other hand, we know that each residual class
(mod ag) in Ag contains exactly one regular open set. It follows
immediately that A(R)=Ag/ax is isomorphic to the ring of regular
open sets in R and hence to the given ring A.

Th. 4.1 provides a method of construction capable of yielding
all totally additive Boolean rings. It also raises the interesting pro-
blem of determining all the different 7')-spaces such that the cor-
responding rings 4(R) are isomorphic to a given totally additive
ring 4. Our paper A provides methods which should suffice for
a deep investigation, if not actually for a complete solution, o
this problem. :

In connection with his theory of continuous geometries, v.
Neumann *) has had occasion to point out that the ring A(R) is
totally additive, although he was not in a position to prove that
all totally additive rings could be obtained as rings A(R). He has
observed also that a similar construction — namely, reduction of
the ring of all measurable sets on the unit interval modulo the ideal
of null sets — yields a totally additive Boolean ring. When this
construction is generalized in the obvious way, it provides a means
of obtaining a variety of totally additive Boolean rings. That it
cannot suffice for the treatment of the entire category of totally
additive rings was also pointed out by v. Neumann. In fact, it is
easily seen that when R is the unit interval the ring 4(R) cannot
support the kind of numerical measure which would have to be
defined in ifi if it were obtainable by the construction under con-
sideration. Thus an interesting problem arises in this connection:
to determine which totally additive Boolean rings can be constructed
in terms of the general theory of measure as indicated above.

%) Bee A Ch. I, §§1,2 especially Ths. 1,2, 5.
) J. v. Neumann, Proceedings of the National Academy of Sciences,
U.8.A., 22 (1936), pp. 92-108.
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We turn now to a topological study of the concept of barrier
ideals introduced in § 3. Our results throw new light on the nature
of totally additive Boolean rings. We begin with some general
theorems of topology which are parallel to those given in the first
part of § 3 and do, in fact, contain the latter as special cases.

Definition L£.1. A set § in a Ty-space R is said to be a barrier
if it is the non-void common boundary of two disjoint open sets ®,
and ®,.

Theorem 4.2. If § is a barrier in a Tyspace R and G, G,
are associated open sets, then § is closed, ®, and ®, are non-void re-
gular open sets, and ©,U G, F=(G,LG,)" is closed. The associated
open sets may be so chosen that (B1U G) =R. Conversely, if ®1 and G»
are disjoint non-void reqular open sets such that (®,U®,) =R, they
have a common boundary § which is a barrier in R whenever i is
non-void.

If § is a barrier and G,, ®, are associated open sets we have
F=0101=06,G>=+0, and hence &,==0, B,==0. Since B, and G
are closed, § is also closed. The relation G;C®7 implies G;CGT .
Hence to prove the equality G;=G; ~, which identifies ®, as
a regular open set, it is sufficient to prove the inclusion relation
G0 . Since 6,6,= 6,F=0, we have

G = 67 61U G Gi=6,UF= (61U F)Gs,
G =®1F UGy,

6 T=(GiF) UG DGIF UGUF,

G T C(6G1U F)EF = 6:65F C By

Hence ®, is a regular open sef. The same argument applies to
show that ®, is a regular open set. If is evident that

G1UGUF=(GUFU(G:UF) =0T UG = (U G,)~

is a closed set.

If ® is the open set (B,U 652)"/, we shall show that the open
sets ®, and G;=0,U® are an associated pair for §. It is evident
that 6:0:;=06:0,U (51(55:(51(5:(51@’1@-';%'#0. Now

G =(6,U G~ "C(6:UG) " =(6i6h) =6iGr=6U .
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Hence
G =6, UG =FUBUG=FU G,

03 G3= FO3 = F6:6' = FO' = F(G:L GU F) = F.

Thus the open sets ®,, ; are disjoint and have § as their common
boundary. Moreover

(G,U6;) =607 UB;=06,U6;,LUF=6,UGUBUF=NR.

We have thereby proved that when § is a barrier the associated
open sets may be chosen as stated in the theorem.

We now prove the converse part of the theorem. If we start
with open sets ®, and G, having the indicated properties, we first
prove that ®; D@3, Gz DG;. By symmetry, it is enough to esta,blisk}
the first relation. Since Gy UG:; = (G:U®:) =R, we have G DG;
and hence ®; D®:; . Since ®; is a regular open set we have
®: ~ =), G; "= G;. Hence the relation G D®; is valid. Since
6,6,=0, we have ®,U610:=(G1U61)(G:UBG:) =G, and similarly
®:L 66, = G;. Hence we see that the set G,U 6 Gy= G; is closed
and contains ®;. Thus we have G C ;U G1®:2. On the other hand,
we also have (;U®165C 67 UGG = ®; by the earlier results. We
therefore find that G:=®,UG:®; and, in similar fashion, that
B2 = 6:UG;G:. Hence we conclude that G7 G = 616, = G G5 Thus
the closed set §=0;0: is the common boundary of G, and G,
Obviously =0 if and only if G;U®,=§ =R; that is, if and only
if 6, and G, are closed as well as open. When § is not void, it
is a barrier by Def. 4.1.

Theorem 4.3. If § is a barrier in the Ty-space R and G is
a closed-and-open set such that FG=£0, then F& is a barrier in R.

Let ®, and ®, be open sets associated with § and introduce
the open sets ®;=©,6, 6,=6,6. Since (6,6) CEHTG = (YN0
and (6:6')"CEI 6 =6; &', we have

(6165)”@':0, (@1@’)_6:— O.
6: 6=(6,6UG,6')6=(6,6) 6L (6,6') G
=(6,6) 6 =(6,6) (6UG")=(6,6)".

Hence G5 6z=(6:6)(61U6')=6i6(6GUG) =6 6,6 = &6.
In the same way &, 6i=F®. Thus, as the common boundary of
®; and ©,, the set FG is a barrier when it is non-void.
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Theorem 4.4, If Siseey Ey are disjoint barriers in a Ty-space R,
then §,U...UF, is a barrier in R.

It is evidently sufficient to treat the case N =12, since an ob-
vious induction then yields the general case without difficulty.
When N=2, let &, and G, be open sets associated with &1y ®5 and G,
open sets associated with {, By virtue of Th. 4.2 we may sup-
pose that 6,U6,UF =6UE,UF.=R. We now introduce the
open sets G;=6,0,L6,6, and Gz=6,6,U 6,63, the closed set
F=F,UF.. Using the relations ‘

6,6, = 6,81 = 6., = 030, = 63F, = ©,&,=0
we find that G;6s= G;F = 6¢F=0; and by similar reckoning that
6;UBL F=R. From the relations
G5 C61 63 UG Gr = (61U F1)(GzU F) U (GoU FN(OLU F)=06;U F
and FCOG5, to be proved below, we conclude that

65 =00, 05 65 = FOs= F(GsU F) = F.

By symmetry, we have G5 Gs= §. Thus &, as the coramon boundary
of the disjoint open sefs ®; and G, is a barrier. The proof of the
relation ¥C G5 runs as follows. We have

F1G:C 1 B3 C(6:163U 63) 63 C(6G:16:) U G5 Gz =(6:10s)"
and, similarly, ¥,6,C(6,6,". Hence we find that

81= TiFe= F(G,U 6,) C(6,6,) "L (6:6,) =65 .

In much the same way, we show that §C®5 and thus arrive at
the desired relation ¥ = FU FCG5.

Theorem 4£.5. If §,,..., &, are non-void sets in a Ty-space R
and if FU...0F, is a barrier, then the condition

(1) there ewists a closed-and-open set Dumn such that FmCDmny DmnFa=0
for m==mn, m, n=1,...,N —

implies that §,,...,§, are barriers.

The set Gm=Dm1Dmz.-Dm, m—1Dem, mt1-+-Dim, ¥—1Dmx i8 a closed-
and-open set such that F,C®u,GunF.=0 for m=+n, m, n=1,...,V.
Hence we have §,=G6 (& U..UF,) for m=1,...,N. Th. 4.3 now
shows that, if &, ==0 and if &U...UFy is a barrier, then §,_ is
also a barrier, m=1,...,N. ‘
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We now indicate the connection between barriers and barrier
ideals. We have:

Theorem 4.6. Let a be an ideal in a Boolean ring A; and let
B(A) be a representative Boolean space for A, ®(a) the representative
open set for a in B(A). Then a is a barrier ideal if and only if &'(a)
5 a barrier.

We base the proof on results of our paper 4 and Th. 4.2 above.
If q is & barrier ideal, we have a=e, a'=0, a=bV¢, bc=0n, beMN,
ceN. Thus the corresponding representative open sets G(a), G(b),
®(c) in B(4) have the properties

G'(a)=0, G '(a)=0, G(a)=06HULG(c), G(b)G(c)=0;

and G(b) and B(c) are regular open sets. From Th. 4.2 we see at
once that ®'(a)=6"(b)®'(c) is the common boundary of G(b) and G(c)
and is a barrier in B(4). On the other hand if G'(a) is a barrier in
B(4) there exist associated open sets ®,, ®,, which we may suppose,
by virtue of Th. 4.2, to satisfy the relation &,UG,U G (a)=B(4).
Hence there exist ideals b and ¢ in A such that G(b)=6,, G(c)=6,.
The relations 6,U®,=6(a) and G;H,=0 imply that a=b\/¢, be=o.
Since G; and ®, are regular open sets by Th. 4.2, the ideals b and ¢
are normal. Since G'(a)==0, we have a==e¢; and since

6 ()= (61U 6) "= (61 UG2)' =0
in accordance with Th. 4.2, we see also that a'=0p. Hence a is a
barrier ideal. We may remark that if § is any barrier in B(4),
then the open set {’ is the representative of a barrier ideal in A.
As a consequence of Ths. 3.2 and 4.6 we immediately have

the following result, the proof of which is obvious:

Theorem 4.7, The following properties of a Boolean space B
are equivalent:

(1) there exists no barrier in B;

(2) B is the representative space for o totally multiplicative Boo-
lean ring.

. It is plain that the presence of a barrier in a T,-space R in-
dicates some sort of connectedness for R. Accordingly, Th. 4.7 pro-
ves that the Boolean spaces, except for those which are the re-
presentatives of totally multiplicative Boolean rings, still show
traces of connectedness in spite of the fact that they are totally
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disconnected in the usual sense (given any two distinet points of
the space, there exist disjoint open sets, one about each point, of
which the entire space is the union). In consequence a certain in-
terest attaches to the problem of determining the T,-spaces which
exhibit the extreme of disconnectedness implied by the absence
of barriers. It is easily seen that an H-space without barriers is
totally disconnected in the usual sense; and the methods of our
paper A appear sufficient to characterize the semiregular H-spaces
without barrier, topologically, as the dense subsets of bicompact
Boolean spaces without barrier.

The preceding results throw a certain amount of light on the
facts developed in § 3. Thus Ths. 3.3, 3.4, and 3.5 follow directly
from the corresponding Ths. 4.3, 4.4, and 4.5 with the help of Th. 4.6.
Furthermore the behavior of prime ideals can be deduced from
Th. 4.6, if we recall that an open set in B(A) represents a prime
ideal in A if and only if its complement consists of a single point.
If the removal of this point divides B(A4) into two disjoint non-
void sets open in B(4) which have it as their common point of ac-
cumulation, then the corresponding prime ideal is a barrier ideal.
If the removal of this point does not so divide B(4), then the cor-
responding prime ideal is not a barrier ideal. Thus we see that the
rings of type (w) have representative Boolean spaces which are
obtained by the removal of single points of the latter kind from
bicompact Boolean spaces; and are characterized by this property.
We see also that the rings of type (w,w) arise similarly by removal
of two such points.

§ 5. Algebraic Characterizations of Finite Rings. In this
section we shall give some equivalent algebraic characterizations
of the finite Boolean rings.

We first prove a theorem about infinite rings.

