Concerning a problem of K. Borsuk.
By
R. L. Wilder (Ann Arbor, U. S. A).

The following problem was recently proposed by M. K. Bor-
suk): Is every (compaet) subcontinuum C of E,, which cuts Z,
and for which there exists for every ¢ > 0 an e-transformation %)
of Cinto a set (' such that C- (=0, an (n — 1)-dimensional
manifold?

Although, as pointed out below, the answer to this question is
negative, even (if » > 2) for the case where C is a Jordan econ-
tinnum %) (unless restrictions be put upon the Brouwer numbers
2 (C) where » > 0), we are able to obtain several positive results
through either of two devices, viz., by further restrictions on the
nature of C, or by modification of the type of transformation.

1) Fund. Math., 20 (1938), p. 285, Problem 54. Since this paper was presen-
ted for publication, M. Borsuk has communicated to me that it was his inten-
tion to formulate this problem only for lokal zusammensiehbare continua, the
words ,lokal zusammenziehbare® having been omitted through an oversight (for
definition see Fund. Math., vol. 19, p. 236). Thus, M. Borsuk’s problem should
really be stated as ,Ist jedes lokal zusammenziehbares Teilkontinuam C... eine
(n—1)-dimensionale Mannigfaltigkeit?* However, as M. Borsuk points out in his
communication, since all Betti numbers of a finite dimensional, lokal zusammen-
giehbar compact space are finite (for proof see M. Borsuk’s note ,Zur kombina-
torischen Eigenschaften der Retrakte”, Fund. Math., vol. 21), my Theorem 3 below
furnishes an effirmative auswer to M, Borsuk's problem (amended as just stated)
for the case n=3.

%) That is, a continnous mapping f of C such that if P (C C, then
o [BfP)) < e.

3) By Jordan continuum (= continuous carve, = Peano continuum) we mesn
a locally connected, compact continuum,
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It follows easily from the conditions stated in the problem that
C is a common boundary of two and only two domains of E,,
and if O is a Jordan continuum then these domains are uniformly
locally connected ¢). Thus, when C is a Jordan continuum and n=2,
C is a simple closed curve; and if n=3 and p(C) is finite, C is
a closed 2-dimensional manifold.

We also consider the problem: In E, let C be a compact con-
tinuum which cuts B, and which may be deformed continuously
without meeting itselfs); is C an ( — 1)-manifold? We show that
C is & Jordan continuum whose complement is two uniformly locally
connected domains having C as a common boundary, and for n =2,
3 is a closed (n — 1)manifold. In every case, whether C cuts E,
or not, its points are regularly accessible®) from its complement.

Theorem 1. In E,, let C be a compact continuum such that for
every €>> 0 there exists an etransformation of C into a set C' such
that C-C'=0. Then the complement of C is either one domain whose
boundary is C, or two domains of which C is the common boundary.

Proof. Let D be a domain complementary to C. Denoting the
boﬁndary of D by B, suppose P is a point of G not in B, and let
Q be an arbitrary fixed point of D. Then B separates P and @
in E,. Let f (C)= C’ be an e-transformation of C such that C-C'=0,
and with ¢ small enough that f(P) is not in D and B‘ does not
meet P @ during the rectilinear deformation ) of B _mto f(B)
By a theorem of Pontrjagin?) f(B) separates P and Q in E,. Now

4) A domsin D is uniformly locally connected if for every ¢ >0 thm:a enm
& 6>0 such that if P and ¢ sre poinis of D whose distance aparts is <9,
thaandeaybejeinedbyanmofDof&iameber <L e

5) The precise definition is given below. .

%) That is, given & point P of C and 2n 6> 0 thers exists abd‘>0 such
that if Q is a point of (E,— O)- S(F4) thenumP a.mlPQ may be joined by an

which lies wh in S(P,¢) and meets C only in P.
e T That is, nolgafomaiion )F(B,f), 0<i<1, snch that if P B the
point_P moves along the straight Iine joining P and f(P) in such a way that
o [P, F(P,9]]elP,f(P)]=¢. )
et ’H) ](Ia.’lf)gntrj agin, Zum Alexcanderschen Mudmm,‘em Nach.,, lh.th..-
Phys. K1, 1927, pp. 316—322, Satz IV. I have made wn‘ndenble use, both in
the present paper and in others, of this fundamental and important theonm ‘nnf
Pontrjagin, so that I feel I should point out what seems to me a defect mxl’:l
proofmdnmethodforrwﬁfyingit.lmﬁerhﬂwlutmntam z;rfPontxjngms
proof, wherein it is saserted that from F2—r—1.EK+1£0 it follows that
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C’is a continuum, and consequently lies either wholly in D or wholly
in E,— D. The former case has been ruled out, since f(P) is not
in D. In the latter case, D+ C is a continuum joining P and ¢
and not-meeting f (B), so that this case is impessible. Consequently
B=_C.

