Some properties of arbitrary functions ).
By
Mabel Schmeiser (Princeton, U. 8. A.).

1. Introduction.

The object of this paper is to derive various properties of arbi-
trary functions of two and of three real variables concerning limits
of functional values as a straight line or a plane is approached.
As the point of departure the following theorem ®) of Professor
Blumberg is used:

If f(xy) is an arbitrary real function defined in a plane m; s
a straight line in m; and dy, dy, two directions of approach to s on
the same side of it, then, for every point P of s with the possible
exception of R, points, Ip, overlaps or abuts Ip,, where Lpy s the
interval whose end points are the limits inferior and superior of f
as (z,y) approaches P along the direction d,, and Ip,, is defined
similarly.

Theorems 1 and 2 are generalizations of this theorem in different
directions. First the effect upon the exceptional set of the neglect
of various sets of points will be shown. Then the two given directions
will be freed of their fixed positions to give a rather striking pro-
perty of functions of two real variables. Finally an extension will
be made to functions of three variables.

2. Approach with Neglect of Certain Sets,

Pet f (a:, ¥) be an arbitrary function of two real variables, s a given
straight line in the xy plane, and d a direction in the zy plane.

1) The author is intebted to Professor Blumberg for very helpful suggestions
and criticisms in the preparation of this article.
%) Fundamenta Mathematicae, vol 16 (1930). p. 77,
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Bince we shall deal with linear sets of various types, we shall use
the letter 7 to represent the variable type of set. Denote by /5, (ub,)
the lower (upper) bound of the values of f(z,7) as the variable
point (x,y) approaches a point P of s along the direction d with
the admissible néeglect of a linear set of points of type 7. With the
neglect of each different set of type v the value of 75, may differ.
The set of values for 5, for P and d fixed, corresponding to the
set of all possible sets of type 7 which may be neglected, has an
upper bound. In the theorem which follows the set of type = neglected
as each point P is approached may be a set for which /g, is arhi-
trarily pear this upper bound. The absence of a superseript indicates
that no points are to be neglected. Let I3, be the interval (5, up,).
The sum of a denumerable number of sets of type 7 will be called
a set of type t,. We shall assume that 7 is such that the sum of
a finite number of sets of type 7 is a set of type 7, that a set
consisting of a finite number of points is a set of type 7, that two
sets of type 7 are not sufficient to constitute the linear continuum,
and that z is invariant under projection.

Theorem 1. a) If f(x,y) is an arbitrary function of two real
variables, s a given straight line in the xy plane, and dy, dy two
giver directions of approach to s on the same side, then I3, overlaps
or abuis Ip, af every point P of s except possibly at points belonging
to a set of type v,; and b) furthermore, if T is any set of type 7,
on s, there exists a function f(x, y) such that at every point P of T, Ity
neither overlaps nor abuts Ilp,, and ab every point P of s which does
not belong to T, It, contains Ip,.

Proof. Let » be a given number and Z, the set of points Pof s
at which 5, > r. There is an interval Jp, in direction d, with P
1
51
sibly at points of a set 7, of type = contained in Jp,. Let Jp, be
the prujection of Jp, on s in direction dy and 75, the projection
of 7T, The points of E, which are end points of the intervals Jp,
but are interior to no Jp,, for # fixed and P varying over E,, form
at most a denumerable set D,,, which is a set of type z,.

Belect from the set of intervals Jp,, for n fixed and P varying
over E, a denumerable subset containing the same interior points,
and let 7, be the sum of the 7, in the denumerable subset selected.

as one end point and of length < — in which /> r except pos-
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Let T,=§ (T, + D,,). The set T, is a set of type 7, At every
nwl

point P of E,—T,, tps, 2> 1- .
Let the value of » vary over all rational numbers r,, ‘and let

r—3 T.. The set 7T is also a set of type 7,. If P is any point
p=1 ¥

of s which does not belong to the set T, then p, == I}, for if P
is a point at which up, < %, there is a rational aumber r, such
that Ik, > 7, > p,, and therefore P belongs to the set 7.
Similarly we can prove that, except possibly at points of a set
of type Ty lps << by,
An example will suffice to establish Part b).

Suppose s to be a given line in the xy plane and 7' a set of

points on s of type z,, i e, T:i‘c T, where T, is a set of type =

n=1
Let d, and d, be two given directions of approach to s on the same
side. At all points (z,7) on lines through points of 7, in direction d,,
1
define f(x,y) to be &
In approaching a point of 7, in the direction d, neglect all points
at which the line of direction d; crosses lines of direction d, through

and at all other points of the plane to be 0.

points of Z”' T, Then at points of 7}, Ih, = 0, uf, < Wand lpg =
im1

= UUpy, = -2—1; At all points of s which do not belong to 7 %, =0

and lp;, = tp;, = 0.