Theorem 5.1. The following assertions concerning a Boolean
ring A are equivalent:

(1) A s infinite — that is, 4 contains a sequence {an) such that am=an
for arbitrarily great m and n;

(2) A contains a sequence {bn} such that bn<bni1,baFbats for
n=1,2,3,...;

(8) A contains a sequence {c,} such that Cmcn=0 for m==n, c,=0,
m,n=1,2,3,....
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It is evident that (1) follows from (2) or (3). It is easily seen
that(2)follows from (3): we have only to define b,=c1+-...--ev=01V ...V ¢
to obtain the desired sequence. Now suppose that (1) implies (2)
for the case of a ring with unit. We then deduce (3), and hence (2)
also, for the general case in the following manner. Starting with
an arbitrary infinite ring A we adjoin a unit, obtaining an infi-
nite ring A* which contains 4 as a prime ideal. This process can
be carried out whether 4 happens to have a unit or not. Then, under
our present hypothesis, A* contains a sequence {b,} with the pro-
perties given in (2). If we define e¢,=b,+1+b. we have ¢,==0 and

Cm C‘n:(bm—{—l “}‘ bm) (bn-l—i + bn) :bm—}-l bn»}«l + bm—H bn“'_bm bn+1"{" bm bn =
= bm+1 + bm—!—i + bm ""‘ bm:O

for m4-1<n by virtue of the relations bm<<but1<b,<<bpti. Conse-
guently the sequence {c,} has the properties desired under (3); but
its elements are elements of A* rather than of A. We can show
however that at most one member of the sequence {e.; fails to
belong to A. If the elernent ¢, is not in 4, the relation cne,=0
for m=n and the fact that A is a prime ideal together show
that c,ed for m==m. Hence, by rejecting at most one member
of the sequence {c,}, we obtain a sequence in 4 which has all the
properties desired under (3). Thus the truth of the theorem depends
upon the deduction of (2) from (1) under the assumption that 4
has & unit. We proceed now to this remaining step, constructing
the desired sequence {b,} from the given sequence {a,).

N The given sequence has the property (P) of containing in-
finibely many unequal elements. In our construction we shall make
repea,teq use of the following principle: if ¢ is any element of a ring
with unit and {d,} is any sequence with the property (P), then at
least one of the two sequences {ed,), {¢'d,} has the propiarty (P)
The Proof of this prineiple is obvious: if edy=cdy and c¢'dn=c'dy fOI:
n>i\,‘then dn=cd,\ ¢'dp=cdy\/ ¢'dy=dy for nz=N, contrary to hy-
pothesis. Thus, starting with the sequence {az) we see that at least
one of the sequences {aia,), {aia,) has the property (P). If both have
the prqperty (P), we define b,=a,; if one fails to have the property (P)
we define b, as equal to the associated element a, or a1. Su osé
now that by,...,b, have been determined so that: ' PP

(@) byy...,bx are unequal;
(B)  bi<<hi<...<bp—1<<bp;
(y)  the sequence {ba,) has the property (P).
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By (y) there exists a least integer I such that V=0, byai==br At

least one of the sequences {a;byan), {aibian) has the property (P).

If both do, we define cx=a;bi; and if one fails to have the property (P),
we define c; as equal to the associated element aiby or arbp. We
then define bpp1=bx\ ¢ Since braibi="Dbraibr=0, we have brep=10.
Moreover ¢;==0: for a;bs==0 by our determination of l; and arbr=0
would imply a:bk=a:bx\/ aibr=>b} contrary to our determination of I.
It is thus obvious that the properties () and () above can be ex-
tended to the elements bi,...,bz+1: they are unequal and satisfy the
relations b<bs<...<bp<bri1. The property (y) can also be extended
$0 bpy1: the sequence {byii1a} has the property (P). If cr=abr, We
have bypsanb*=chan=>bx(a;\V br)an=aibran; and, if er=aibh, we have
similarly bi1ar=aibra,. By virtue of our choice of ¢, we see that
the sequence (bi+1an) has the property (FP). The principle of mathe-
matical induction therefore establishes the existence of the by

desired under (2); and our proof is brought to a close.

With the aid of this theorem it is easy to characterize the
finite Boolean rings.

Theorem 5.2. A Boolean ring A is finite if and only if i has
one of the following four equivalent properties:

) A is a ring with unit in which every ideal is mormal;

) every ideal in A is principal;

(3) A has a finite atomic basis or consists of the element 0 alone;
) A is isomorphic to the Boolean ring of all subclasses of a fized

finite class.

The equivalence of (1) and (2) follows at once from R Ths. 23,
24, 25. The equivalence of (3), (4), and the property of finiteness
follows from R Ths. 11, 12, 13. If 4 is finite every ideal in A ig a fi-
nite Boolean ring and hence has & unit by ® Th. 1; and hence every
ideal in A is principal. On the other hand (2) implies that A is finite.
If A were not finite, there would exist a sequence {bay in A of the
kind described in Th. 5.1 (2). The ideal generated by the class con-
sisting of all elements of {b,; would then be a principal ideal a(a),
by hypothesis. Obviously, we would then have b,<a for n=1,2,3,...,;
and, on the other hand, R Th. 17 shows that for some integer k
we must have a<bi\/..\Vby="br. We thus reach the contradiction
that bp< a< by for n>k. With this the proof of the theorem is complete.
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We shall consider briefly the part played by the divisor chain

condition (“Teilerketitensatz”) and by the maximal and minimal con-,

ditions on ideals. The great emphasis which has been laid upon
such conditions in the general theory of rings justifies an explicit
formulation of the facts in the special case before us.

Theorem 5.3. In order thai a Boolean ring A be finite, each
of the following four assertions is both necessary and sufficient:
(1) A satisfies the ascending chain condition;
(2) A satisfies the maximal condition;
(3) A satisfies the descending chain condition;
(4) A satisfies the minimal condition 15).

It is obvious that a finite Boolean ring has properties (1), (2),
(3), (4) since its ideals are finite in number. We can show at once
that (1) and (3) separately imply the finiteness of A. If 4 were in-
finite, then Th. 5.1 (2) would provide us with a sequence 1b,} such
that b,<<bp+1,bnz=bn+1. The corresponding sequences {a(bn)} and
\a'(ba)} would then have the properties:

a(b.)Ca(bny), a{bn) == a(byti),
ClD0Bast)y, @' (B)E o (Bapa),

Tl_mse properties contradict (1) and (3) respectively. Since (2) im-
plies (1) and (4) implies (3), in obvious ways, our proof is complete.

n=1,2,..,
n=1,2,...

§ 6. Algebraic Characterizations of Boolean Rings of
Types (@), (8)y (B)y (B). In the present section we shall give
characterizations of the indicated types of ring, including some
already obtained in earlier sections and some new ones.

We shall begin with the rings of type (Bs), finding

_ Theorem 6.1. A Boolean ring A is of type (Bs) if and only if
# has one of the following four equivalent properties:

(1) A 'z,s a ring without unit in which every ideal is normal;

(2) A is a ring without unit in which every ideal is simple;

(3) A has an infinite atomic basis;

(4

) 4 is isomorphic to the Boolean ring of all finite subclasses of
a fized infinite class. '

15) For definitions of the terms used, see B. L. van der Waerden ,Mo-
derne Algebra II (Berlin 1931), pp. 28—30, 151—152. 5
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In a Boolean ring of type (f,) there exist simple ideals which
are not semiprincipal.

The equivalence of (1) and (2) follows at once from R Ths. 23
and 24. The equivalence of (3) and (4) is proved in R Th. 11. A ring
of type (f3) has property (3) by Th. 2.6. By the same theorem, a ring
with property (3) is of type (8;). B Th. 26 enables us to deduce (2)
from (3). For, if a is any ideal in 4 and a(e) any principal ideal,
we see that a(a) is a finite ring generated by the atomic elements b,
finite in number, such that ba==0; and hence that the ideal aa(a),
being a finite ring, has a unit and is principal. On the other hand,
we can deduce (3) from (2). If a(a) is any principal ideal in 4 and a
any ideal in a(a), then q, considered as an ideal in 4, must be simple
by (2). Th. 1.1 shows that a is principal in 4 and hence in a(a) also.
Thus Th. 6.1 shows that a(a) has a finite atomic basis. It follows
that every element a in A is a finite sum of atomic elements in 4.
Hence 4 has an atomic basis. If the basis were finite, 4 would be
finite by Th. 6.1 and would have a unit contrary to (2). Hence 4
has an infinite atomic basis, as we wished to prove. In the demon-
stration of Th. 2.6 we have already shown that a ring of type (f;)
containg a non-semiprincipal simple ideal.

Theorem. 6.2. A Boolean ring A is of type (a) if and only if
P=Pr=G=N+3.

By Th. 2.2 (2), the totally additive Boolean rings are charac-
terized by the equation P=N. By Th. 5.2, the finite rings among
these are characterized by the further equation M=J. Hence the
rings of type (a) are characterized by the relations P=9N=7. The
relations P="P*=CS=N then follow in accordance with R Th. 23.

Theorem 6.3. A Boolean ring A is of type (py) if and only if
PP =G =N+,

In Th. 2.6 we proved that 4 is of type (§,) if and only if P+=P*=
=G=%N. We must show that these relations imply N=+7T. By refe-
rence to Ths. 5.2 and 6.1 we see that the relation =7 would imply
either P=J or P*+S; and it therefore follows that N==7 in the
present case.

v Theorem 6.4. A Boolean ring A is of type (f,) if and only
if PP EC=NES.
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By Th. 2.3 (2) the totally multiplicative rings are characterized
by the equation ©=%N. The totally multiplicative rings are all dig-
fributed among the finite rings, and the rings of distinet types
(@)y (B1)s (Ba); (Bs). Since among these, the finite rings and the rings
of type (f;) are characterized by the equation 9t=3J in accordance
with Th. 5.2 and 6.1, the rings belonging to one of the three types
(a); (1), (Ba), are characterized by the relations G=N==3J. According
to Th. 6.2 and 6.3 the relations P*=GS=RN=+J characterize the rings
belonging to one of the types (a), (f;). Hence the rings of type (8,)
are characterized by the relations P*+=S=N=; and these relations
imply that P==P* by R Th. 25. With this the proof of the present
theorem is complete.

§ 7. Algebraic Characterizations of Boolean Rings of
Types (83), (63), (8%:81) (B3,52)s (B356,)- In this section we con-
tinue the studies of §§ 5,6, 7, obtaining new characterizations of
some of the indicated types, either individually or in groups.

We begin with a discussion of types (8%) and (6%, 8s).

Theorem 7.1. The Boolean rings of types (B3) and (B3,Bs) are
collectively characterized as those vings A with JFC possessing one
of the following four ‘equivalent properties:

(1) there exists a prime ideal p in A such that pCaVa' whatever
the ideal a;

(2) there exists a prime ideal q in A such that every ideal contained
in q 48 simple relative to q;

(8) there exists a non-void class s of atomic elements im A such that
the ideal a(s) is prime;

(4) the ring A is isomorphic to the Boolean ring generated by all

the finite subclasses of a fized wnfinite class B and o single in-
finite subclass I' of E.

In such a ring, the relations p=g=a(s) hold, s is a complete
atomic sysiem, and the ideal p is not normal; and the ring A belongs
to type (B3) or (B%,Bs) according as A has or has not a unit. In the
representation given by (4), the ring A has o unit if and only if the
class BT is finite; and in that case is characterized by the cardinal
number of E. When A has no untt, it is characterized by the cardinal
numbers of the two classes EAT and Iy both infinite. In a ring of type
(B3), the relations P=P*=C= N+3J are valid; and in a ring of t:ypa
(B3,Bs), the relations P P*+CSEN+S.
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We may remark that in a ring with ©=%, the properfies (1)
and (2) hold for arbitrary prime ideals p and g, as we see by refe-
rence to Ths. 5.2 and 6.1. Similarly, in a finite ring or a ring of type
(B3), we can satisfy condition (3) by defining s through the sup-
pression of exactly one element of the atomic basis. Thus the con-
dition =G is essential in conneection with (1), (2), and (3), if we
wish to eliminate types already discussed. Condition (4), on the
other hand, implies =G as we shall see; hence the condition J==&
is superfluous so far as (4) is concerned. By Th. 2.8, we know that
the rings of type (8%) or type (B%,Bs) are not totally multiplicative.
Thus we have for them the relations Nt==S and hence S+3J, N=+EJ.
Since a ring of type (8%) has a unit, the relations P=P*=CSE=N+S
must hold for it. In a ring of type (B3,Bs), we have P==P* and
S=+=N=5; and we shall see presently that P*==S also.