There are at most two domains complementary to C. For sup-
pose there are three domains D, (i==1, 2, 3); let P, denote a point
of D,. From the three points P; we form three sets of pairs of
points, (P, P,). Let f denote a transformation of C into a set C’
such that C.C’ =0 and such that C’ separates each of the pairs
(P; By (See preceding paragraph) As above, ¢’ must lie wholly
in one domain complementary to C, say in D;. Then D, D;-+C
is a continuum that does not meet C’ and yet contains both P,
and Py. thus violating the fact that ¢’ separates P, and P;. Con-
sequently C has at most two complementary domains. This completes
the proof.

Before considering the case where C is a Jordan continuum,
we note the reason for stipulating this condition. In Z,, let C con-
sist of the following set of points: 1) All points on the curve
y=sin 1/z where 0 <Cz < 1/, 2) all points (0, %) for —1=<y=<--1,
and 3) an arc which joins the points (0, — 1) and (1/m, 0) without
otherwise containing any points of 1) 4 2) and lies, except for
these points, wholly in the fourth quadrant of the plane. For any
e > 0. there exists, in either of the domains complementary to C,

yn—r=1. C 4: 0. This overlooks the fact that y2—r—! and C may be mutually exclu-
sive and yet after deformation 7! . K30, as may be shown by simple
examples. I should like to suggest substituting the following argument for the
last paragraph of Pontrjagin’s proof:

Suppose ["~0 in E,— @; there exists, then, a complex K+ (C E,— &
which is bounded by /7. Let P” be a polyhedral neighhorhood of F excluding /7
and so small that during the deformation A, P» does mot meet /7; also such that
for every point = (C A (P#), the relation ¢ (2, §)< ¢ holds, where o (K*+!,0)=¢.
Clearly 4(P1)D) @. ) .

The cycle [~ links P, since it links F'. Therefore by Satz II there exists
a cycle 571 of P~ which is linked with /7. The deformation A carries pn—r—1
into a (possibly singular) cyele 77— which is linked with "= A (/""). Con-
sequently y7—-1. K+l = 0. However, we have

yrrrCAPHYCE,—— K™,

and thus the supposition that /"~ 0 in E, — @ leads to a contradiction.
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a homeomorph C'=f(C) which constitutes an e transformation
of C into C".

An analogous example may be given in X, using a surface
which has one of its eross-sections similar to the example in the
preceding paragraph, and in which the analogue of the continuum
of condensation, M, deseribed in 2) above is such that for every
€ > 0 there is a rectangular parallelopiped with two of its dimen-
sions <C ¢ enclosing M.

It is to be noted from the above examples that 1) to require
that C* be a homeomorph of C is not in iiself a requirement strong
enough to make C an (#n — 1)-manifold, and 2) in each case C is
not a Jordan continuum.

Theorem 2.. Under the same hypothesis as in Theorem 1, with
the additional condition that C be a Jordan continuum which cuts
E,, the domains complementary to C are uniformly locally connected.

For the proof of Theorem 2 we require the following lemma:

Lemma. Let C be any closed point set in E,, A a poini of C, € an
arbitrary positive number, and I a cycle that links C in 8(4,¢€)®).
Then for any positive number ¢ < ¢ such that I (C S(A,¢€'), there
exists a positive number n such that if f{C) is any r-transformation
of C, then I'" links f(C) in S{A,¢).

Proof of Lemma. Let 5 be such that 0 <7 <{4(e—¢), as
well as such that a rectilivear deformation or C into f(C) does
not meet I'".

Let A denote a rectilinear deformation such as that just men-
tioned. Let F = F(4,e¢). Using a method of proof employed by
Pontrjagin?0), the deformation 4 may be extended to an 9-defor-
mation 4’ of F-+C which agrees on C with A and carries no point
of F into S(4,¢). By the deformation theorem of Pontrjagin %) the
set F” -} C’ (where F” and C’ denote the sets into which 4" earries
F and C respectively) is linked by I'". Bat then I'” links ¢’ in
S(4,¢), sinee if it bounded a complex in S(4,¢) that did not
meet C’, such a complex would not meet ' - C".