This theorem is ot particular interest for sets of type z which
are such that 7, is equivalent to 7, as, for instance, denumerable
sets, exhaustible sets, and sets of measure zero.

3. Variation of Directions.

Theorem 2. a) If f(z,y) is an arbitrary function of two varia-

bles, and s a given straight line in the xy plane, then at every point P

of s except possibly at points of a denumerable set, In, overlaps or
abuts lpﬁ for all pairs of directions a and B on the same side of s;
and b) furthermore, if D is any denumerable set of points on s, there
exists a function f(x,y) such that at every point P of s which does
not belong to D, I, overlaps or abuts Ip, for every pair of directions

@ and B of approach fo s on the same side, and at every point P

of D, Ip, neither overlaps nor abuts Ipg.
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Proof. All directions involved in this proof are assumed to be-
on one side of s,

Let x, 4 be two given directions and r a given number. Let X,
be the set of points P of s such that along at least one direction
between x and 4 the lower bound of values of £ at Pis > r. Let dp,
be a chosen direction between x and 4 at a point P of Z, along
which lp, > r, and {ds,;} the set of directions associated one with
each point P of E, Let 6 be a given direction not contained
between % and 4. At each point P there is an interval Jp, of length

<%— and in the direction dp,, associated.with P, at every point of

which /> r. Let Jp, be the interval on s which is the projection
of Jp, in the direction 4. The points of E, which are end points
of the Js, but are interior to no J,, for » fixed and P varying-

over E,, form a denumerable set D,,. If D, = 3 D,,, then at a point
n=1

of B, — D,, up; Z=r. Moreover, if d is any direction on the opposite-
side of & from x and 2, it follows that up, == r.

Let » vary over all rational numbers », and let 4 =3 D, . Also
p=1 ¥

let %, 2, and d each vary over a dense denumerable set of directions,
independently except for the restriction that 6 never be included
between » and 4. Let D be the sum of the denumerable number
of sets A thus obtained. The set D is denumerable.

We are now prepared to show that if P is any point at which
there exists a pair of directions ¢ and § such that lpg > tpg, the
point P belongs to D. For from the dense set of directions we can
select a x and 4 including a in the angle between them but not
including @, and a 6 between § and the nearer of the two directions
% and 1; and we can select a rational number », such that In, >
>, > upg. The point P belongs to the set v associated with »
and 4, but, since between x and A there is a dp,;, which may or
may not coincide with e, along which I, > », while tpg <1, the
point P belongs to the denumerable set D, associated with the x,
A, & chosen.

Similarly we can prove that, for all pairs of directions e and
lpg < tpq, ©Xcept possibly at points of a denumerable set.

Part b) will be established by means of an example.

Let s be a given line in the zy plane and D a denumerable
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set of points on 5. At each point of D on one side of s take a circle
tangent to s in such a way that no two circles overla.p. or are tan-
gent to each other. At all points outside of this set of circles define
f(z,) to be 0. In each circle suppose all posgible chords to b‘e
drawn and extended to intersect a line # parallel to s and one unit
distant on the same side of s as the circles. If this point of inter-
section is at a distance £ from the point at which £ crosses the z axis
(y axis if ¢ is parallel to the x axis) define f(,y) to be equal to £
at every point of the chord. Then at a point of s which does not
belong to D, for any pair of directions ¢ and § of approach to s,
0 will be among the set of limits of functional values in each
direction, thus insuring the overlapping or abutting of Ip, and Ip,,
and at a point of D, for any pair of directions & and §, 15, and In
will each consist of a single point and will not coincide.

If a slight restriction is imposed on one of the directions of
approach the result in Theorem 1 a) is valid with the directions
freed of their fixed positions. It is only necessary to remark that
at each point there may be a pencil of type 7, to which one of the
directions can not belong, where a pencil of type 7, is the pencil
of lines obtained by joining each point of a linear set of type 7,
to a point mot on the line.

In these theorems rectilinearity is not an essentiul property. By
an analysis situs transformation, for example, the straight lines may
be converted into curves, and results for curves analogous to those
for straight lines are thus made readily accessible. It is also possible
to use connected sets instead of straight lines.

4. Funetions of Three Variables.

All planes parallel to a given plane in a 3-space will be said
to bave the same planar direction, that of the given plane. Greek
letters will be used to designate planar directions. Let f(z,y,2) be
a function of three variables, g a plane in the 3-space of the inde-
pendent variables, and P a point in the plane ¢. By the lower
bound I, at the point P of f(2,%,2) in the planar direction = on
one side of ¢ is meant the upper bound of the lower bounds of
values of /" at points of semicircles with P as center located in
a plane of direction 7 through P. The upper bound up, is defined

similarly, and the interval (lpﬂ, u,,n) is denoted by I,,n. The lower
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bound 75, at the point P of f in the linear direction d is the lower
bound of values of f as the point (x,y,z) approaches P along the
linear direction d. Likewise the upper bound up, is defined, and
the interval (I, us) denoted by Ip,.