We first show that (1), (2), and (3) are equivalent and that
the condition J==G implies the uniqueness and equality of the
ideals p, q, a(s). To prove that (1) implies (2), we consider an ar-
bitrary ideal a in the ring p. Since a is then an ideal in 4 and the
relation aVa’'Dp is valid by (1), we have aVa'p=(aVa')p=p.
Thus a is simple relative to p, its orthocomplement relative to p
being the ideal a'p. Accordingly, (1) implies (2) with q=p. Next (2)
implies (3) with a(s)==q. For Th. 6.1 shows that q has an atomic
basis s; and the ideal a(s) generated by s, considered as an atomic
system in A, obviously coincides with q. Now (3) implies (1) with
p=a(s). The ideal generated by a non-void class of atomic elements
s is easily seen to consist of all finite sums of elements of s, in ac-
cordance with R Def. 3 and R Th. 17. We know from Ths. 5.2
and 6.1 that every ideal in a(s) is simple relative to a(s). Hence,
if a is any ideal in A, we have aa(s)Va'a(s)=a(s) or, equivalently,
aVa'Da(s). Consequently (1) holds for p=a(s). Our discussion
shows that, if any one of the ideals p, g, a($) is not uniquely de-
termined, then the others are not. Now the condition 3G implies
that the ideal p of (1), and hence alsc the ideals g and a(s), is uni-
quely determined. We note first that the ideal p must be non-normal
under the present circumstances: for there exists an ideal a with
aVa'==e. Therelation aV a’Dp therefore implies p=aVa’', p'=a’a’’=p.
According to B Th. 38, the prime ideal p is not normal. Thus if
p, and p, are two ideals with the properties required in (1), we have
PiCp2V pa="p2, P2Cp1V pi=7p1, and p,;=p,. We conclude therefore that
S==G implies the uniqueness and also the equality of p,q, and a(s).

Fundamenta Mathematicae. T. XXI1X. 18
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In particular, we have shown incidentally that s is an atomic
basis for a(s) and that the ideals p=g=a(s) are non-normal when J=G.

We prove next that a ring is of type (BE) or (B, 3s) if and only
if it is a ring with S=+@ satisfying the equivalent conditions (1),
(2), and (3). By Ths. 2.8—2.10 a ring of type (8) or (B3, ps) is re-
presentable as a ring 4 containing & prime ideal ¢ with a’=p which
is of type (f,). According to Th. 6.1, the ideal a is then a prime
ideal with the properties demanded of q in (2). We have already
observed that a ring of type (B3) or (B%,Fs) satisfies the condition
3==8. On the other hand, if & ring 4 with J4& contains an ideal g
with the properties demanded in (2), the fact that q is not normal
shows that ¢ has no unit and is of type (f;) in accordance with
Th. 6.1. Thus A must be either a totally multiplicative ring or a ring
of one of the types (8%), (83,pPs), by virtue of Ths. 2.8—2.10. If 4
were totally multiplicative, then we could obtain a contradiction
as follows. Let a be an element of 4 not in g. Then the principal
ideal a(a) would be totally additive by Th. 2.3; and a(a)q would
be a non-normal prime ideal relative to a(a). Thus a(a)q would be
a ring of type (f;). On the other hand q has an atomic basis by the
preceding results. It follows that a(a)q has an atomic basis likewise,
as an ideal in q. Thus a(a)q is of type (fs): it is a ring without unit,
being & non-normal prime ideal in a(a), and has an atomic basis.
Since the types (,) and (f;) are distinct, we have the desired contra-
diction. We see therefore that A is of type (B§) or of type (5%, 5s).

The characteristic representation described in (4) is now easily
established. First, we shall prove that, when J==&, (3) implies (4).
From what has been proved already, we know that a(s) is a non-
normal prime ideal in A with s as an atomic basis. In particular
we have a’(s)=p. Since a(s) is a totally multiplicative ring of type (Bs),
Ths. 2.5 and 6.1 show that a(s) is isomorphic to the ring of all finite
subclasses of a fixed infinite class F; and that A is isomorphic to
the subring of the totally additive ring of all subclasses of B ge-
nerated by a fixed subclass I" and the finite subclasses. Conversely,
?ve show that (4) implies (3). A ring A of the kind described in (4)
13. obtained by the process analyzed in Th. 2.5: in the totally ad-
leive ring of all subclasses of F, the one-element subclasses con-
'smtute a complete atomic system s; the ideal a(s) generated by s
is the system of all finite subclasses of E and obviously has the
property that a’(s)=p; and 4 arises as the subring genera:ﬁed by I
and a(s). Hence we see that a(s) is a non-normal prime ideal in A4
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and that it is generated by the atomic system s, regarded now as
a subelass of 4. In view of the fact that a(s) is non-normal, we have
N, J==G. Thus 4 is a ring with J+6 satisfying (3). Incidentally,
the equivalence just shown for (3) and (4) implies that, when [=+E, the
atomic system sin 4 is complete and serves as an atomic basis for a(s).

It is obvious that & ring A represented in the form (4) has
o unit if and only if the class B is a member of it; but F is a mem-
ber if and only if E=I" (mod a(s)) or, equivalently, if and only if
EJT is finite. Since such a ring is generated by B and its finite sub-
classes, it is completely characterized by the cardinal number of E.
The theory of cardinal numbers shows that E and A have the same
infinite cardinal number. In order that A should have no unit,
it is necessary and sufficient that E4I' be infinite. In this case,
the theory of cardinal numbers shows that 4 is characterized by
the infinite cardinal numbers of I" and EJI'; and also that 4 and B
have the same cardinal number, equal to the greater of the car-
dinal numbers of I' and EaT.

Tt is trivial that, under the foregoing conditions, a ring A be-
longs to type (%) or to type (B5,Fs) according as it has & unit or nos.

We now wish to show that in a ring 4 of type (B,fs), the
relation P*==G is valid. Since such a ring is representable in the
form A}V As where A, and 4, are of type (Bs), and since A, can
be represented in the form A4,V A, where A, and 4, are withoub
unit, by virtue of the fact that A, contains simple ideals which
are not semiprincipal; — we see that A is represented as a direct
sum of the rings Af\/A4s and A4, neither of which has a unit. By
R Th. 51, the two summands in this representation are non-semi-
principal simple ideals in A.

Tf we make use of the existence and divisibility properties
of prime ideals, we can add to the list of equivalent properties set
forth in the preceding theorem. We have:

Theorem 7.2. In a Boolean ring A with J+=C, the following
properties are equivalent:

(1) there ewists a prime ideal p in A, such that pCaVa', whatever
the ideal a;

(2) there ewists a prime ideal q in A such that qCa’'Va', whatever
the ideal a, and qDa\a’, whatever the non-simple ideal a;

(8) there ewists exactly one nom-normal prime ideal v in A;

(4) the sum of all mon-simple ideals in A is a prime ideal s.

In such a ring A, the relations p=q=r=s are valid.
18*
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Tt is evident that (1) implies (2) with q=p: for a”’Va'Dp,
whatever the ideal a; and the relations aVa'sFe, aVa’'Dp, holding
for any non-simple ideal a, imply p=aVa' and hence pDlaVda'
It is also easily seen that (2) implies (3) with r=q. If v is any non-
normal prime ideal, we have t'=p, r=tV1'Cq==e¢, and hence r=q.
Secondly, q is not normal: if it were, every prime ideal in 4 would
be normal; hence every ideal, being the product of its prime ideal
divisors (unless it is the normal ideal ¢), would be normal in A4,
by virtue of B Ths. 29 and 66; and hence every ideal in A would
be simple in accordance with R Th. 24. We assumed, however,
that 35=G. Next we show that (3) implies (4) with s=r. Since the
ideal r is not normal and hence not simple, we see that s, the sum
of all non-simple ideals in A4, contains r. If a is any non-simple,
ideal, then the ideal a\/a’' is not normal since (aVVa')'=(a'a"’)'=
=p'=e¢s=aVa'; and if t is any prime ideal divisor of aVa’, the re-
lation aVa'Ct implies t'C(a\V/a')'=n, t'=p0, so that tis non-normal
and must coincide withr. By R Th. 66, we conclude that aCaVa'=t.
Thus we find that sCr, and hence that s=r. Finally, we show that
(4) implies (1) with p=s. If a is any simple ideal we have aVVa'=
==¢3s. On the other hand, if a is any non-simple ideal, we know
that a\/a’ is not normal. It follows that a\/a'Cs. If t is any prime
ideal divisor of a\/a’, we have t'=p so0 that t is not normal. It fol-
lows that {Cs==e and hence that t=s. R Th. 66 now shows that
aVa'=s. We conclude that a\/a'Ds, whatever the ideal a in A.
Since the ideals r and s of (3) and (4) are uniquely determined, our
argument shows that p, g, r, 5 are unique and equal.

We proceed now with the discussion of the remaining types.

Theorem 7.3. The Boolean rings of types (B3), (Pz,p1) and
(B2,B2) are characterized as those rings A with M=+ ®, possessing one
of the following equivalent properties:

(1) there exisits a prime ideal p in A such that pCa’’\Va', whatever
the ideal a, while for some ideal a the relation pCa\a' is false;
(2)  there ewists a prime ideal q in A such that every ideal in q which
is normal relative to q is simple relative to q while some ideal
in q is not normal relative to q.

The ideals p and q of (1) and (2) respectively are unique and
equal. Among the rings of the kind described by these various equi-
valent properties, those of type (B¥) are characterized by the presence
of a unit, and those of type (B%,B1) by membership in the type (o).
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We begin by showing that (1) implies (2) with g=p. If a is
any ideal in p normal relative to p, then

a:aup and a\/a’p:a”p\/al:p=:p-

Hence a is simple relative to p. On the other hand, let a be an ideal
in A such that a\/a’ does not contain p. Then the ideal ap, con-
sidered as an ideal in p has the properties ap\/a'p==p, a”"pVa'p=p.
Hence ap=a’p and ap is not normal relative to p. Likewise,
(2) implies (1) with p=gq. If a is an arbitrary ideal in 4, then aq
is an ideal in q with orthocomplement a'q in g. Since a'q is nor-
mal relative to q, it is simple relative to q so that a”"Va'Da'qVa'g=q.
On the other hand, if a is a non-normal ideal relative to q, it is not
simple relative to q and agVa'q=aVa'g+q. Thus a is an ideal in 4
with the property that aVa’ does not contain q. Our argument
shows that if either p or q is uniquely determined then the other
is also, and p and q are equal. If N+=G, we can show that p is uni-
quely determined. In fact, let a be any non-simple normal ideal
in A. Then a=a”, aVa'=a""/a'Dp, aVa'se, so that a\Va'=p.
Our assertion is thus established. Incidentally, we see that the
relation p’=(aVa')=a'a"’=p implies that p, and hence g also, is
not normal.

If A is a ring of any of the types (%), (8%,51), or (B3, p:), then
A is representable in terms of a prime ideal a with a’so, where a
is totally multiplicative, and an element @, in accordance with
Ths. 2.8-2.10; and this representation is essentially unique. More-
over A is not totally multiplicative, so that N+ & in accordance
with Th. 2.3; and a is of type (f,) of or one of the special types
(BayB1)y (Bayfz) included under (f,) and hence is not of type (Bs).
Th. 6.1 now shows that a contains at least one non-normal ideal;
and Th. 2.3 that every normal ideal in a is simple relative to a.
Thus we find that 4 is a ring with N+S possessing property (2)
with g=a. On the other hand, let 4 be a ring with M4 possessing
property (2). Then the ideal q has the property that g'=p as we
noted above; and q is & totally multiplicative ring in accordance with
Th. 2.3. Since q is prime in 4 and the relation N==S implies that
A is not totally multiplicative, we see that 4 must be of one of the
types (%), (BE), (B%,B1), (BE,P2), (BE,PBs)- Since the ideal is uniquely
determined in 4, by virtue of Th. 2.9, we see that Th. 7.1 (2) excludes
the possibility of membership in either of the types: (%), (5%, ps).
Hence we see that 4 is one of the three types (6%), (8%,81), (5%, pe)-
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It is evident that among the rings belonging to these fhree
types those of type (%) are characterized by the presence of a unit.
Ths. 3.6 and 3.8 show that every ring of type (8%, p1), being the di-
rect sum of a ring with unit and a ring of type (f,), is of type (w).
On the other hand, we can show that a ring A of type (%) or of
type (8%, B2) is not of type (w). In the case in the first of these types,
the presence of a unit shows at once that A is not of type (w). In
the other case, we express A as the direct sum Af\/A4, of a ring
with unit and a ring 4, of type (f,). Th. 2.6 shows that A, con-
tains non-semiprincipal simple ideals. Hence, by virtue of B Th. 51,
we can express A, as the direct sum 4;\/ 4; of rings without unit.
Writing 4 as the direct sum (Af\VA43)\/ 44 by an exchange of
direct summands, we see that neither of the new summands has
% unit. Using R Th. 51, we see further that both the new sum-
mands are non-semiprincipal simple ideals in 4. The relation S+P*
now shows by Th. 3.6 that A is not of type (w). With this the proof
of the theorem is complete.