Proof of Theorem 2. Denoting the domains ecomplementary io
C by D, and D,, suppose that D, is not uniformly locally con-
nected. Then there exist an ¢> 0 and a point A of C such that

%) That is, [~ does not bound 2 complex in S{4,¢) that does not meet C.
19) Loe, cit., p. 321 (proof of Hilfesats}.
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in every S(4,d), for 0 < & <e, there exist two points of D, that
cannot be joined by a subcontinuum of D - S(4,e).

Sinee C is & Jordan continuum there is a 6> 0 such that
C.5(4,8) CM, where M is ihe component of C-S(4,¢) deter-
mined by 4. Let P and @ denote points of D;-S(4,d/2) that
cannot be joined by a subcontinuum of D,.S(4,¢). Also, let R be
a point of D, S(4,d/2).

Obviously C separates each of the point pairs (P, @), (P, E),
(Q,R) in S(4,¢). Let H be a subcontinuum of M that contains
all points of M- S(4,0)1). Also, let ¢ be a number such that
€>¢ >0 and S(4,¢) contains H. By the above Lemma there
exists 7> 0 such that any 7-transformation of C separates each
of the above point-pairs in S (4, ¢). Let f denote such an 7-trans-
formation with the added stipulations that a) C.f(C)==0 (per-
missible by hypothesis), b) 7 << /2, and ¢) f(H) CS(4,¢). We
note that

£(0)-8 (4, 4/0C f(H)- 5(4,8/2).

There are two cases to be considered. 1) Suppose f(C)=C"(D;.
On the straight line interval P @ let a, be the first point of M in the
order from P to @, and a, the first point of M in the reverse order.
Obviously @, and a, are points of H, and comsequently Pa; -
+ H+ Qa, is a subcontinuum of S(4,¢) joining P and @ and
containing no point of ¢’. But this contradicts the fact that ¢’
separates P and @ in S(4,¢). 2) Suppose ¢'CD,. Let b be the
first point of M on the straight line interval R P in the order
from R to P. On the respective straight line intervals PR and QR,
let a, and g, be the first points of M in the order named. Then
on Pa, — a, there exists a point ¢ of f/(H), else Pa, - H-4Eb
is a subcontinuum of S(4,¢’) joining P and R and not meeting C".
Similarly, on Qa, —a, there is a point ¢; of f(H). But then Pc, -
+7(H)+ Qc; is a subcontinuum of S(4,¢) that contains no
point of C, contradicting the fact that C separates P and @ in
S(4,e.

In either case, then, we have a contradiction, and consequently
D, is uniformly locally connected. Similarly D, is uniformly loeally
connected. _ 3

11) Bee R. L. Wilder, On connectde and regular point sets, Bull Amer.
Math, Soc., vol. 34 (1928), pp. 649—655, Th. 5. ‘
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For the case n—=2 we may interpolate the following corollary:

Corollary 1. Under the hypothesis of Theorem 2, with n=2,
C is a simple closed curve™),

For n>>2, even under the hypothesis of Theorem 2, C is not
in general an (# — 1)-manifold. For it is easy to set up, in K,
a surface C satisfying the conditions of Theorem 2, consisting of
a psphere with infinitely many handles* where the handles eon-
verge to a point P. K is quite likely, however, that with the pro-
per restrictions on the connectivity of C or its complementary
domains, the surface C will necessarily be an (» — 1)-manifold.
Thus, in E; we have,

Theorem 3. In E;, let C be a compact Jordan continuum such
that p(C) is finite, C cuts Ey, and for every ¢ >0 C is etrams-
formable into a set C’ such that C-C'=0. Then C is a closed
2-dimensional manifold. .

This theorem is an immediate consequence of my recently esta-
blished analogue in E, of the Schoenflies plane converse theorem 1)
together with the result of Theorem 2 above and well-known dua-
lity relations 14).

If the reader will recall the examples indicated above, he will
notice that in the case of each, the e-transformation which we have
asserted to exist cannot be extended to any sort of continuous
deformation of C into the tramsformed set, without that the -set C
meet itself (or pass through itself) during the course of the defor-
mation. It would be interesting to see what conclusions are possible
in case we require that for a given set C deformations exist during
the course of which C does not meet itself. For this purpose we
find it necessary to prove first a general theorem on the local lin-

")SeaR.LMoore,Achwmn-’nwﬁm of Jordan regions by properiies
having no reference to their boundaries, Proc, Naj Acad. Bei, 4 (1918), pp.
364—370.

