56 W. Sierpinski.

jouit pas de la propriété de Baire, puisque, si H jouissait de cette:

propriété, il en serait de méme de Pensemble H ———XEy[x = -—1] qui

coincide évidemment avee J;, et comme nous savons, l’ensemble J,
ne jouit pas de la propriété de Baire.

Done, si 2%=1,, il existe une fonction d'une variable réelle qui

jouit de la propriété de Baire et domt limage géomélrique ne jouit
pas de la propriété de Baire.

Voici encore une remarque due & M. Kuratowski.

En conservant les notations utilisées plus haut, posons

flz,y)=1 si (z,9) ¢ @, et flz,y) =0 si (z,y)non e @.

La fonction de deux variables réelles f(z,y) ne jouit pas de la

propriété de Baire, puisque l'ensemble @ ne jouit pas de la propriété:

de Baire. Or, la fonction f(z,y) dépend évidemment seulement de y,
et 8i I'on pose, pour x et y réels, f(x,y)=">9(y), la fonction F (3
d'une variable réelle y jouit de la propriété de Baire (puisque
E[¥(y)=E 0] =K et K est un ensemble toujours de premidre caté-
o

gorie).

Done, si 2%==4y,, une fonction d’'une variuble réelle qui jouit de
lo propriété de Baire, considérée comme une fonction de deux variables
réelles, peut ne jouir pas de lo propriété de Baire.

Ou encore, posons, pour x et y réels: F(»,y)=y — ce sera
évidemment une fonetion continue de deux variables réelles z,y.
La fonction g(v,y) = F'(x,&(y)) est, comme on voit sans peine, la
fonetion caractéristique de Pensemble (plan) @, done une fonction
qui pe jouit pas de la propriété de Baire. Done:

Si 2% =y, il existe une fonction de deur variables réelles qui me.
Jouit pas de la propriété de Baire ef qui est ume fonction continue
(de deuz variables réelles) de fonctions (d'une variable réelle) jouissant
de la propriéié de Baire. .

(Pour les fonetions d'une variable réelle, ainsi que pour les fone-
tions de deux variables réelles de fonctions de deux variables réelles,
un tel cas est, comme on sait, impossible).
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On Linearly Measurable Plane Sets of Potiits
of Upper Density 1/,.

By
J. Gillis (Cambridge, England).

§ 1. The general theory of linear measure and measurability of”
plane sets of points is due to Carathédodory!?), Gross?) and
Esterman%); but Besicovitch4) in a paper to which I shall
refer as (B), was the first to investigate the geometrical properties
of linearly measurable plane sets. Later, Besicovitch and Wal-
ker5), proved a further important result, and, although their actual
theorem is irrelevant to my present purpose, I shall have to make
frequent use of the arguments they use to establish some of their
auxiliary theorems. When duing so, I shall refer to their paper as
(B and W). I proved to state some definitions and the relevant
known theorems.

§ 2. Let 4 be a plane set of points and p an arbitrarily chosen
positive number; let U(p, 4) dencte a finite or denumerable set
of couvex areas {U,(p, A)} such that:

(I) every point of 4 is interior to at least one of the areas
Ui(p, 4), and
(IT) the diameter d, of U,(p, A) is less than p for each £;

then the lower bound of 3d, is denoted by Z,. As p decreases,
U

1) Uber das lineare MaB von Punktmengen., Nuchrichten der K. Gesellschaft
der Wissenschaften zu Gottingen, Math.-Phys. Klasse, (1914).

3) Monatshefte fir Math, und Physik (1918).

%) Abhandlungen aus dem Math, Sem. der Hamb. Univ. (1925).

4) Math, Annalen (1927), pp. 422—464,

5) Proc, of the London Math, Soc, Ser, 2, Vol. 32, Part 2, pp, 142—153.
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L, is non-inereasing and, therefore, lim L,=L*4 exists. We call
p—>0

L* 4 the exterior lnear measure of A.
If 4 is such that, for each set W of finite exterior linear measure,

IFW = L*[A X W]+ L¥[W— A X W],

then A is said to be linearly measurable, or, as we shall say for
simplicity, measurable, and we write L*4 = LA.