Again employing the existence and divisibility properties of
prime ideals, we can add to the list of equivalent properties given
in Th. 7.3. We have:

Theorem 7.4. In a Boolean ring A with N=+E, the following
properties are equivalent:

(1) there ewists a prime ideal p in A such that pCa''\Va', whatever
the ideal a, while for some ideal a the relation pCaVa’' is false;

(2)  the sum of all non-normal ideals is the ideal e, the sum of all
normal non-simple ideals is a prime ideal t.

The ideals p and v in such a ring are unique and equal.

We first prove that (1) implies (2) with r=p. By hypothesis
there exist non-simple normal ideals in 4. If a is such an ideal,
we have pCa”Va'=aVa'se and hence p=aVa'. Since all such
ideals are contained in p, by the last relation, their sum also is
contained in p. On the other hand, if ¢ is such an ideal, a’ is nor-
mal and the relation aVa'=p=-e shows that a’ is not simple. Since
aVa' is then contained in the sum of all non-simple normal ideals,
we conclude that this sum coincides with p. Since J=G follows
from NG, the assumption that there exists no non-normal prime
ideal other than p would imply that pCaVa' for every ideal a,
contrary to (1): for the relation p=a\/a’ obtained above leads to
the equation p’=a’a”=p and hence implies that P is non-normal;
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and Th. 7.2 would then establish the desired contradiction. Hence
we see that there exists a non-normal prime ideal q distinet from p.
It is now clear that the sum of all non-normal ideals in A contains
pVag=-¢e and thus coincides with e.

On the other hand (2) implies (1) with p=r. Let a be any ele-
ment of v and let a(a) be the principal ideal generated in 4 and
in r by a. If a is any ideal in g(a) normal relative to a(a), then a is
normal in 4. The relation aCa(a) implies a’Da’(a). R Th. 41 shows
that a'(a) is not contained in the prime ideal r. Hence a’ is not
contained in r and, being normal, must be simple by virtue of the
definition of r. Hence a=a'' is also simple; but, being contained
in the principal ideal a(a), the ideal a must even be principal by
virtue of Th. 1.1. Since every normal ideal in a(a) is principal, a(a) is
a totally additive ring by Th. 2.2 (2); and thus ris a totally multiplica-
tive ring by Th. 2.3 (3). Consequently every ideal normal relative
to r is simple relative to v by Th. 2.3 (2). If now a is an arbitrary
ideal in A, then a'’ is normal in A and a'’r is normal relative to t in
accordance with Th. 1.3. Hence we see that a’'v is simple relative
to r and conclude that o'Va'Da"rVa'r=r. Now our assumption
that the sum of all non-normal ideals in A coincides with e shows
that there exists at least one non-normal ideal a not contained
inr. Since a‘/a’'se, by virtue of the fact that a is not simple, we
see that the relation aVVa'Dr is false: for otherwise we would have
aCaVa'==1, against our choice of a. Hence (2) implies (1) with p=1.

Finally, it is evident that the ideals p, r of (1) and (2) res-
pectively are uniquely determined and are equal to one another.

§ 8. Algebraic Characterizations of Boolean Rings of
Types (w), (w, w). In this section we proceed to characterize rings
of the indicated types.

In Th. 3.6 we have already proved the following result:

Theorem 8.1. A Boolean ring A is of type (w) if and only
if PEP*=C

‘We now prove:

Theorem 8.2. A Boolean ring A is of type o,w) if and only
if it has the properties: ,

(1) A contains a non-semiprincipal simple ideal a;

(2) if a is any non-semiprincipal simple ideal in A, then every ‘ideal B
contained in a and simple relative to a s se'mpmfnwpal rela~
twe to a.
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According to R Th. 51, the relation P*+G is equivalent to
the existence of a representation of A as a direct sum of two rings
without unit, the summands being simple, but not semiprincipal,
ideals in A. Hence we shall consider 4 as such a direct sum, c\/¢/,
in the remainder of the discussion. If 4 is of type (w,w), we may
choose ¢ and ¢’ as rings of type (w). Let a be a non-semiprincipal
simple ideal in A; and let b be an ideal in a, simple relative to a.
By Th. 1.3, b is simple in 4; and aDb implies b'Da’. If b were prin-
cipal in q, it would be semiprincipal relative to.a without further
discussion. Hence we may suppose that b is not principal in a or
in 4. Now at least two of the ideals abc=bc, ab’c,a’b’c=a’c must
be principal. For example, if abc=D0c is not principal, it is not prin-
cipal in ¢. Being a product of simple ideals, it is simple both in A4
and in ¢ by Ths. 1.2 and 1.3. Since ¢ is of type (w), the orthocom-
plement of abc=Dbc relative to ¢ must be principal in ¢ and hence
in A. Thus b'c is a principal ideal. Consequently the ideals ab'c,
and a'b’c, being the products of the simple ideals a and o’ with the
principal ideal b’c, are principal by Th. 1.2. Similarly, if ab’c is not
principal, a’c\/be=(ab’)’c is principal, and a’c and bc are principal
by Th. 1.1; and if a’c is not principal, then ac=qa’’c is principal and
80 also are abc and ab’c. By similar arguments, we see that at least
two of the ideals abc’=Dbc’, ab’¢’, a’b’c’=a'c’ are principal. On the
other hand, the ideals bc and bc’ are not both principal since we
have assumed that their sum b=bc\/bc' is non-principal. For the
same reason ,the ideals a’c and a’c’ are not both principal. We con-
clude therefore that the ideals ab’c and ab’c’ are both prineipal.
Hence the orthocomplement of b relative to a is found to be the
principal ideal ab’=ba’cV ab’c’. Thus we have shown that b is semi-
principal relative to a. This completes our proof of the assertion that
a ring of type (w,w) has properties (1) and (2). On the other hand
a ring with these properties can be represented as a direct sam c\/ ¢,
a8 we noted above. Since (2) shows that every ideal b contained
in c or in ¢’ which is simple relative thereto is semiprincipal relative
thereto, we see by reference to Th. 8.1 that ¢ and ¢ are rings of
type (w). Hence the given ring is of type (o, w)

We have already given some investigations into the relation
of the types (w) and (w,®) to the other types considered. It is con-

venient to complete and summarize our results in the following
terms:
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Theorem 8.3. Of the wine types (a), (By), (Ba)y (Ba)y (B2), (BY),
(8%, B1), (BE, B2); (B3, Bs) only (1) and (B3, B1) are included under type (o);
and only the special types (Bi, B1) and (B%,(B1,B1)), included under (fa)
and (p3,B2) respectively, are included under type (w,w).

The rings of types (a),(B¥), and (B5) all have units and hence
belong to neither of the types (w) and (w,w). We have already seen,
in Ths. 3.6 and 7.3, that the rings of types (8;) and (B3,B1) are of
type (o) while those of types (fs), (Bs), and (B%,p:) are not. Com-
parison of Th. 8.1 with the result of Th. 7.1 that a ring of type
(B¥,ps) has the property $*=+=G& shows that such a ring is not of
type (w). Since the types (w) and (w,w) are distinct, by Th. 3.9,
the rings of types (B,) and (B5,p1) are not of type (w,w). Further-
more, Th. 3.7 shows that the rings of type (f;) are not of type (w,w),
and that among the rings of type (f;) only those of the special type
(By By) are of type (w,®). Consequently we see that among the nine
types only (B;) and (B%,p:) are included under type (w); and thatb
only (fy,By), (85, B:), and (Bf,Ps) could possibly be included under
type (w,w). Since the type (By,B,) is included under the type (w,®),
we have only two types left to consider.

Now let a Boolean ring 4 be represented in the form A{\ A4,
where A, has no unit. According to Th. 3.8, 4 is of type (w,w) if
A, is of that type. Conversely, we shall show that, if 4 is of type
(w, ), then so is 4, First, 4, cannot be of type (w): for, if it were,
Th. 3.8 would show that 4 is of type (w), distinet from the tiype
(w,w). Thus Th. 8.1 shows that A, contains simple ideals which
are not semiprincipal. If a is such an ideal in A,, the fact that 4,
is a simple ideal in the direct sum A¥V A: shows that a is simple
in A by virtue of Th. 1.4. Hence, if b is any ideal contained in a
and simple relative to a, then b must be semiprincipal relative to a
by an application of Th. 8.2 together with the assumption that 4 is
of type (w,»). We see therefore that 4, has the properties (1) and (2)
of Th. 8.2 and must consequently be of type (w,»). Now a ring
of either of the types (B5,pe), (f%,Hs) has an essentially unique re-
presentation in the form Af\V A, where 4, and 4, are totally multi-
plicative rings without unit. In particular 4, is of type (f5) or (fs)
according as A4 is of type (B5,f) or (B5,fs). If A is of type (w,w),
then so is A,, by the preceding results. Hence Th. 3.7 shows that
A cannot be of type (w,w) except in the case where A4, is of type
(B1,By), included under type (f,). Hence no ring of type (B3, Bs) is
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of type (w,w); and the only rings of type (B%,B:) which can pos-
sibly be included under type (w,w) are those of the special type
(B%,(B1,f1)). Of course, Th. 3.7 and 3.8 show that the rings of types
(BuBy) and (BF,(B1, 1)) are of type (w,w).

§ 9. Countable Boolean Rings. We shall now consider
which of the various types of Boolean ring introduced in §§ 2, 3
and discussed in §§4—8 include countable rings. We shall find that
only the types (fs),(8F) and (f%,Bs) have this property.

Our fundamental result is the following

Theorem 9.1. An infinite totally additive Boolean ring A has
cardinal number not less than 2™, the cardinal number of the continwum.

Let 4 be a ring of the kind described. Th. 5.1 then shows
that 4 contains a sequence {c,} such that ¢,==0, ¢,,c,=0 for m==n.
If 5 is any non-void subclass of this sequence its sum a(s) is the
generating element of the principal ideal a’(s) in accordance with
Th.2.1. Now cpes implies a(s)c,=cn; and c¢,nones implies c,es'=a’(s)
and hence a(s)e,=0. It follows that the class of all sums a(s) is in
biunivoeal correspondence with the non-void subclasses formed from
the sequence {c,}. Since such subclasses constitute a collection with
the cardinal number 2%, we conclude that the cardinal number
of A is not less than 2%,

As an immediate consequence of this theorem, we have:

Theorem 9.2. A countable Boolean ring A is totally additive
if and only if it is finite; a countable Boolean ring A is totally multi-
plicative if and only if 4t has a countable atomic basis.

By Th.9.1, a countable Boolean ring A cannot be infinite
if it is totally additive. Hence the result stated here. If a Boolean
ring 4 is countable and totally multiplicative, then every principal
ideal in A is obviously countable and in addition is totally additive
by virtue of Th. 2.3 (3). Hence every principal ideal in A4 is finite.
It follows that 4 has a countable atomic basis, by virtue of Th. 6.1.
On the other hand & ring 4 with countable atomic basis is finite
if the basis is finite, and is isomorphic to the ring of all finite sub-
classes of a fixed countably infinite class B in accordance with Th. 6.1

if the basis is countably infinite. Hence 4 is countable and totally
multiplicative. '
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Another fundamental result is the following

Theorem 9.3. In a countable Boolean ring A with unit every
non-normal prime ideal is o barrier ideal.