13) To appear soon in Mathematische Annalen in my paper On the properties
of domains and their boundories in Ex. Bee Bull. Amer. Math. Soc, 36 (1930),
p. 219, abstract N° 196 .

14) F, FPrankl Wien Akad. d. Wiss. Math, Natarw. K1, Bits, Abt. IIs, 136
(1927, pp. 689 --699; P. Alexandreff, Annals of Math., 30 (1928), p. 101—187%;
8 Lefschetz, Annals of Math, 29 (1928), pp. 232 — 254, and earlier papers
referred to in the last two citations. For a definition of the numbers (Broawer)
p7(C) ses L. E. J. Brouwer, Math. Amn, 72 (1912), pp. 422425, L. Vieto-
ris, Math. Ann,, 97 (1927), pp. 464—472, and P. Alexandroff, loc. ¢it.
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king of continua by (» — 2)-cycles. As an example of the sort of
surface to which the theorem applies, the reader is referred to the
third example indicated above.

Theorem 4. In E,, let a compact continuum C be a common

boundary of (at least) two uniformly locally connected domains D,
and Dy, and suppose that for every e¢>0 there exisis in D, an
(n — 2)-cycle of diameter < ¢ that links C. Then there exists a point
A of C such that for every ¢ >0 there ure in S(A4,€) a pair of
linked cycles I'"2 and y'. where I'"*C D, and y*(C D,, as well as
a simple closed curve of C that is linked by I *. In addition, y
links C.

-Proof. Under the conditions of the hypothesis there exists
a point 4 of C such that in every S(4,¢) there is an (n—2)-cyele
of D, that links C. Consider now an arbitrary fixed . We note
that C is & Jordan continuum *). Let M denote the component of
C-S(A,¢) determined by A. There exists in M a Jordan conti-
nunm K which contains A as well as every point of M (and of C)
which lies in some S(4,d), 6 > 015).

The set K — A is connected'”) and consequently there is in
K.S5(4,d) a Jordan continuum L which contains 4 as well as
every point of X (and of M and C) which lies in §(4, 1), 6>9>0,
but which contains no point of K.C'— K, and such that K — [
is connected 18,

) In D,.S(A,n) there is an irreducible cycle I'* that links C.
Then I'** links K. For suppose not. Then there exists a complex
K*! such that

Kyt [, — K]

%) See K. L. Moore, On the relation of a continuous curve to its comple-
mentary domains in space of three dimensions, Proc. Nat. Acad. Sci., 8 (1922),

33-88, Th. 1, and R. L. Wilder, 4 converse of the Jordan-Browwer separa-

tion theorem in three dimensions, Trans: Amer. Math. Soec., 32 (1930), pp. 632—657,
part II of proof of Th. 3. ) ,

) H. Hahn, Mengentheoretische Charakterisierung der stetigen Kurve,
Wien. Akad. Sitz., 123, Abt. 1Ia, pp. 2433—2489; see Th. XXI, p. 2475.

') A conscquence of Theorem 10 of my paper referred to in 13).

%) S8ee W. L. Ayres, On continua that are disconnected by the omission
of any point and some related problems, Mon. f. Math. u, Phys., 36, 135—148,
Th. 2. Also R, L. Wilder, On the imbedding of subsets of a metric space in
Jordan continua, Fund. Math. 19 (1932), pp. 45—64, Th. 10.
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As I'*? lies wholly in S(4, %), there is a complex K3 such that
Ky —~1I"*  [8(4, n); E,—C— EK].

As I'=2 links C, it follows from the Alexander Addition Theo-
rem %) that the cycle Kf~' 4 K3 links X.C— K. Thus, there
exist points P and Q of K-C— K that are separated in E, by
K37 4 K37

However, consider the set F=K-(K:'-+4 K. Clearly
FCL Now K.C—KCK—L, and therefore P and  are
points of K — L. But then K — L is a connected set containing P and
¢ and not meeting K7 - K7 Thus we conclude that 7'~ must
link K.

It follows®0), then, that I'*2 links a simple closed curve J
of K. Furthermore, sinee D, is uniformly locally connected, there
exists in D, - S(4, ¢) an irreducible eycle y* which is linked with
I’'=2%), That y* links C follows immediately, since if it bounded
in K, — C it would bound in D, and hence in E,— I'*%

Definition. Let C denote a subset of any topological space S.
We say that there exists a deformation of C during the course of
which C does not meet ilself, provided there exists a continmous
funetion f(P,#), PC C,0<t¢=<1, suchthat f{P,#) C S, f(P.0)=
=P ( C, and such that C-f(P, §)=0if t > 0.