If now A is a measurable set and c(a, ) is the circle with centre a
and radius », we write 9)

LA X e(ay 7)]
e Ee L

lim sup == D¥*(a, A) == upper density of 4 at a,

r—+0
and

lim inf 1_)_[A_>§_;g£g,*£)] = D, (a, A) = lower density of A at a.

r—-0
Theorem. At almost all points a of a measurable set A,
0 Dy(a, )Xl and < D¥(a, 4) < 1,
and these results are the best possible.

If, at a point a, D*¥(a, A)= D,(a, A), then we call their common
value the density of 4 at a and denote it by D(a, 4).

A point o of A at which the density exists and is equal to 1
is called a regular point of A; any other point is called an irregular
point. If almost all points of 4 are regular points, then A is said
to be a regular set; if almost all points are irregular then A is said
to be an irregular set. 1 now invoke a number of theorems ¢) which I
do not propose to prove.

Theorem. The density of a measurable set is zero at all poinis
outside the set, except for a set of points of linear measure 2ero.

From this we can deduce the following theorems.

Theorem of permanence of densities. Let A,, 4,,... be a jinite

or denumerable set of measurable sets such that L(4,+4,+...) is
finite. Then at almost every point a of the set 3 A, the upper and

lower densities are respectively equal to those of the set A, which
contains a.

%) These definitions and the succeeding ones as well as all the theorems quoted
in this section are taken slmost verbatim from (B) where these theorems are proved.
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Theorem of Decomposition. The set of all regular points of

-a measurable set A is a regular set, and the set of all irregular points

is an irregular set.

§ 3. It follows from the Theorem of Decomposition that the
study of measurable sets can be reduced to the separate studies

-of regular and irregular sets. The properties of regular sets have

been investigated by Besicoviteh 7) who established that at almost
every point of such a set there exists a tangent, and that almost
all points of the set are contained in a finite or denumerable set
of rectifiable curves which can be constructed so as to have total
length arbitrarily near to the measure of our original set. Regular
sets are thus generalizations of rectifiable curves and have no stri-
kingly new properties. Irregular sets, on the uther hand, have pro-
perties fundamentally different from those of reetifiable curves, and
it is with such sets that this paper will deal.

§ 4. I shall deal, in particular, with sets of upper density 4

(1. e. sets at almost all points of which the upper density is equal

to §); we shall see that these sets have a very simple structure. It

is my belief that such sets have projection of zero measure on al-

most all directions, though I have been unable to prove this, The
following theorem will be proved (subject to a slight modification
of the definition of L 4):

Given a linearly measurable plane set A, we can write A=G-}-R,
where

(I) LRE=0, and

(II) corresponding to each point x of G there is a set of direc-

7
tions P(z), of measure greater than or-equal to 3 (the mea-

sure of the set of all directions being taken as 27m) such tha,
if 8 is any direction belonging to P(x), then

lim ing TRO28UTe of projection of [4X e, )] on 6 0
ey LIAX c(@, 1) -

The chief interest of this result it that is brings to light a further
fundamental difference between regular sets and those of upper
density 3.

7 (5) pp. 455—451.
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§ 5. If, in our definition of linear measure and measurability,

we had restricted the convex areas to be circles, we should have
obtained a new definition of measure. If we denote it by L,, then
it is clear that L,4 >> LA. It has been shown 8) that

() If 4 is a regular set, then L. A= L4,
(I1) If A is an irregular set, then LAQL;AQ-?— 4

V3
and these results are the best possible, in the obvious sense of the
term. It is convenient, when dealing with irregular sets, to use L,
measure rather than L measure (the latter may be referred to as
Carathéodory measure). The results obtained in this paper hold,
mutatis mutandis, for I measure, but the use of L, measure intro-
duces a certain simplification of detail, and it is for L, measure that
I shall prove my result. I shall begin with an analysis of the stru-

cture of sets of upper density §, but for this I need to make use

of a known property of such sets. I shall not prove it in detail
but shall content myself with stating the main stages in the proof
and referring the reader to the original paper *), where a full proof
is to be found.

§ 6. Suppose that we are given a linearly measurable plane
set A of upper density 4, and arbitrary positive numbers &, 7, .
Let ! be a positive number and & a point of A such that the mean
density of 4 in the circle ¢(a, 7) is less than § & for all » <1
Let 4, denote the set of all such points e. Clearly L.4,—~ LA
as 1—>0, and hence, by fixing /, sufficiently small, we can have
L.A,> LA—y.

Write
(1) B=4,, then L, (A— B)<y.