Let p be a non-normal prime ideéal in a countable ring. Since
p is a non-principal ideal, it is & ring without unit a,n.d 1.s .there-
fore infinite. Hence its elements may be written in an mflm’ﬁe-se-
quence {a,}. We now construct a subsequence {bn} with the prope1:tles:
(1) bn<<butty b=k buys for m=1,2,3,...; (2) if @ is any element in p,
then a<b, for some index m. We put b=a,. If we have defined
bk=ank for k=1,...,m so that ap<ay,, for k=1,...,m a,nd. “ﬂk'<“’”k+1’
np<trys for k=1,...,m—1, we then choose nm1 a8 the first .mdex 7
after nn, such that ap<ay, o, <ay. This choice is possible: for
if we had either a,>a, 0T Gy >0y for n>mn,, the element
aV...VapV..Va, =a would belong to p and would have
the property that a>a, for n=1,2,3,...; and we could t}%en
conclude that p is a principal ideal with @ as its generating
element. By induction, we obtain a sequence bg=an,, k=1,2,38,...

such that ap<ay,, tn,<dn, np<<my41 for k=1,2,3,.... Since the
relation my<me: implies that a, = Uy, 1o this sequence has the desi-

red properties (1) and (2). By the construction given in the proof o‘f
Th. 5.1, we can now replace the sequence {b,} by the sequence {q,,,,
where ¢;=b; and ¢ar1=bnt1+bn for n>>1, so as to secure the properties
a0, ¢mc="0 for m==n, and bnzcl—i—...-{—a,jzclv eV Cay f01:m,n=1,2,3,... .
Tt is evident that aep implies a<<ei+...4-cn for some index n. Let s
be the class of all elements com, for m=1,2,3,...; and t the cls.\,ss of
all elements em—1, for m=1,2,3,.... We shall determine t}’le 19ea.1[s
s’ and t'. Tt is evident that s'Dt, t'Ds. It follows that s''Ct, t""Cs’.
1t an element a of 4 isin both ¢’ and 1’ then ac,,:.() for n=1,2,3,....
Hence, if b is any element of p, there is an index s such tha.lt
ab<al(etV...\V en)=ac1V ...V acn=0. Consequently « belongs to pO.
Since p is a non-normal prime ideal, we have p'r;_n .a,nd hence a=0.
Thus s't'=o. It follows that s'Ct", s"'Dt'. Gombmmg”these rgsults
with those obtained above, we see thatb s”:.t’, g'=t"". The ideal,
s'\/1' contains both s and t, and thus contains every elemenf1 Cns
n=1,2,3,..... Consequently, if « is any element of p,lwe, ;Xe
a<cV ...\ e, for a suitable index n and conclude that aes’'Vt'. The
relation pCs'V1' is thus established. ~


GUEST


284 M. H. Stone:

On the other hand, let a be an element which belongs to s'.
Then acm=0 for m=1,2,3,..., or, equivalently, a'>¢,, for
m=1,2,3,.... If o’ were an element of p, there would exist an
index # such that a'<¢V...\VVe,. Choosing 2m>n we would the-
refore have cn<<¢1V..Ve¢: and hence

0‘2121=02m(01\/---\/011)20211101\/...\/02”,0,1: 0.

Since ¢ =0, we conclude that «’ is not in p. By R Th. 36, we
reach the result that aes’ implies aep or, equivalently, that s'Cp.
In the same way we find that {'Cp. Thus we must have
p=s'V1t, s't’=n. Since s’ and t' are normal ideals by virtue of
the relations s'=s'”, t'=t"" of R Th. 20, we see that p is a bar-
rier ideal in accordance with Def. 3.1.

We can now obtain the chief results concerning types of coun-
table Boolean ring. We have:

Theorem 9.4. There exist no countable Boolean rings of any
of the types (a), (By), (Ba)y (B3), (8%, B4), (B2, Ba), (o), (w,0). A Boolean
ring of one of the three types (By), (BF), (B¥,Ps) 4s countable if and only
if in the corresponding representation as a ring of subdlasses of & fized
infinite class B, described in Th. 6.1 and 7.1, the class B is countable.

Ths. 9.1 and 9.2 show that no ring of type (a), (By), or (B,) is
countable; and Th. 9.3 shows that no ring of type () is countable.
Since the rings of types (55), (5,4, (6%, Bs), (»,0) contain subrings
of some of the types (8y), (Bs), (w), none of them can be countable.
Thus the only types which can contain countable rings are the
three mentioned in the statement of the theorem. The condition

given for a ring of any of these three types to be countable
is evident.

§10. The Fundamental Classification of Ideals. In this
section we shall collect some of the results of §§ 5—9 in such a form
as to give a complete presentation of the possible relations of equality
between the fundamental classes B, P*, S, N, S, € of ideals in a Boo-
lean ring 4. We have:

Theorem 10.1, The possible reductions of the inclusion relations
PCP*CSCRNRCYI to equalitics are summarized in the following table,
in which the Boolean rings associated with any particular combination
of equalities and inequalities are described at the right:
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P=P=C=N=3
P=P*=C=RN+3
P=P* =C+N+3
PLP =G =N+

Finite rings.

Rings of type (a).

General rings with unit including those
of types (pF) and (B¥).

Rings of type (B,).

Rings of type (w), other than those of
type (B;) but including those of type
(5:7»81)

Rings of type (fs).

Rings of type (f8,) including those of
type (B, f)-

General rings without unit, including

those of types (B, 8,), (65,6,) and (w,)
other than those of type (B, p)-

PP =C+N+J

PP LC=N—3
PP S =RNEJ

PP +CHNES

We know from R Th. 25 that the relation P=P* is charac-
teristic for rings with unit and implies P*=G; from Ths. 3.6 and 8.1
that the relations P==P*=E are characteristic for rings of type (w);
from Th. 2.3 (2) that the relation =N is characteristic for totally
multiplicative rings; from Ths. 5.2 and 6.1 that the relation N=T
is characteristic for the finite rings and the rings of type (fs); and
from B Th. 24 that the relations J+G, N+EGS both imply J=+N.
We are thus left with at most nine possible combinations of equa-
lities and inequalities between the classes of ideal — the eight listed
in the table, and the system of relations P=+P*=S=N=T which
does not appear there. This ninth system cannot actually occur
since the relation =23 characterizes rings in which either P=P*=S —
the finite case — or P+=P*+=E — the case of type (B,). Setting
aside the cases where N=J as already settled, we see that in the
six remaining cases those where S=I exhaust the infinite totally
multiplicative rings of types other than (B;). Of these, the only
ones with unit are those of type (a), the only ones with P==P*=C
are those of type (f,), and the only ones with P+=L*+E are those
of type (f,), as we see by reference to Ths. 2.6, 3.6 and 6.4. We are
thus left with the three cases where ©==3 and hence 9t=+J. These
cases exhaust the Boolean rings which are not totally multiplicative.
Among these rings the ones with unit satisfy also the relations
P=P*=E, the ones of type (w) the relations P==P*=S, and the
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remaining ones the relations P=+P*ES. The distribution of the
types (B5), (B%), (63,81, (B%:ha)y (B5,6s) and (w,0) among these
three cases is settled by noting that no rings of the last four types
just listed have units and that, in accordance with Th. 8.3, only
type (B%,B;) is included in type (w). The general distribution of
the type (w,w) between the totally multiplicative cases and the
other cases is seftled by Ths. 3.7 and 8.3.

It will be observed that each row of the table contains at
least one type of Boolean ring for which an explicit construction
has been provided in §2, 3, 4, 5, or 6. Hence each of the eight sy-
stems of relations is actually realized. It will be observed further
that the three entries with S+N are of comparable degress of ge-
nerality in view of R Th.1 and Th. 3.8, while the remaining en-
tries characterize quite special Boolean rings.

With regard to the class € of prime ideals, we note the fol-
lowing facts:

Theorem 10.2. The relation €CR implies the relations & CP*
and N=7, thus characterizing the finite Boolean rings and the Boo-
lean rings of type (Bs). The assertion that €AGN is a one-element class
characterizes the Boolean vings of types (BF) and (BF,Bs).

From R Th. 38, we know that EC9 implies GCP*. R Th. 66
shows that ECM implies N=S: for, the ideal e is semiprincipal
and hence normal; and every other ideal, being the product of its
prime ideal divisors, is normal in accordance with B Th. 29. The
case where €4EN is a one-element class — that is, where there
exists exactly one non-normal prime ideal — is settled by Th. 7.2.

By virtue of Th. 9.4 we can easily specialize the table of Th. 10.1
for the case of countable rings.

Theorem 10.3. The possible reductions of the inclusion relations
PCP*CSCNRCI to equalities in the case of a countable Boolean
ring are summarized in the following table:

Finite rings.

General rings with unit, including those
of type (B%).

Rings of type (B,).

I
PP =G+ N+
PP GR35
P+ P+ L RNLS

General rings without unit, inc¢luding
those of type (5%, 8,).
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§11. Some Special Ideals. In this section we shall con-
sider ideals constructed from the classes P*aP, SaP*, N4 S, J4N.
In particular we associate with each class the least ideal containing
all its members. The associated ideal is p in case the class is void;
otherwise it is the sum of all ideals in the class. The ideal obtained
in this way from P*4P or from SaP* is easily seen to be either
o or e, the first case corresponding to the relations P=P*, P*=6
respectively, the second to the relations PB==R*, P*+ G respectively.
Thus the classes P*4P, S4P* do not lead to results which it is
necessary to examine more carefully. On the other hand, the facts
established in Ths. 7.2 and 7.4 show that the situation is different
with respect to the classes R4S, JaN.

Using the existence and divisibility properties of prime ideals,
we find the following results:

Theorem 11.1. In a Boolean ring A, let q and t be the least
tdeals containing all ideals in the classes MAS and J4aW respectively.
Then qCr; and each of them is equal to v, is equal to e, or 48 a non-
normal prime ideal. The possible combinations and the types of ring
which they characterize are exhibited in the following table, in which
the entry * signifies that the ideal in question is a non-normal prime
wdeal:

q T A

D D Finite or of type (8).

D e Ring of types (a), (61), (Ba)

* * Ring of types (8%), (85, Bs).

* e Ring of types (%), (B2,51), (B%,F2).
e e General ring.

We first prove that qCr. If R4S is void, then q=p and the
relation qCr is trivial. If N4S is not void, then there exists a non-
simple normal ideal a and q is the sum of all such ideals. Now if a
is any such ideal, so is a'; and the ideal a\/a’ is not normal, by
R Th.24. Hence we have aCa\/a’Cr whenever ae94S. The desired
relation qCr then follows. We may observe that, if 4&. is not
void, then q==o. It is also easily seen that, if J4M is void, r==0 and
that otherwise t==0. Thus the relations q=0, t=p are equivalent
respectively to the relations N=E, J=N. ‘
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Next let us prove that, when r==p, r==¢, then r is & non-normal
prime ideal. Since r==p, there exists a non-normal ideal a; and
R Th. 24 shows that aVVa’' is not normal. Since r==¢, there exists an
element @ not in r. For any such element a, the ideal a(a)Va is not
contained in ¥ and so must be normal. Since it iy also not contained
in qCr, it must even be simple. Using the indicated properties of
the ideals aVa' and a(a)Va, we have

e=(a(@)Va)V(aa)Va)=a(a)VaVa'(a)a'=a(a)V(aVa')Cala)Vr,

aVa'Cr, o=aa’=(aVa')'Dt, 1t'=o.