Theorem 3. If f(x, y,2) is an arbitrary function of three varia-
bles, and g a given plane, then, at every point P of q except possibly
at points of an exhaustible sef, Iy overlaps or abuts I, , Jor any
planar direction 7 and any linear direction d on the same side of q.

Proof. All lines and planes are assumed to be on one side of g.

If d is contained in =, every I, is contained in I, .

A sheaf Hp of planes is defined to consist of all planes through P
perpendicular to the lines contained in a cone of vertex P with
axis in direetion .

Let E, be the set of points P of g at which there exists at
least one plane contained in the sheaf Hp, along which the lower
bound of values of f as P is approached is > r. Let 7 be the
planar direction of a chosen plane contained in Hp, at a point P

of E,. along which lp. >r, and {m} tho set of directions associated
one with each point P of Z,.. Each point P is the center of a semi-

. . ..
circle Sp of radius <3 lying in the plane associated with P, at

every point of which f(z,y,2) > r.

Let C, be a cone of linear directions not contained in the
sheaf Hp,, the axis of which has the linear direction » and the
angle of which may be taken arbitrarily small. Project each semi-
circle S, in the directions C, on the plane ¢ and let the product
of the projections be Sp,. The S, will be convex regions in the
plane ¢. The points P of Z, which are interior to no Sp,, for n
fixed and I’ varying over E,, form a nowhere dense set N,,. If
N,=2Z2N,, then at a point of E.— N,, tp, 22 r for all d con-

n=l1

tained in C,.

Let r vary over all rational numbers r, and let N=3% N, . The
v=1_ "

set N is exhaustible. Let b and % each vary over a dense denume-
rable set of linear directions in the 3-space. Let M be the sum of

the denumerable number of sets N thus obtained. The set M is
exhaustible,
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We are now prepared to show that if P is any point at which
there exists & planar direction 7 and a linear direction d such that
lp_>p,, the point P belongs to M. For a sheaf Hp, containing

k4

a plane of direction 7 and a cone C, containing a line of direction d
but containing no line contained in Hp, can be selected; and a ra-
tional number #, can be selected such that lp >r,>us, The
point P belongs to the set E, associated with %, but since in Hp,
there is a plane of direction s/, which may or may not coincide
- with 7, along which I, , >, while u, <r,, the point P belongs
to the N, associated with the k¥ and b chosen.

Similarly it can be proved that for all pairs consisting of a pla-

nar direction 7 and a linear direction d, up 2> lp, except possibly

at points of an exhaustible set.
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Uber die zusammenziehende und Lipschitzsche
Transformationen ?).

Von
M. D. Kirszbraun (Warschau).

Es sei 4 eine beliebige in einem metrischen Raume @ enthal-
‘tene Menge, und ¢(x, y) bezeichne die Entfernung zweier Punkte
und y von G.

Eine Transformation *) f, die die Menge A auf eine Untermenge
von € abbildet und die Bedingung

1) e(fla), fly) << oz ¥)

erfiillt, heisse eine zusammenzichende Transformation, oder kurz eine
Zusammenzichung ).
Das ist also eine Verallgemeinerung der isometrischen Trans-

1) Die Ergebnisse dieser Arbeit wurden grosstenteils schon in den Jahren
1926—1930 gefunden wund in meiner Magister-Dissertation (Warachau, 1930)
zusammengefasst. Jetzt werden sie etwas weitergefiihrt und gleichzeitig verein-
facht. Vgl. auch: A. Lindenbaum et A. Tarski, Communication sur les re-
cherches de la Théorie des Ensembles, Comptes Rendus de la Société des Scien-
ces de Varsovie XIX (1926). p. 327—328.

) Transformation = Abbildung. (Im allgemeinen nicht unbedingt schlichte,
and swar nicht unbedingt eindeutige Funktion. Vgl. § 22).

%) Der Begriff der Transformation, die die inverse Bedingung (o (f(), f(#)) =
=@ (2, y)) erfillt, wurde schon von E, Schmidt als ,asphinktische Transforma-~
tion“ eingefithrt. Vgl. E. Schmidt, Uber de Definition des Begriffes der Linge
krummer Linien, Math. Ann. 56 (1902). Die Transformation mit der Bedingung (1)
wurde letztens von A, Kolmogoroff gebraucht und ,dehnungslose Abbildung®
genannt. Vgl. A. Kolmogoroff, Beitrdge zur Masstheorie, Math, Ann. 107 (1933).
Vgl. auch Fussnote 4).
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