By a lemma proved in (B) p. 42 for Carathéodory measure,
but the proof of which applies without change to I, measure, we
can find 6 so that, for any finite or denumerable set of circles C(9),
each of diameter less than 4,

@) D2 > LABX (O} —1
(@)
and we can take 6 < ly.

8) (B) pp. 468—464,
%) See (B and W), pp. 145—148, for a complete exposition of the matter of § 6.

icm

®) lZZr—LEB

Linearly measurable plane sets 61

We deduce, by the argument used in the proof Vitali's The-
orem, that there exists a set O of non-overlapping circles, each of
diameter less than or equal to 4, such that

<7

and O eovers almost all points of B.
Write now

0=0C+4 G+ G

where C, is the set of circles of O in each of whiech the mean

density of B is less than 1—y, C, the set for which the mean

density lies in the closed interval [I —y, 1-|-y], and C; that for
which the mean density is greater than 1--y.
It is shown that

LBX (@ +a) <T

and hence that

3
LA{BX C}> L.B— ~7’—7 +n

Next it is shown that in every cirele ¢(0, r) of C, all the inclu-
ded points of B lie in the narrow ring between the cireles ¢(0, 7)

and ¢(0,1— o), where o =4¢- 2y.
§ 7. I proceed to apply these results. For our purpose it will

be convenient to take y=¢= .

We have . .
4) L{BX (G+ os>><—;~7—v <3y
) L(BX G)> L,B—3y
(6) g=6y.

Summing up the results quoted in the proceding paragraph,
using the inequalities (1), (4) and (5) and equation (6), and repla-
cing y by y/6, we can assert that:

Given a measurable set A of upper density § and an arbitrary
positive number y, we can find a set Cy of nom-overlapping circles
and can write A =TI} D, where
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N LI'<y _ '

(II) The points of D are included in Cy, and in any circle c¢(0,r)
of C, the included points of D lie in the ring between the
circles ¢(0, ), ¢(0, 1 —y ),

(IILy  In each circle of Cy the mean density of D lies in the closed
interval [L—y/6, 14+ 9/6] and, a fortiori, in the interval
(1—y, 14+

§ 8. The circles of C, are denumerable; S, S,,...,8,,... (say).
The set DX 8, is again measurable and of upper density 4 (by
the theorem of permanence of densities). Therefore the result of the
last paragraph ean be applied to D X S,, and here it will be con-
venient to use p/2"™! instead of y. The set of D X S, which eor-
responds to I' will have measure less than 9/2** and can, for the
moment, be ,disregarded“. We may treat each D X S, in this way.
The total measure of the set of points ,disregarded” in this pro-
cess will be less than I y/irtl = /2,

The remainder of D X ¢, will again be contained in a denume-
rable set of circles, and the points of DX S, belonging to ome of
these circles will lie in a ring of relative width y/2*+. This process
can be continued indefinitely. Suppose that, at the rth time of appli-
cation, we are faced with the points of D in the annuli @, @,,...
Apply the process again using y/2"*™, in place of the y in the
epunciation of the preceding paragraph, when dealing with ,,.

Thus, the measure of the set of ,disregarded point“ arising from
the 7th application of the analysis is less than /2", and the total
measure of the set of all disregarded points less than 24y.

Let

@ = the ,disregarded set®

and
C=4— 9.
L. @ < 2y and the following describes the structure of C:
We have a succesion A,y A,,..., A,,... of finite or denumerable

sets of non-overlapping annuli such that, for every m, each member of
Apyy is interior 1o some member of A,, the ratio of the width of
each annulus of A, to the radius of its outer circle zs less than, or
equal to, 9/2" and A, X A, X Ay X ... X A, X ..

In particular, each point = of C is given by x_.II l,,, where

A, is an annulus of A,, and A, D
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§ 9. Now choose an arbitrary positive integer K and choose
some fixed direction as the initial direction. Starting from the latter,
divide each circle of each A, into K equal sectors. If the mean
density of Cin a sector is greater than 4, then we call this sector
compact; if it is greater than 1-[- 4, then we call the sector dense.

Let A be the set of points of C which, in an infinity of each
sequence of circles defining them, are contained in a dense sector.
Let P be a point of A Then, corresponding to each of the dense
sectors defining P, we can find a circle of which P is the centre
and in which the mean density of C is greater than 4-135; and
the radii of these circles tend to zero. Thus

D*(P,C) 2§+ ko
But C is a set of upper density . Hence
L A=0.