Thus an ideal containing r and any element not in v must coincide
with e, so that v is divisorless and hence prime; and the relation
t'=p shows that r is not normal. In a similar way, we show that,
if q==0 and qz=e, then q is a non-normal prime ideal. Let a be a non-
simple normal ideal and a an element not in g. Then a’ is & non-
simple normal ideal, and aVa'Cq. Also a(a)Va is & normal ideal
by Th. 1.2; and, since it is not contained in ¢, it must be simple.
By reasoning exactly like that used above, we have eCa(a)Vq,
q'=o. It follows, as before, that q is a non-normal prime ideal.
The possible combinations are now reduced to the five listed
in the table, together with the one where g=p and r is a non-normal
prime ideal. We shall see presently that this particular combination
cannot arise. From the preceding results we know that r=p if and
only if J=MN and that r=o implies g=0. We also know from Ths. 5.2
and 6.1 that the relation J=9 characterizes the finite rings and
the rings of type (fs). If r is prime, we must have q=1t or g==p by
virtue of the relation qCr. In either case we see that the sum of
all non-simple ideals in A4 is the ideal s=qVr=t. The relation r==p
implies in parficular that J==@&. Since s is prime, Th. 7.2 shows
that 4 is a ring of type (f¥) or (B3, Bs). In rings of these types we
have N==G and hence q=o. On the other hand, if 4 is a ring of
either of these types, the sum s of all non-simple ideals is a prime
ideal by Th. 7.2. Obviously s=qV 1=z, so that t is prime. Thus we
see that the rings of types (B¥) and (B%,f;) are characterized by
the statement that r is prime; and that, when t is prime, q is also
prime and equal to r. We now have to treat the cases where r=e.
We have g=p, r=e if and only if the relations N=S, J==N are valid.
These relations characterize the totally multiplicative rings of types
(@), (By), and (f,) as we see by reference to Th. 10.1 or to earlier
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theorems. If q is prime and r==e, we have NG and Th. 7.4 shows
that the ring 4 is of one of the types (%), (8%,51), (B%,p). Con-
versely, if 4 is of one of these types, then q is prime and r=¢, by
virtue of the same theorem. Thus the only case remaining is that
where g=r=-e. This case occurs in all rings not of the types listed
under the other cases, and is therefore to be regarded as the ge-
neral case.

§12. Optimum Character of §1. We shall now proceed
to show that the general results stated in §1 are the best possible,
in & certain sense. It is of course obvious that in any ring for which
relations of equality hold between some of the classes 5, P*, G, NI,
as listed in Th. 10.1, the results presented in the tables of §1 can
be correspondingly reduced. Thus, for example, if =G, the tables
of Th. 1.2 can be simplified by writing & for 9 throughout; and
it would also be permissible to strike out altogether the rows and
columns labeled “N. What we propose to show is that, apart from
the simplifications arising in this way or in connection with certain
special types of ring, no reductions of the results of §1 are possible.
For convenience in comparison, we shall take up the theorems
of §1 in serial order, stating for each of them a similarly numbered
theorem discussing its optimum character.

Theorem 12.1. Under the condition aCb, the ideals a and b
in a Boolean ring A can be assigned arbitrarily to the classes P, P*,
S, |, I, with only the following exceptions:
(1) the assignment is subject to the general restrictions given in Th. 1.1;
(2) the assignment is subject to the limitations imposed by equalities
between the classes B, B*, &, N, ; '
(3) im a ring of type (B%) or (p%,[s), the.relation aCh is impossible
when a 48 not normal and b is normal but not simple.
In (3) we have a new algebraic characterization of the two types
concerned. ‘

We shall begin with a consideration of the exception (3). Sup-
pose we wish to find a non-normal ideal a and a non-simple normal
ideal b such that .o Cb. Obviously, we cannot do so if %=, so that
we must assume the relation N==S at the start. Then we can select
a non-simple normal ideal ¢, observing that ¢1Vcf, is not normal,
¢f normal but not simple. If we can find an ideal ¢, such that ¢;\/¢
Fundamenta Mathematicae. T. XXIX, 19
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is not contained in \/¢, we can prove that one of the ideals
{eV &), (@Vd)d is not normal. With proper choice of notation,
we may arrange that the first of them should have this property;
and we can then complefe our construction by putting a=(c:\V/ ¢)c,
b=¢,. The necessary proof runs as follows. The orthocomplement of
(Vd)a=((eVd)a)a relative to ¢, is given by

(eVdé)u)u=(aVa)a=doa=n.
Thus if (Vci)a were normal, we would have
aC((eVa)a) '=(eVa)aCaVa.

Similarly, if (eVe3)ed were normal, we would have CeV .
Hence if both ideals were normal we would have «VdCeaV ¢
against hypothesis. We now have to consider the case where the
relation ¢V ¢ Ce\/ o holds whatever the ideal c,. Here we firgt sup-
pose that c¢=c\/ ¢ is not prime. Then there exists an element ¢
such that cec, a(e)Vec==e. By Th.1.2 the ideal a(c)V¢ is normal;
but the relations (a(e)V )V (a(e)Va)'=ale)VaVa'(e)ei=alc)V ke
gshow that it is not simple. If we put c;=a(c)\/ ¢, we therefore have
a non-simple normal ideal such that ¢\ ¢ is not contained in
2\ ¢f. Consequently the construction carried out above ecan be re-
peated with the roles of ¢ and ¢, interchanged. We are thus
left to consider the case where ¢\ ¢ is a prime ideal contained
in ©\Vc¢ whatever the ideal c,. Aecording to Th.7.1 this is
precisely the case where 4 is of type (B¥) or (B%#,f:): for we have
N+6GS and hence J==G; and we can take p==ci\/ ¢ in Th. 7.1 (1).
We complete our discussion by showing that in this case the de-
sired construction is impossible. Let b be a non-simple normal ideal
and a an ideal contained in b. Since pCbY/b'sce we have p=Db\/b’;
and since aCb we have a”’Cb”=bCp. Thus the relations
pCaVa'Ca”Va'Cp hold when a'Cp; and the relations a\/a'=p,
aVa'Dp imply ¢V a'=e when a’ is not contained in p. In either case
we have aVa'=a"Va’' and hence a=aa"=(aVa')a""=(a"Va')a"=a"
80 that a is normal.

Of the twenty-one examples left for us to give after the ex-
ceptions (1) and (3) are taken into account, fourteen are trivial.
The five examples where a and b belong to the same class are found
by taking a=b and choosing b as a non-normal ideal, a non-simple
normal ideal, and so on. The four remaining examples where b is
semiprineipal but not principal are obtained by taking b as the

?
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ideal e in & ring without unit and choosing a as a non-normal ideal,
@ non-simple normal ideal, and so on. The three remaining examples
where a is principal are obtained by choosing b as a non-normal
ideal, & non-simple normal ideal, and so or, and putting a=a(a)
where a is an element of b. Of the two remaining examples where
b is principal, one is easily constructed. If ¢ is a non-simple normal
ideal, there exists an element b such that a(b)c is not principal,
by R Th.26. Since a(b)cCa(b), we know from Th.1.1 that a(b)c
cannot even be simple. On the other hand, a(b)c is normal by Th. 1.2.
Thus on putting a=a(d)c and b=a(b) we obtain an example where
a is normal but not simple and b is principal. Of the three remaining
examples where b is not normal, one is easily constructed: for, if
a 18 a non-simple normal ideal, then b=aV/a’ is not normal and
contains a, 80 that we have an instance where a is normal but not
simple and b is not normal. We note that none of the preceding
fourteen examples breaks down except in the presence of an equality
between the classes P, P*, S, N, J which automatically excludes
it from consideration. We are thus left with seven further examples
to construct.

We begin with the two remaining examples where b is not
normal. We firgt obtain an example where a is simple but not semi-
principal, and b is not normal. Clearly no such example exists un-
less P*+6G and N=+ET. We therefore assume these relations. Let ¢
be non-normal, ¢, simple but not semiprincipal. Then ¢; is also sim-
ple but not semiprineipal. If ¢, V¢, and ¢V e were both normal,
Th. 1.2 would show that g=(aVe)(aVd) is also normal against
hypothesis. Hence one of these ideals is not normal; and we may
arrange our notation so that the first is not normal. The desired
example is then obtained by putting a=cy b=¢ V¢,. Next we as-
sume P=E=P*, N, and give an example where a is semiprincipal
but not principal and b is not normal. We choose ¢ as a non-normal
ideal and a as an element in ¢’ but not in ¢. The ideal a'(a) is semi-
principal but not principal, by B Th. 25. The ideal ¢\ a'(a) can-
not be normal: for, if it were, we should have

¢"Va'(@)DcVa'(a)=(cVa'(a)'=(c'a(a)) D" Va'(a), cVa'(a)=c""Va'(a),

and hence cja(a)c:a(a)(c\/a’(d)):a(a)(c"\/a'(a))za(a)c"=a(a),
contrary to hypothesis. Thus we obtain the desired example by
putting a=a’(a), b=cVa'(a).

19%
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We pass next to the two remaining examples where b is nor-
mal but not simple. First, we assume P*+6S, S=+N, and give an
example where a is simple but not semiprincipal and b is normal
but not simple. We choose ¢; in G4%* and ¢, in N4S. The ideals
¢V and ciV e cannot both be simple; for, if they were, the ideal
= (aVe)(dVe) would be simple by Th. 1.2, against hypothesis.
On the other hand, both are normal by Th. 1.2. Since both ¢ and ¢
are simple but not semiprincipal, we may adjust our notation so
that ¢; V¢, is normal but not simple. We then obtain the desired
example by putting a=¢, and b=¢,\V ¢,. Next we assume that P ==P*,
G=+=MN, and construct an example of a semiprineipal, but not prin-
cipal, ideal contained in & non-simple normal ideal. We c¢hoose c
as a non-simple normal ideal and e as an element which is not
in the ideal ¢\ c'==e. Then the ideal ¢V a'(a) is normal by Th. 1.2,
but cannot be simple since, if it were, we should have

a(a)=a(a)e=a(a)((cVa'(a))V(cVa'(a)))=
=a(a)(cVa'(e)V a(a))=a(a)(cV ) CeV 'y

against hypothesis. Hence we obtain the desired example by put-
ting a=a'(a), b=cVa'(a).

We consider next the two remaining examples where b is sim-
ple but not semiprincipal. First we agsume that N=+J, P*==S and
give an example where a is non-normal and b is simple but not
semiprincipal. If ¢, is a non-simple ideal and c, is a non-semiprincipal
simple ideal, the argument used in the discussion of the exception (3)
can be applied to show that (c,\V/¢)e, and (¢ \Ve)ep are not both
normal: for if they were we would have ¢, VDV ey=¢ against
hypothesis. Since c; is simple but not semiprincipal we may sup-
pose our notation so chosen that (¢, \V¢;)c, is not normal. We then
obtain the desired example by putting a=(c¢,\V/¢1)csy b=c¢,. Next,
we assume that N==ES, S==P* and give an example where a is nor-
mal but not simple and b is simple but not semiprincipal. We choose ¢,
a$ & non-simple normal ideal and ¢, as a non-semiprineipal simple
ideal. Then c; is also simple but not semiprincipal. The ideals ¢;cy, ¢;¢p
are both normal by Th. 1.2; but they cannot both be simple since,
if they were, we would have ¢;=(e=1c(c;\V cs)=0;¢,\ ;5 80 that ¢
would be simple contrary to hypothesis. We may suppose our
notation adjusted so that cc, is not simple, replacing ¢ by c
if necessary. We then obtain the desired example by putting
a=0CCyy D=,
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Finally, we come to the one remaining case where b is prin-
cipal. We assume that J==93 and give an example where a is non-
normal and b is prineipal. If ¢ is & non-normal ideal, then cV¢'==e
since ¢ is certainly not simple. If ¢ is an element not in ¢\/ ¢/, then
the ideal (¢ c¢')a(c¢) cannot be normal: for, if it were, we would have
eV’ D(cVa(e)==a(c), contrary to hypothesis, by virtue of the
relations (cV/ ¢Ya(e)=((cV ca(e)) a(e)=(c\/¢') a(c)="eca(c). Hence we
obtain the desired example by puftting a=(cV<')ale) and b=a(c).

Theorem 12.2. The tables of Th.1.2 give best possible results
with the following exceptions:

(1) the tables are to be reduced whenever there is any velation of
equality between the classes P, B*, &, N, J;

(2) in any ring of type (BE) or type (B3,Bs), ab is normal whenever a
i8; and a' is simple whenever a is not normal.

In (2) we have further algebraic characterizations of the two types
(B3); (8%, Ps).

