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(14) zwei Bigen (p, p¥) und (F;, p) haben hichstens den Endpunkt
p¥ = pl gemein.

Analog zeigt man die Existenz von n Bogen (g2 ¢*) mit den
Endpunkten g2 und g¢¥, sodass gilt:

(12) (@ HCla¥+ B+ B+ ..
1) (@ &) C W
(14') je zwei Bigen (G, q3) und (g, q%) haben hichstens den End-
punkt g = g}, gemein.
Aus (4), (13) und (13%) folgt:
| (15) je zwei Bogen (p, pJ) und (g, qi) sind zu einander fremd.

Wir bezeichnen nun mit (p? ¢2) den Teilbogen von C, mit den
Endpunkten p? und ¢2. Dann sind die Punkte p? und g2 miteinan-
der verbunden durch einen Teilbogen von (72 p2)--(p: ¢2) -
+ (g }), der zu allen Bogen (p}, pk) und (g, q;) mit g == we-
gen (6) fremd ist; und je zwei dieser Teilbdgen sind ebenfalls we-
gen (6) zueinander fremd. Wegen (1) kann man also filr jedes »
einen Bogen (7} 7)) mit den Endpunkten 72 und 72 finden, sodass
folgendes gilt:

(16) ® ¢)CB + B, + B,...;
A7) (B, @) st ou (B G (B pY) und (3, ) fremd (u = ).

Die Bogensumme (p¥ 72)+- (72 72) + (@2 ¢%*) enthalt einen Bo-
gen C¥ mit den Endpunkten p¥* und ¢* Aus (14), (14), (15) und
(17) folgt erstens: :

Cy wnd C} haben hochstens Endpunkte gemein (u o= »).
Aus (12), (12’) und (16) ergibt sich zweitens:
0}CP+Q+B+B+...

Damit ist auch der Zusatz bewiesen.,

Wien, 1930,
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A point set characterization of closed 2-dimen-
sional manifolds ?). '

By
J. H. Roberts?) (Philadelphia).

Much work has been done on the problem of characterizing
various point sets by internal properties. For example R.L. Moore
has given *) a set of axioms in terms of poiné and region which
determine the euclidean plane. C. K uratowski has characterized ¢)
the topological sphere as a Peano space with no cut point and
having the property of Janiszewski?). This result is also con-
tained in work of Leo Zippin9).

Miss I. Gawehn has given 7) a set of four conditions in terms
of point and nelghborhood which are necessary and sufficient that
a point set be a closed 2-dimensional manifold 8). It readily follows

1) Presented to the American Mathematical Society, Feb. 22, 1930.

1) National Research Fellow.

3) On the foundations of plane analysis situs, Transactions of the American
Mathematical Society, vol. 17 (1916), pp. 131—164.

4y Une caractérisation topologique de la surface dela 8phére, Fundamenta
Mathematicae, vol. 13 (1929), pp. 307—318.

%) A spuce M has the property of Janiszewski if, given & continuum C
in M which does not cut M, for every decomposition of C into two continua K
and L the product K * L is a continuum.

) A study of continuous curves and their relation to the Janiszewski-
Mullikin theorem, Transactions of the American. Math. Boc., vol. 31 (1829),
pp. 744—770.

) Uber unberandste 2-dimensionale Mannigfaliigkeiten, Mathematiasche An-
nalen, vol. 98 (1937) pp. 321364 v

%) For & definition of this term see O. Veblen, Analysis situs, Cambridge
Colloquium Lectures, vol. 5, part II, pp. 44—4&b; or Kerékjarts, Vorlesungen
iiber Topologie, p. 182. ! :
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from her work that a closed 2-dimensional manifold is a compact

metric continuum which is locally a plane ). In the present paper

this result is strongly used.
I wish to thank Prof. J. R. Kline for his help and encoura-
gement in the writing of this paper.

