

 $M = L - N_1 + N_2$ [où $L \in L$ et $\mu(N_1 + N_2) = 0$] entraîne la mesurabilité (L) de l'ensemble M, tandis que l'ensemble U est non mesurable (L).

§ 7. Soit $\mu(M)$ une fonction non négative d'ensemble définie sur une classe M de sous-ensembles d'un ensemble I de puissance du continu, satisfaisant aux condition 1^0 — 3^0 .

Divisons la classe M en classes de façon que deux ensembles $M_1 \in M$, $M_2 \in M$ appartiennent à une même classe lorsqu'on a

$$\mu \left[(M_1 - M_2) + (M_2 - M_1) \right] = 0$$

et seulement dans ce cas. La famille \mathfrak{M} des classes ainsi obtenue sera considérée comme un espace métrique 1). Posons notamment pour $\mathbf{M}_1 \in \mathfrak{M}$, $\mathbf{M}_2 \in \mathfrak{M}$:

$$\varrho(\mathbf{M}_1\,,\,\mathbf{M}_2) = \mu[(M_1 -\!\!\!- M_2) + (M_2 -\!\!\!- M_1)] \quad \text{où} \quad M_1 \in \mathbf{M}_1\,,\,M_2 \in \mathbf{M}_2.$$

(Il est évident que le nombre ϱ ne dépend pas du choix des ensembles M_1 et M_2).

M. Nikodym a démontré que l'espace \mathfrak{M} est toujours complet 2). Pour la mesure lebesguienne (des sous-ensembles d'intervalle I) cet espace est séparable. Le problème si l'espace \mathfrak{M} est séparable dans le cas général, ou bien pour les E P (considérées aussi seulement sur l'intervalle I) reste ouvert. Nous ne savons de même si cet espace doit être toujours de puissance $\leq \mathfrak{c}$.

Désignons par \mathfrak{M}^0 resp. par $\mathfrak{M}^{\mathsf{N}}$ l'espace \mathfrak{M} correspondant à la mesure lebesguienne resp. à une EP de la forme μ^{N} [§ 2]. Il est évident qu'il existe dans chaque classe appartenant à $\mathfrak{M}^{\mathsf{N}}$ un ensemble mesurable (L), d'où il résulte aisément que les espaces $\mathfrak{M}^{\mathsf{N}}$ et \mathfrak{M}^0 sont isométriques.

Il est enfin à remarquer que l'espace \mathfrak{M}^* , correspondant à la fonction μ^* [cf. § 6] est aussi isométrique à \mathfrak{M}^0 . Soient: K ϵ \mathfrak{M}^* et $M \epsilon$ K. On a donc $M = L_1 \cdot U + L_2 \cdot C \cdot U$ (où $L_1 \epsilon \mathsf{L}$ et $L_2 \epsilon \mathsf{L}$). Posons pour tout point $p = (x_1, x_2 ... x_n)$ de l'espace:

$$f_1(p) = (\frac{1}{2} x_1, x_2, x_3, \dots x_n)$$

$$f_2(p) = (\frac{1}{2} x_1 + \frac{1}{2}, x_2, x_3, \dots x_n).$$

Posons ensuite $L_1^*=f_1(L_1)$ et $L_2^*=f_2(L_2)$. L'ensemble $L_1^*+L_2^*$ appartient à une classe $\mathbf{M} \in \mathfrak{M}^0$. Désignons donc la classe \mathbf{M} par $\psi(\mathbf{K})$. On démontre aisément que la transformation ψ est une isométrie.

Choix effectif d'un point dans un complémentaire analytique arbitraire, donné par un crible *).

Par

N. Lusin et P. Novikoff (Moskwa).

La méthode de cette détermination a été proposée par M. P. Novikoff; nous exposons ici la rédaction simplifiée de M. N. Lusin.

1. Soit E un complémentaire analytique non nul situé dans l'intervalle (0 < x < 1). Nous supposons que E est défini au moyen d'un crible C formé d'une infinité d'intervalles

$$(1) \delta_1, \ \delta_2, \ \delta_3, \ldots, \ \delta_n, \ldots$$

parallèles à l'axe O[X] dont les projections, proj. δ_n , sur cet axe sont des intervalles de Baire. Nous désignons par C_n la partie de C située rigoureusement au dessous de δ_n .

Soit

$$E = E_0 + E_1 + E_2 + \ldots + E_{\omega} + \ldots + E_{\alpha} \ldots / \Omega$$

le développement de E en une infinité transfinie de constituantes défini par C. Soit E_{γ} la première constituante non nulle, $0 \leqslant \gamma < \Omega$; nous la désignons par $E^{(0)}$, $E_{\gamma} = E^{(0)}$.

2. Voici maintenant le procédé cherché.

Premier pas. Soit δ_{n_i} le premier intervalle dans la suite (1) tel que l'ensemble-produit $H_1 = \text{proj. } \delta_{n_i} \times E^{(0)} \neq 0$. Si x est un point de H_1 , la perpendiculaire P_x en x à l'axe OX coupe le crible C_{n_i} en un ensemble bien ordonné; soit γ_1 le type minimum lorsque x parcourt H_1 . Nous désignons par $E^{(1)}$ l'ensemble des points de H_1 qui correspondent à γ_1 .

¹⁾ Cf. p. ex. O. Nikodym l. c. p. 307.