The elementary properties of the three classes P, P*, S show
that the first three entries of the first table can be improved only
by assuming some equality between these classes. If a is normal
but not simple, then so is a’ since a’'VVa''=aVa's=e. Hence the last
two entries can be improved, in view of the inclusion NCS, only
by assuming an equality between the classes %t and &. In a ring
of type (%) or type (B, Bs), the relation a Ca'’, in which o’ is known
to be normal, shows in aceordance with Th. 12.1 (3) that, if a is
not normal, then a”’, and hence also a’, is simple. On the other hand
a ring with NS in which ae¢J4N implies a'eS is necessarily of
type (8%) or type (B¥,ps). This we prove by showing that in such
& ring there is exactly one non-normal prime ideal and then applying
Th. 7.2. By Th. 11.1, the sum q of all non-simple normal ideals is
either prime or equal to ¢. Hence if the ring contains two distinet
non-normal prime ideals p;, P, their product cannot contain q.
Hence one of them, let us say p,, does not contain q; and there must
exist a non-simple normal ideal a which is not contained in p,. The
ideal ap, is contained in a so that (ap;)'Da’. On the other hand
the relation (ap,)’ap;=0o implies (ap,;)’aCp;=0 and hence (ap,)’'Ca’.
We thus find that (ap,)’'=a’, (ap,)'=a"’=as=ap,. Thus the
ideal ap; is not normal and the ideal (ap,)’=a’ is normal but not
simple.
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Since this result contradicts our hypothesis, we conclude that
there exists at most one non-normal prime ideal. The relation N+S
together with Th. 10.2 shows that at least one non-normal
prime ideal exists. This completes the discussion.

To show that the entries in the third table are the best pos-
sible we apply Th. 12.1. Since ab=Dba we may confine our attention
to the entries on or below the principal diagonal. We take aCb
so that ab=qa and assign a and b to such classes as are called for
by the various entries in the table. Thus, unless we encounter one
of the special exceptions noted under Th. 12.1, we obtain precisely
the entries given in the second table and conclude that all these
entries, except possibly the three entries “PB” which have to be
made in the first column because of the condition aCb, are the

- best possible. Even in the general case where o is not assumed to
be contained in b, an entry ‘P’ is obviously the best possible. Hence
the general table gives best possible results unless there are rela-
tions of equality between some of the class P, B*, S, N, I or, pos-
sibly, unless the ring considered is of type (%) or type (B%,fs). That
an improvement can be made in the latter case is shown as follows:
if a is normal and b arbitrary, then ab Ca implies that ab must be
normal by Th.12.1. (3),

We proceed similarly in the case of the second table. Since .

a\VVb=bVa, we may confine our attention to entries on or above
the principal diagonal. If we take aCh, we have aVVb=Db. On
agsigning a and b to the various classes called for by the various
“entries in the table, we obtain all entries as given in Th. 1.2 except
the entry J for the case where a and b are normal; and the only
possibility of improvement occurs when there is a relation of equality
between some of the classes P, P*, S, N, J. Now if a is normal but
not simple, o’ has the same properties and a\/a’ is not normal since
(aVa')’=(a'a")'=p"=e==aVa'. Thus the exceptional entry is also
the best possible. It should be observed that the exceptional case (3)

of Th.12.1 does not cause trouble, since we do not work below
the diagonal.

In Ths. 12.1 and 12.2 we arranged the proofs so that we could
ascertain the precise effect of each possible equality between any
two of the classes P, P*, S, N, J. In the succeeding theorems our
analysis will not be quite so detailed.
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Theorem 12.3. The tables of Th.1.3 give best possible resulis
with the following excepiions:

(1) the tables are to be reduced whenever there is any relation of
equality between the classes P, [*, S, N, J;

(2) in a ring of type (By), the product ab of a principal ideal a with
an arbitrary ideal b is semiprincipal relative to b;

(3) in a ring of type (By), the product ab of a principal ideal a with
a normal ideal b is semiprincipal relative to b; but the product ab
of a principal ideal o with a non-normal ideal b may be mon-
semiprincipal relative to b.

In (2) and (3) we have further algebraic characterizations of the
rings of the respective types (By) and (7).

We observe that, because of the equivalence of the relations
aCbh, a\VVb=b, ab=aq, the first table is a special case of the two others.
Hence an entry in the second or third table which is the same as
the corresponding entry in the first can be improved only in case
the latter can be improved. Thus we see that it is sufficient for
us to consider the firgt table, the last two entries in the first row
of the second, and the second and third entries in the first column
of the third. )

The entries “PB” in the first table are obviously the best pos-
sible. Since a is principal relative to b if and only if it is prinecipal,
Ths. 1.1 and 12.1 show that no further entries “P” can be made
in the first table. Thus the entries “$*” in the first table are the
best possible also. The entries “P*” in the second and third places
of the first column of the third table are also the best possible, since,
on taking a as a non-principal ideal which is either semiprincipal
or simple and b as a principal ideal contained in a, we see that a
is not principal in aVb=qa. In view of the inclusion relations
PCP*CSCNCS, no improvement in the last row of the first table can
be made without improving the first entry. That this entry is the
best possible we prove as follows. By Th. 12.1, we choose b as a prin-
cipal ideal and a a8 & non-normal ideal contained in b. If a were
normal relative to b, we would have a=a''b and would conclude
that a, as the product of the normal ideals a’ and b, is normal.
We show similarly that the entries in the fourth row are the best
possible, by examination of the first. Taking b as a principal ideal


GUEST


296 M. H. Stone:

and a as & non-simple normal ideal contained in b, we see imme-
diately that a cannot be simple relative to b: for, if it were, we would
have aVVa'=aVa'bhVa'b'=bVa'b'=b\/b'=e since aCh implies a’db’.
We show similarly that the last four entries in the third row are
the best possible, by treating the first of them. We take b as a non-
principal semiprincipal ideal and a as a non-semiprincipal simple
ideal contained in b. Then a’ is simple but not semiprincipal and b’
is principal. If a were semiprincipal relative to b, then a’b would
be principal since a is not; and the fact that b’ is principal would
show that a'd’ and a’=a'b\/a’b’ are principal. We thus reach a con-
tradiction, since a’ is not principal. Finally we show that the last
two entries in the second row are the best possible, by treating
the first of them. We take b as a non-simple normal ideal and q as
a non-prineipal semiprincipal ideal contained in b. If q were semi-
principal relative to b, then a’p would be principal; and it would
follow that b=Db(a\Va')=aVa'b, as the sum of semiprincipal ideals,
is semiprincipal. We are thus left to consider the exceptional entries
in the second table. '

We discuss next the construction of an example of a prin-
cipal ideal a=a(a) and a non-simple normal ideal b such that ab is
not semiprinecipal relative to b. Assuming N==G, we select a non-
simple normal ideal b. First, let us suppose that this can be done
in such a way that b\b’ is not prime. Then there exists an element;
@ not in bVbH' such that a(@)VBVDb'=e. It follows at once thab
a’(a)VbVb'=e: for otherwise we would have

a(a)VBVD'= (a(a)\/bVb')e = (a(a)VBVD')(a'(a) VBVb') = bVb’,

contrary to our choice of a. If a(a)b were principal, then the ideal
a'(a)\/b\/b'za'(a)\/b'Va(a)b would be normal by Th. 1.2; and
we would find that a’(a)\/b\/b’z(a’(a)\/b\/b’)”=(a(a)b’b”)':o’:e.
If a'(a)b were principal we would have a(@)VBVb'=e in the
same way. Thus we can obtain the desired example by putting
a=a(a) and uging the ideal b originally selected. If now we find
w0 non-simple normal ideals b; and b, such that b;\/b; and b2V by
are distinet but both prime, we can construct g non-simple normal
ideal .b such that b\/b’ is not prime. Since b1, b1, bay by are all
non-simple normal ideals, since P;=Db,Vb] cannot contain both
b and b;, and since P,=b,V b, cannot contain both b, and B
we can (_:hoose our notation so that P1Vbe=¢e, p,Vb;=¢. The idea.i
. b=0;b, is normal. We can show that (b,b,)' is contained in PiPe-
By symmetry, it is sufficient to prove that {byb,)'Cpy Liet ¢ bel;n
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element of (bb,)’. Then ¢, as an element of p,\/by=e, can be
expressed in the form ¢=a\/b where aepy, beb, Since b<ce(b;b,)’,
we have be(b.b,)’; and since a(b)Ch,y, we have a(b)b, = a(b)bby=0,
a(b)Cb;Cp,. We see therefore that bepy, cep;, and (b;b,)'Cp,. The
ideal b=b,b, thus satisfies the relation b\/b'Cyp,p, so that b is not
simple and b\/b’ is not prime. We have thus settled all cases except
that where there exists a prime ideal p such that b\/b'=p for every
non-simple normal ideal b. Even in this case we can still obtain
the desired example if the given ring has no unit. Let a be an
element not in p. Then the ideal a’(a) is not principal and is
contained. in p. Hence if b is a non-simple normal ideal, the ideals
a’(e)b and a’(a)b’ cannot both be prinecipal: for, if they were,
a'(a)=a(a)p=a'(a)bVa'(a)h’ would be principal. We may suppose
that a’(a)b is not prineipal. If a(a)b were principal it would be principal
relative to a(a). Thus we would find that its orthocomplement a(a)b’
relative to the ring a(a) with unit is principal. We could then con-
clude that a(a)p=oa(a)bVa(a)b’ is principal. On the other hand,
since p'=(b\VDb')' =b'D"'==p, p is not normal and Th. 1.6 (2) shows
that a{a)p is not normal. Hence we see that neither a'(a)b nor a(a)b
is principal. We can therefore obtain the desired example by put-
ting a=a(a) and using the ideal b. Hence the only possibility of
improving the fourth entry in the first row of the second table oe-
curs in the case of a ring with unit in which there is a prime ideal p
such that p=bVDb’ for every non-simple normal ideal b. By reference
to Ths. 7.1-7.4 and 11.1, we see that such a ring must be of type
(p%) or type (f%).

We conclude by showing that simplifications of the second
table oceur for rings of these types. Every non-simple ideal in a ring
of type (p¥) satisfies the relation p=5bVDb’, where p is the prime
ideal of Th. 7.1 (1). If a is an arbitrary element, then one of the
elements o and &' is in p; hence either a(a)p or a(a’)p=a'(a)p is
principal in p and a(a)p is semiprincipal relative to p. In particular,
if @ is not in p, then a(a)p is semiprincipal but not principal re-
lative to p by Th. 1.8. Considered as an ideal in .p, the ideal b is
simple. Hence the ideal a{a)b=a(a)pb is semiprincipal relative to
b by an application of Th. 1.3 within the ring p. Every non-simple
normal ideal b in a ring of type (B¥) satisfies the relation p=bV1v/,
where p is the prime ideal of Th. 7.3 (1). Hence the argument used
above shows that a(a)b is semiprincipal relative to b for every a
and every such b. If we apply the preceding work to the ring p,
for which P==P*+=S=N, in both cases, we find that ¢ and b can
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be chosen so that a(a)b is not principal: for every non-principal
semiprincipal ideal in p is representable in the form a(a)p, aep,
by proper choice of a’ in p. In a ring of type (§%), there exist a prin-
cipal ideal a{a) and a non-normal ideal b such that a(a)b is not semi-
principal relative to b. By Th. 7.2, there is a non-normal prime
ideal q distinct from p. If we take « in g but not in p, we obtain
the desired example by putting a=a(a), b=pq. We then know that
a(a)b and a(a')b=a'(a)b are simple relative to b. Considering a(a)
and b as ideals in g, we know that a(a) is not contained in b=pq
and that b is a non-normal prime ideal relative to q by Th. 1.7.
Hence a(a)b cannot be principal, by virtue of Th. 1.8. Since a’ is
in p but not in q a similar argument shows that a(a’)b cannot be
principal. Hence a(a)b is not semiprincipal relative to b. It follows
that b is not normal, a fact which can be verified directly also.

Theorem 1R.4. The table of Th.1.4 gives best possible resulis
except when reductions are made possible by equalities between some
of the classes B, P* S, N, §.