Now let D, denote the set of dense sectors of A,.
Let A,= the set of points of C which are contained in no D,
for n >=i. Then

A,C Ay, for each 4, and A—}-Z 4,=C

il

. Al . v
1. e. L‘ [2[ A,] = Lc C

i1

LA>L.C—y for

and hence
= N= N{y).

We may regard A, as the starting point for the construction
of C, and we shall lose no generality by calling it A,. Then in A,
and in all succeeding A,, suppress entirely any circle which con-
tains a dense sector. By what I have shown, the measure of the
set of points in these sectors will be less than 7y,

Therefore, if &,, d;,..., d,,... denote the suppressed circles and
Tyy Tgyeery Tuy... their respective radii,

7<2(1+a%)

i e | 22fn<

n

2 r,,

_ Ky
n(l+)’
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hence the measure of the set of all points ,lost‘ in this way is

Kyd+7) density of C h 1
less than =1 F 30) (since the mean density o in each ecircle is
less than 1-4-9), and

Ky(Hy) ;

Ky, for sufficiently small .

2l 4 y <#B7 y ¥

Henceforth, 1 shall denote by C the set so modified.

§ 10. Now, in each remaing circle of the sequence {4}, there
is no dense sector.

Let J(4,) = the number of compact sectors in the circle 4, of
A,, of radius r,.

The total measure of C in the non-compact sectors is

E—1(4,)
K

<"310" '27‘57411;

therefore the total measure of C in the compact sectors is
K—14,
=2, (1—%)~316.-——KQ-2W,,;
hence there exists a sector in which the measure of C is

27 — 4, <2y

21()“)( 2") w KA

But, by hypothesis, 4, contains no dense sector, and therefore

v\ _ K—I(4)
1+ > nl(Z,) (1“7@")“ 6017(4,)

12> _7
K |'T¥Te0|, 1
—l(l,,) b4 +E5_0’

“thus l(;;")>m%—t, if y is chosen sufficiently small i. e.
M 1> 5.

Now let I = Min {I(4,)}.

K .
By (7), l>-4—, and each circle has at least I compact sectors.
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§ 11. We can enumerate the sectors of each circle by the po-
sitive integers 1, 2,..., K. These represent, not particular sectors,
but sectors of directions.

If 204D...04,0...Dx, and D4 Xa, (=12..)
where the /s are numerals from 1... K, then 2 may be said fo
have the ,,expansmn ay ¢y ..

Tt is, a priori, concelvable thas there should be K— ! numerals
from 1... K which appear in the expansion of no « of the set.
But, if we pick any K — [+ 1 of the numerals, the set of z in the
expansion of which none of these appear will be shown to have
Tneasure zero. '

Let this set be X;. In every circle defining X, at least one of
the excluded sectors is a compact one, i. e. in it the mean density
of C is greater than g%. [For convenience, I shall write a for 4.
Let C,, Cy,, C,y. be a sequence of the circles and f;, By Base-
be the indices of excluded compact sectors. X, has no point of
B, X C;. Hence

Qmr
waqu. K
LICX Gl = 2r(1+4y)
_ Td
)4

i. e. the measure of the part of X, included in C; is
md
<|1— |- L[C+HC
<[t mo+ o

This holds for every member of A, containing points of X,. Hence
nd
L[X, X 4]< [1 - W} - L,[C X 4,].

Similarly, in A;, we must omit another compact sector of each
circle, i. e.

nd
L% X 4] < [1— ] B A

< [1— (T-_{%]E.LC(CX A

Fuondamenta Mathematicae, T. XXIL b
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This ean obviously be continued indefinitely.

L X, =L, [X, X 4,], since X,CC= ]I A,, is

nml
: nd "
<< 1-«—————~——] - L, C, for all n.
\[ 1+ K

L X, =0.