For the sake of brevity, we shall call a deformation of C du-
ring the course of which C does not meet itself, a A-deformation *2).
In ease C is a set for which there exists a A-deformation, we shall
eall CA-deformable.

13) J. W. Alexander, 4 proof and exiension of the Jordan-Brouicer sepa-
ration theorem, Trans, Amer. Math. Soc., 23 (1922), pp. 333—349, Corollary W%

3) By Theorem 3 of my paper On the linking of Jordan continua in E, by
(» — 2)-cycles, to appesr soon in Annals of Math.

21) The cycle y* is obtained by approximation to J, using the uniform loeal
connectedness of D,. See my paper referred to in 15), Also ses, in regard to the
mutual linking of I’—2 and ', L. Pontrjagin, loe, cit, Satz IIL

1) Instead of requiring, in the definition of A-deformation, thut C° f(P,t)=
=0 if £>>0, we might stipulate instead that for given P, f(P, ¢,)(C C implies
that f(P, {)= P for 0=<<t=<t,, so that it is not necessary that all points of C
leave their initial position simultzneously. However, he existence of such a de-
formation implies the existence of = A-deformation @(C, #): For given P, let
be the greatest value of ¢ such that f(P, f)=P. Then, let p(P, ¥)=f{F, #,+
4 #(1—4,)) for 0=<¢ =< 1. Then ¢(C, ¥} is 8 A-deformation of C.

11*
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Theorem 5. In E,, let C be a compact continuum which cuts
E, and is A-deformable in E,. Then C is a Jordan continuum whose
complement is the sum of two and only two uniformly locally con-
nected domains of which C is the common boundary.

Proof. That E, — C is the sum of just two domains D, and
D, of which C is the common boundary follows from Theorem 1.
We shall show that these domains are uniformly locally connected,
from which the conclusion that Cis a Jordan continuum follows 5),

By hypothesis C is deformable into a set C’ by means of a 4-
deformation, which we denote briefly by A. where C’, being a con-
nected point set, must lie in D,, say. We note then that f(P, ),
where £ is the function defining 4, lies in D, for all ¢ such that
0<t.

Suppose D, is not uniformly loeally connected. Then there exist
an ¢>0, a point A of C, and a sequence of pairs of points
(P;Q), i=1,2.3...., belonging to D - S(4, ¢), such that lim P,= 4,
lim Q,= 4, and each pair of points (P;Q) is separated in E, by

C+ F(4e) :

It is well-known *%) that A may be extended into a deformation
A’ of the set H=C- F(4,¢). Although 4’ is not a A-deformation
of H, it agrees, on C, with A. There exists a value of f=1£;>0
such that during that part of the deformation A’ which takes place
over the interval 0 <<¢=_t,, F(4,¢) does not meet A, and, in-
deed, does not enter a certain neighborhood S(4,7). Let us denote
the part of the deformation A’ just referred to by A4”. Then 4”
carries C into a set C” of D,, and H into a set H'. ‘

" Let J be a positive number such that 6 < # and there are no
points of C’* in S(4,d). Consider a fixed pair of points (P, @) in
S(4,6). As stated above, H separates (P, @,) in £,; but H’ has
no points in S(4,d), so that H’ does not separate (P, Q)). Then
by the theorem of Pontrjagin referred to above, if this is the
case, H must meet either 2, or @, during the deformation 4”. Ho-
wever, C deforms entirely in D, (whereas P; and @, lie in D),

33) By virtue of extension theorems for continnous functions, See Hahn,
Reele Funktionen, 1, (Berlin, 1920), pp. 137 and 140. Also see the proof-method
used by O. Haupt, Uber dise Erweiterung stetiger Abbildungen, J. fiir d. reine
u. angew, Math., 168 (1932), pp. 129—130. Also see L. E. J. Brouwer, Math.
Ann,, 71, p. 309; ibid., 79, p. 209, and P, Urysohn, Math. Ann., 94, p. 293.
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and F(4.¢) does not enter S(4,d) at all. Consequently the suppo-
gition that D, is not uniformly locally eonnected leads to a con-
tradiction.