The entries “B” in the table are obviously the best possible.
If we take b as a non-principal ideal in any of the four classes
P* 6, N, J and put a=b, we see that a is semiprincipal but not prin-
cipal relative to b and belongs in A to the same class as b. Hence
the entries in the second row of the table are the best possible;
and so also the last three entries in the last column are the
best possible. Since a is normal (simple) relative to b if it is normal
(simple) in 4, by Th. 1.3, it is evident that the first four entries
in the fourth and fifth rows are the best possible. Since the class
of simple ideals relative to b contains the class of semiprineipal
ideals relative fo b no improvement in the third and fourth entries
of the third row can be made without improvement of the cor-
responding entries in the second row; but the latter are already
known to be the best possible. To complete our discussion we have
only to study the second entry in the third row. Using Th. 12.1,
we choose b as a non-principal semiprincipal ideal and a as a non-
semiprincipal simple ideal contained in b. Then q is simple but not
principal relative to b. In order to show that a is not semiprincipal
relative to b, we prove that a'b is not principal: if it were we would
have a'=a'b\Va'b’, where a'b’ is principal since o’ is simple and b’
principal, and hence a’ would be principal against hypothesis. Thus
a and b furnish the desired example.
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Theorem 12.5. Under the condition aCb, the ideal b can be
assigned o an arbitrary class, and the ideal a to an arbitrary class
relative to b, with only the following exceptions:

1)

(2) the assignment is subject to the limitations imposed by equalities
between the classes B, P*, S, N, J in the given ring;

(3) im a ring of type (B%) or type (B%,Bs) the choice of a to be not
simple relative to b and of b to be not normal is impossible;

(4) in a ring of type (B¥), type (85, B1) or type (B3, Ba), the choice
of a to be normal but not simple relative to b and of b to be normal
but not simple is impossible.

(B) in a ring of type (w,w) the choice of a to be simple but not semi-
principal relative to b and of b to be simple but not semiprincipal
8 impossible.

the assignment is subject to the general + esirictions given in Th. 1.5;

In (3) and (4), we have further algebraic characterizations of the
various types (B3), (B%,Ps), (B), (B3, 61) and (B3, ps).

Any relation of equality between the classes of ideals in the
given ring will have an effect on the classes of ideals a considered
relative to a containing ideal b. It is our purpose to show that apart
from this and the various other exceptions noted above, b can be
assigned to any of the five classes at pleasure and, independently,
a to any of the five classes relative to b.

We begin with the exceptional cases mentioned in (3), (4), (5).
Assuming that J==9 and hence that ==&, we construct an example
where b is not normal and a is not normal relative to b. In a ring
with ==&, there exist ideals ¢ such that ¢'=op, cd=e=c"":if a is a non-
simple ideal then c=a'V/a’ has these properties. Let b and ¢ be two
such non-normal ideals with b==c. By proper choice of notation
we may suppose that bcs=b. Considering a==(bc)b=Dbc an as ideal
in b we have (bc)'b=bc’'=Db so that a is not normal relative to the
non-normal ideal b. Thus we have the desired example unless there
is only one non-normal ideal b with b’=p. This ideal b must be prime:
for aDb implies a’Cbh’=p, a’=0 so that either a is non-normal and
a=Dh or a is normal and a=a''=-e. Now if a is an arbitrary ideal then
either a\VVa'=e or aVVa' is a non-normal ideal with (aVa')’=p so
that a\/a'=Db. Hence b has the properties demanded under (1) of
Th. 7.1; and our exceptional case proves to fall under the case
where the given ring is of type (%) or type (£3,fs). That all such
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rings are actually exceptional is easily proved. In fact we can prove
that in such a ring the relation aCb implies that a is simple relative
to b whenever b is not simple. If p is the prime ideal of Th. 7.1 (1)
and if b is not simple we have bH\V/b'=pCa\/a'. Hence we obtain
the relations a\/a'b=ab\/a'b=(a\/a')bDpb=b, so that a\/a’h=b and a
is simple relative to b.

We next assume that J==9 and hence that J+&, and con-
struet an example where o is normal but not simple relative to b
and b is not normal. We choose @& normal ideal ¢; and a non-simple
ideal c,. Let us suppose that we can so choose them that c\/c is
not contained in ¢;\/¢;. We then obtain the desired example by putting
a=c(eV @), b=\ for a is normal relative to b by virtue of the
fact that ¢; is normal; but a is not simple relative to b because of
the relations aVa'b=c(e\Ve)\Vi(eV o)=(u\/c)(eV )=\ ¢=>b.
We now examine the conditions under which such a choice of
¢ and ¢, is impossible. Clearly, if every normal ideal is simple
we shall have ¢\/ci=eD e\ . In this case we see that the given
ring is totally multiplicative by Th. 2.3 (2). Hence any ideal b
is totally multiplicative, and an ideal a normal relative to b is ne-
cessarily simple relative to b, again by Th. 2.3 (3). Now let us
assume that =G, If we cannot effect the previous construction
using non-simple normal ideals ¢, and ¢, it can only be because
for all such ideals ¢;\/ci=cV/ 2. Bven in this situation we can effect
the previous construction using a non-simple normal ideal ¢, and
& non-normal ideal ¢, unless ¢:\/c:Cci\/¢i for every non-normal
ideal ¢, and every non-simple normal ideal ¢,. Thus the only Pos-
sible - exceptional case, as we see by reference to Th. 11.1, is that
where, first, the sum of all non-simple normal ideals is a prime
ideal q, given here by q=c:\/ ¢i==c> \/ch=Fe when ¢, and c, are such
ideals, and, second, the sum of all non-normal ideals, being con-
tained in q, coincides with it. By Th. 11.1 this case occurs only
for rings of type (%) or type (B¥,Bs). From the preceding work we
know that such rings actually constitute exceptional cases here.

We consider next the construction of an example where b is
normal but not simple and « is normal but not simple relative to b.
We assume that R4S, sinece no such example could be obtained
otherwise. As in the preceding paragraph, we consider the case
where non-simple normal ideals ¢ and ¢, can be obtained such that
aV/¢f does not contain c;\/¢§. The ideals €1C2, €13 are normal in the
given ring and also normal relative to ¢ and ¢} respectively. How-
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ever, cice and ¢¢d cannot both be simple relative to c and ¢ res-
pectively: for, if they were, we should have titV/ ¢ica=¢2, ¢ics\/ c163=C2
and hence oVeid(aVe)leVe)=¢\V ¢, contrary to hypothesis.
We then obtain the desired example by putfing a=c ¢y, b=¢,; or
a=cics, b=c. We see therefore that our construction breaks down
only in the case where the sum of all non-simple normal ideals is
2 prime ideal q. According to Th.11.1 this situation occurs only
for rings of one of the tiypes (ﬁg)y ()6§k7/33)7 (ﬁ§)7( ?’isﬁl)s (ﬂzkaﬁZ) We
know already that the first two of these types provide actual ex-
ceptional cases. We can easily show that the three remaining types
do likewise. Let p be the prime ideal of Th. 7.3 (1). Then if b is
normal but not simple, we have pCb”’\/b'=DbVDb'#e and hence
p=b\/b’. Thus if o is an arbitrary ideal normal relative to b, we
have a=a’b, aVVa'b=(a"'\Va')bDpb=(b\/b')b=b and hence a\/a'b=b,
so that a is simple relative to b. This completes the discussion.

The exception (5) has already been established in Th. 8.2.

Of the nineteen examples which we still have to give, seven-
teen offer no difficulty. The five cases where a is principal relative:
t0 b are treated by assigning b to any of the five classes P, B*, N, S, J
at pleasure and taking a as the principal ideal generated by an
element of b. The four remaining cases where a is semiprincipal
relative to b but not principal ave treated by assigning b to any
of the four classes P* S, N, I at pleasure and putting a=>b. The
four remaining cases where a is not normal relative to b are freated
by assigning b to one of the four classes P, P* S, N, av pleasure
and choosing a as a non-normal ideal contained in b: for according
to Th. 1.4, a cannot be normal relative to b under these circum-
stances unless it is normal in the given ring. The three remaining
cases where a is normal but not simple relative to b are treated
by assigning b to any of the classes P, B*, © at pleasure and choo-
sing a as a non-simple normal ideal contained in b: for a is then
normal relative to b by Th.1.3 bus, by virtue of Th.1.4, cannot
be simple relative to b. In a ring for which P*+G, we take a as
a non-semiprincipal simple ideal and put b=e, since e is semiprin-
cipal but not principal, in order to obtain an example where a is
gimple but not semiprincipal relative to D and b is semiprincipal
but not principal.

There are still two cases to be studied. First we consider the
construction of an ideal ¢ which is simple but not semiprincipal
relative to a non-simple normal ideal b. We choose a non-simple
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normal ideal ¢, and a non-semiprincipal simple ideal ¢, such that
¢;Cco. Since ¢ is simple, ¢V ¢ is normal. On the other hand ¢\ e
is not simple: for, if it were, we would have

e=(aVea)VaVe)l=aVaVieCuaVa

since ¢, Cc, implies ¢ Dch; and we would thus have e=ci\V/ ¢: against
hypothesis. Now c=ci(cs\/c1) is simple relative to \/¢; bub
neither ¢; nor c=c2(cz\/ ¢1)==cs'(ca\/¢1) can be principal. Hence we
obtain the desired example by putting a=c¢ and b=c;\/ cs.

Finally we consider the construction of an ideal a which is
simple but not semiprincipal relative to a non-normal ideal b.
We choose & non-normal ideal c¢; and a non-semiprincipal simple
ideal ¢, such that ¢, Cc,. The ideal ¢V is not normal: for, if it
were, r=~0s(c1\/c3) would be normal against hypothesis. Now the
ideal =c(c1\V3) is simple relative to ¢i1\/¢; but neither ¢ mnor
a=0c(cV )= (V) can be principal. Hence we obtain the desi-
red example by putting a=c;, b=c¢;\/¢. This completes the proof
of the theorem. \

It is evident that Ths.1.6,1.7, and 1.8 give complete informa-
tion on the topics discussed. The only question left open is that
of the existence of a prime ideal of given class either containing
or not containing an ideal a of given class. In this connection we have:

Theorem 12.6. Let a be an ideal in a Boolean ring A with a==e.
In order that a have a normal prime divisor it is necessary and suf-
ficient that o’ contain an atomic element; and in order that every prime
tdeal divisor of a be normal it is necessary that a==s' where s is an
atomic system. In order that there ewist o mormal prime ideal which
s not a divisor of a it is mecessary and sufficient that a contain an
atomic element; and in order that every prime ideal which is not a di-
visor of a be normal it is mecessary that sCaCs'’ where s is an ato-
mic system.

By R Th.38 we know that an ideal p is prime and normal
if and only if p=a’(a) where a is an atomic element. If aCp=:a'(a),
then a'Da’(a)=a(a) so that aea’; and, if aea’, then a(a) Ca’,
p=a'(a)Da”Da so that pDa. If p does not contain a, then aV/p=e
so that a(a)=a(a)(aVp)=ala)a\/a(a)a'(e)=a(a)aCa so that aeq;
if aea then p=a'(a) does not contain @ or q. If pDa, where p is
prime, implies that p is normal, then a, a8 the product of its prime
ideal divisors, is normal; and a’ contains an atomic system s. Since
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bes’ implies bea’(a) for every a in g, we see that s'Ca. On the other
hand sCa’ implies s'Da’'=aq. Hence we have a=s’. If every prime
ideal not containing a is normal, then a contains an atomic system s
such that every prime ideal not containing a is given by p=a'(a),
aes. We shall prove that as’=p. If beas’, then ab=0 for every o
in s and hence bea’(a) for aes; and also bep whenever p is a prime
ideal containing a. Thus b is confained in every prime ideal and
must be the element 0. Hence as’=p at we wished to prove. The
relations sCa and as’'=p show that sCaCs’’ 16),

16) Through the courtesy of the'Editors, it is possible for me to add the
following bibliographical indications: Jaékowski on a meeting of the Polish
Math. Soc. (of. Annales Soc. Pol. de Math. 12, p. 122) has considered totally
additive Boolean rings with countable bases and without atomic elements,
and gave the result quoted in footnote 14; Kuratowski, as cited by Tarski,
Fund. Math. 6 (1924), pp. 94-95, has found Th. 5.1; Mazurkiewicz, Mon. Math.
u. Phys. 41 (1934), pp. 343-352, has also considered deductive systems; Mostowski,
Fund. Math. 29 (1937), pp. 34-53, studies countable Boolean rings; results of
Tarski closely related to Ths. 2.2, 2.4, 4.1, 5.2, 6.2, 9.1 and 9.2 are to be found
in Fund. Math. 24 (1934), p. 180, 26 (1936), p. 285 and pp. 287-288, in Comptes
Rendus du I Congrés des Mathématiciens Polonais 1927 (Supplément des Ann.
Soc. Pol. de Math. 1929, pp. 29-33), in Ann. Soc. Pol. de Math. 1936, pp. 186
and 190, and Comptes-Rendus Soc. Se. Varsovie 30 (1937).
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