²⁾ l. c.

^{*)} Communication faite par M. N. Lusin à l'Académie des Sciences de l'U. R. S. S. le 8 sept. 1985.

Deuxième pas. Soit δ_{n_2} , $n_2 > n_1$, le premier intervalle dans la suite (1) tel que l'ensemble-produit $H_2 = \text{proj.}$ $\delta_{n_2} \times E^{(1)} \neq 0$. Si x appartient à H_2 , P_x coupe le crible C_{n_2} en un ensemble bien ordonné; soit γ_2 le type minimum lorsque x parcourt H_2 . Nous désignons par $E^{(2)}$ l'ensemble des points de H_2 qui correspondent à γ_2 .

 k^{ilme} pas. Soit δ_{n_k} , $n_k > n_{k-1}$, le premier intervalle dans la suite (1) tel que l'ensemble-produit $H_k = \operatorname{proj.} \delta_{n_k} \times E^{(k-1)} \neq 0$. Si x appartient à H_k , P_x coupe le crible C_{n_k} en un ensemble bien ordonné; soit γ_k le type minimum lorsque x parcourt H_k . Nous désignons par $E^{(k)}$ l'ensemble des points de H_k qui correspondent à γ_k .

Les intervalles proj. δ_{n_1} , proj. δ_{n_2} ,..., proj. δ_{n_k} ,... contiennent nécessairement un point ξ . C'est bien ce point ξ qui appartient à la première constituante non nulle E_{γ} .

3. Pour le voir, montrons d'abord que P_{ξ} ne coupe aucun intervalle δ_m qui diffère des δ_{n_k} . En effet, si $n_{k-1} < m < n_k$, proj. δ_m contient sûrement des points de $E^{(k)}$. Or, δ_{n_k} est le premier intervalle dans (1) qui suit $\delta_{n_{k-1}}$ et dont la projection, proj. δ_{n_k} , contient des points de $E^{(k)}$. Donc $m = n_k$.

Nous ajoutons que P_{ξ} coupe effectivement tous les intervalles $\delta_{\kappa_{\epsilon}}$.

4. Il ne reste qu'à établir que l'ordre relatif des ordonnées des intervalles δ_{n_k} est celui des nombres transfinis (ou finis) γ_k .

Pour le voir, prenons deux intervalles quelconques δ_{n_i} et δ_{n_j} ; nous supposons que δ_{n_i} est situé au-dessous de δ_{n_i} .

Soit k un entier positif quelconque tel que k > i et k > j. Si x est un point de $E^{(k)}$, P_x coupe les cribles C_{n_i} et C_{n_j} en deux ensembles bien ordonnés respectivement de type γ_i et γ_j . Et comme le crible C_{n_i} fait partie du crible C_{n_j} , on voit bien que $\gamma_i < \gamma_j$, l'égalité de ces nombres étant exclue.

D'autre part, il est manifeste que tous les nombres δ_k sont inférieurs à γ , puisque $E^{(k)}$ fait partie de E_{γ} . Il en résulte que P_{ξ} coupe le crible donné C en un ensemble bien ordonné de type $\leq \gamma$. Comme E_{γ} est la première constituante non nulle, nous concluons définitivement que le type de cet ensemble bien ordonné est précisément égal à γ .

C. Q. F. D. D'autres applications du procédé précédemment décrit paraîtront prochainement.

Die A-Mengen und die topologische Konvergenz.

Von

Paul Alexandroff (Moskwa).

Es sei $\{E_{l_1...l_k}\}$ ein System von Punktmengen eines festen metrischen Raumes R; dabei durchlaufen k und die i_1,\ldots,i_k unabhängig voneinander alle positiven ganzzahligen Werte. Betrachtet man für jede Indexfolge i_1,\ldots,i_k,\ldots die Durchschnittsmenge $\prod_{k=1}^{\infty} E_{l_k\ldots l_k}$ und summiert man diese Durchschnittsmengen über alle Indexfolgen, so erhält man eine Menge $E = A\{E_{l_k\ldots l_k}\}$, von der es bekanntlich heisst, dass sie aus dem Mengensystem $\{E_{l_k\ldots l_k}\}$ durch Anwendung der A-Operation entstanden ist.

Die Mengen, die man durch Anwendung der A-Operation auf Systeme abgeschlossener bzw. offener Punktmengen des Raumes R erhält, heissen bekanntlich die A-Mengen oder die Suslinschen Mengen 1) des Raumes R.

Es erhebt sich die Frage nach den Mengen, die man erhält, wenn man in der obigon Definition der A-Operation anstatt der Durchschnittsbildung (nach den Indexfolgen) andere für Mengenfolgen erklärte Operationen vornimmt. Als solche Operationen betrachten wir in dieser Note erstens den Uebergang zum oberen, zweitens den Uebergang zum unteren topologischen Limes²) einer Mengenfolge und beweisen — unter der Voraussetzung, der metrische Raum R sei separabel —, dass man auf die eben geschilderte Weise nur die A-Mengen und (was sich übrigens als trivial herausstellen wird) auch alle A-Mengen erhält.

¹⁾ Vgl. etwa Hausdorff, Mengenlehre, Kap. V, § 19.

²⁾ Vgl. etwa Alexandroff-Hopf, Topologie I, Kap. II, § 5.