Hence

We can easily extend the above reasoning to show that the set X
of x, in the expansion of which a given set of K—7-+4 1 numerals
occur only a finite number of times, has measure zero. For the set
X, of z, in which none of the K—I--1 numerals comes after
the nth place, has measure zero. This can be seen by applying the
above argument, starting from A,; i. e. since

X= ZX,, we receive L, X=0.
n=1
§ 12, Let now H=C—X. LH=1,C> 0.
We can subdivide H into a finite number of sub-sets each of
which has the preperty that the same ! numerals oceur infinitely
many times in the expansion of each z of it, i. e,

H=H,+ H, +...4+ H,.
Since Z,H >0, not all H, can be of measure zero. Suppose
that L, H, > 0.
Let « C H,, where A, 2% 5..04D... 0%, 4,CA4A,, and
x = f[}.,,.

ne=]

Suppose that @,, a,,..., @, are numerals which oceur infinitely
often in the expansion of each x of H,. If a direction 8 belongs
to @, then the projection of 2. X ;X H;, on 6 has measure less

2
than 7,—7,(1 — 0,) cos 7;, where #, = radius of 4, and o, = rela-
tive width of the annulus.

This is less than

o) <

for sufficiently big .
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Now the diameter of 4, X a,
(8%) =g%+0(é"—,>,
©) L[H X 1, X o) > 227
(10) and m (2’ a,)>%.

From (8), (9), and (10) we see that, for a set of § of measure

greater than n/2, we have
(1) measure of projection on 6 of H, X 1, X % _ o 1
Lc [-Hl X '?'n X C‘f] - (f) '

Similar results hold for H,, H,,.., H,

Also, by the theorem of permanence of density, if d(U,) denote
the diameter of any sufficiently small neighbourhood U, of a point
2z of H,,

(12) L[U. X (4 — H)] = o [d(T,)].
I now write
measure of projection on 6 of [4 X U]
V4, U, 8] for TIAX ] .

From (11) and (12) it follows that, if z belongs to H,

(13) lim inf V{4, T, 0] = 0 (}-f)

d{Ux)—>0
Also, by what was shown in §§ 3, 4, 6
(14) LA—H)<2y+y+4 Ky <} Ky,
for sufficiently big K. It follows that:

Given a measurable set A of upper density 4 and positive num-
bers K, e, we can write A= H 4 E,, where

(I) LE <e
and
(L) corresponding to each point x of H there exists a set of

directions 0 of measure greater then or equal to g such that

. 1
lim inf V[4, T, 6]=0 (R)'

For we need only put 'y=gl~?—, and the result follows.

b*
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§ 13. A dissection of the set A such as that described in the
final result of § 7 will be called a (K, &) dissection. The property
(IT) of the set H can conveniently be descri’t’Jed a8 th-e.property
{P, K. Suppose now that we are given an arbitrary positive num-

ber p. Corresponding to each positive integer n carry out an (n, %)

dissection. Thus, correspbnding to each n, we have A=G,+R,, where

0 LE<g

and
() G, has the property {P, n}.
Now write .
R;Z%M G:lT&, A=G+R.
ne=l ne=l

I note that L, R <o.
Moreover, if z is a point of G then, for each #, there is a set
P,(x) of directions 8 such that

(16) lim inf V{4, Uy, 6] < 2
d(Uy) =0 n
where g is a constant, depending only on A, and independent of z, n.
Indeed, it is clear from (8) and (8%) that we may even take g ==§2’~z .
Also
7
(16) m P,(x) > 3
If we now extend P,(») so as to include all § for which (15)
holds, then (16) is, a fortiori, true, and
P,(z) D) P,pi(z) for each n;

hence lim P,(z) = _” P,(x) = P(x), in particular, exists, and

n=l
m P(x) = g
Clearly, if 6 is contained in P(z), then
lim inf V[4, U,, 6] =0.

d(U)=>0
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Thus given A, ¢ we can write 4= G 4 R where
O LE<e

and

(M) if = is a point of G there is a set P(x) of directions 0

such that »
lim inf V{4, U,, 6) =0, for all 6 of P(x).
d(Up) -0

Now the property (II) of G is independent of ¢ which can be
taken arbitrarily small without affecting the truth of (II). Hence the
above theorem must be true with L,R=0.

The validity of this result with U, restricted to be a circle
with = as centre is immediately and trivially deducible from the
theorem obtained. This completes the theorem.

§ 14. It is obvious from the argument that, by using less crude
inequalities than those actually employed, I could have improved
7
2
ver, have involved some slight complications of arithmetic and,
especially in view of the opinions expressed in § 4, I do not think
that the improvement in the result would be either useful or ne-
cessary.

It will also be noticed that I have assumed the measurability
of most of the sets which have arisen out of my analysis. This was
to avoid obscuring the theme by an excess of detail, but, in all
cases, measurability can be proved quite trivially.

on the number — which occurs in this theorem. This would, howe-
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