Let us now coosider D, Let A denote any point of C. We
again extend 4 into a deformation A" as defined above, and we
now select =2 > 0 so that during the portion A” of A’ over the
interval 0 <<t <t#,, C deforms into a set C”, 4 goes into a point
A" in S(4,¢) in sueh a way that its path of deformation, AA",
does not leave S(4,¢), and F(4,¢) does not meet A. As the path
AA” is connected, it lies, except for A4, wholly in one component,
D, of D,-8(4,¢). Also, there exists an >0 such that 1) F{4,¢)
does not enter S(4.7%) during the deformation A” and 2) every
point in G- S(4,7) is deformed into a point in D without leaving
S(4,¢).

Since no point of C meets C again during the deformation A"
every point of C-S(4,7) must lie on the boundary of D. But this
clearly implies that either a) D is the only eomponent of D), - S(4,¢)
that has points in S(4,7), or b) if another sach component exista,
such points of its boundary as lie in S(4,7) are also on the boun-
dary of D. If case a) holds, D, is clearly uniformly locally con-
nected.

Consider case b). There exists 7' <C# such that no point of C
exterior to S(d4.n) enters S(4,r) during the deformation A and
H’.S(A,f)=0. Suppose D’ another component of D, - S(P,¢)
having points in S(4,7). Let P and P’ denote points of D; and
D, respectively, in S(d4, 7). Since, after the deformation 4, the
set H’ does not separate P and P’, and Fi(4,e) does not enter
S(4,7), C must meet either P or P’ during the deformation. Sup-
pose x a point of C that meets P’ during the deformation (we re-
call that no point of C can meet P). Then x lies in S(4.7), and
we have its path of deformation x P'z" passing through P’, with
2 in D, yet not leaving S(4,¢) nor meeting C. This is impossi-
ble, and consequently there are no components of D - S(P.e) with
points in S(4,7) other than D, and accordingly, since A is any
point of C,D, is uniformly locally connected.

Corollary. In the plane, let C be a compact continyum whick
culs E and is A-deformable. Then C is o simple closed curve.

As another result of Theorem 5, it is easily shown by a stan-
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dard procedure that every point of C is regularly accessible from
- its complement. Is the same true in case C does not cut E,? By
Theorem 1, every point of C is a boundary point of the one do-
main constituting the complement of € in this case. By following
through the proof for the uniform local connectedness of D, in
Theorem 5 above, we see that in this case (&, — C)-S(4,¢) has
at most two components with points in S(4,7). and from this
that C is regularly accessible. Thus we have the theorem
Theorem 6. In E, let C be a A-deformable continuum. Then

every point of C is regularly accessible from its complement.

For the special case of n==3 we now prove the following theorem:

Theorem 7. In E, let C be a compact and A-deformable conti-
nuum. which cuts Ey. Then C is a closed 2-dimensional manifold.

Proof. Since, by Theorem 5, C is the common boundary of two
aniformly locally connected domains D; and D,, it is necessary
only to prove that for some &> 0 there is no l-cycle of diame-
ter e that links C%). Suppose this not to be the case. Since,
by Theorem 1, Ey — C consists of just the two domains D, D,,
the hypothesis of Theorem 4 is satisfied for at least one of these
domains, say D;, and we accordingly obtain the point 4 and the
properties stated in the conclusion of Theorem 4.

By the hypothesis there exists a A-deformation f(C,f), 0 =t=1,
and we denote f(C,1) by C’. The set C’ lies wholly in one of the
domains complementary to C, say in D,. Because of the continuity
of f, we note that all of the sets f(C,#) e in D, in this case.

By Theorem 4, there exists in D, - S(4, ), where # is such that "

C'-S(4,m)==0, a l-cycle y* which links C. Obviously, however,
y! does not link ¢’ sinee it bounds in S(4,7). But by the defor-
mation theorem of Pontrjagin®), y! must link C’, since during
the deformation C does not meet 1.

If C’ lies in D,, a contradiction is established in the same
manner. We must conclude, then, that there exists an ¢ >0 such
that no l-cycle of By — C links C, and accordingly C is & closed
two-dimensional manifold.

Problem: In E,, n >3, is a compact and A-deformable conti-
nuum ap (» — l)-dimensional -closed manifold?

34) By Theorem 21 of my paper On the properties... referred to in foot-
note 13), '
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In conclusion we might note the following result, which follows
from Theorem 4 snd Theorem 21 of my paper referred to in
footnote 13):

Theorem 8. In order that a compact continuum C in Ey should
be a closed two-dimensional manifold it is necessary and sufficient
that C be a common boundary of (at least) two uniformly locally
connected domains D, and Dy and that there exist an e>0 such
that no 1-cycle of Dy of diameter less than e links C.


Yakuza