Definitions: Any closed point set which is homeomorphic with
"a subset of some arc is said to be an arc sef. A point set M is
. said to have the arc property provided that every arc set which
is a subset of M lies on an arc which is a subset of M.
Moore and Kline have proved ?) that a number plane has
the are property, and their method can be used to show the same
result for every closed, 2-dimensional manifold.

Theorem. In order that a compact continuous curve ®) M con-
taining at least ONE simple closed curve be a closed 2-dimensiongl
manifold it iz necessary and sufficient that M have the arc property
and, for some k (k=0) contain 2k simple closed curves a,, 8,
@y, By,..., @, B such that (a) a,+ 0, is at most one point, (b) (o, 4+ B,)-
(a4 8)=0 (i3 4) and (c) if y: denotes &, or B, (i=1, 2,..., k)
and K denotes M — 3% y,, then K is connected but every simple closed
curve in K separates K. :

I shall show that the conditions are sufficient by showing that M
is locally a plane. ‘ .

1. Let P denote any point of M which does not belong to a;- 8,
and for each ¢ choose y, to be a, or §; so that 4, does not contain P.
Let K denote M — 3}y, Now Leo Zippin has shown ) that
a continuous curve which satisfies the Jordan curve theorem non-

) A point set M is said to be locally a plane at the point P oy M it M
containa a neighborhood of P which is homeomorphic with a plane, If M is locally
a plane at each of its points it is said to be locally o plane,

%) Annals of Mathematics, vol. 20 (1918 —19) pp. 218—823,

3) A continuous curve is here understood to mean a metric, locally compact,
connected and connected im kleinen space.

‘) On continuous curves and. the Jordan curve theorem, American Journal
ot Math., vol. 53, (1930), pp. 831—850. A continuous curve S satirfies the Jordan
curve theorem non-vacuously if it contains at least one simple closed curve, and
every simple closed curve which it contains has exactly two complementary do-
mains and is the boundary of each of these domaina.
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vacuously is homeomorphic with the complement on a sphere of
a closed and totally disconmected (or vacuous) point set. I shall
show that K is a continuous curve which satisfies the Joxrdan curve
theorem non-vacuously.

First, K is metric aud locally compaet, as it is a subset of such
a set. By hypothesis K is connected. As K is the complement of
a closed (ur vacuous) set in a eontinuous curve it is connected im
kleinen. Thus K is a continuous eurve. If k=0, so that K= M,
then by hypothesis K contains at least one simple closed curve.
Suppose k== 0 and y, is B,. Then if @, - §, =0 the simple closed
curve a, lies in K. If a,-f, is a point @ then the set a — @
lies in K. As M has the arc property it contains an arc which con-
tains a subarc @V belonging to 8, and two infinite sequences of
points converging on @ from both sides on ;. This arc must con-
tain a subare which lies in K and has just ove point (an end
point) on @,. I have thus shown that K contains a triod ?). Again
using the fact that M/ has the are property it readily follows
that K contains a simple closed curve.

It remains to show that every simple closed curve in K has
exactly two complementary domains and is the complete boundary
of each (in K). Let J be any simple closed curve in K. By hypo-
thesis. K — J = S, + S,, where S, and S, are mutually separated
sets. Let AB denote an arc which lies in S, except that B is on J.
Let C be a point of J— B, and let CB denote either arc which
is a subset of J. Consider an arc in M which contains CB and two
infinite sequences of points converging on B on the arc 4B and
on the set J— CB, respectively. Such an arc contains infinitely
many subarcs with one point on J— CB, and otherwise lying
in S,, such that B is a limit point of the sum of their end points.
Thus every limit point of S, on J is a limit point from both sides
on J of limit points of S;. But the set §-J is closed. Hence it
is identical with J. Suppose next that S, is not connected. Then
K —J has at least three distinct components s, s,, and s, each
of which is bounded (in K) by the simple closed curve J. As ¥

1) A triod is the sum of three ares which have a common end point and ’ﬁxe
arce of each pair are otherwise mutually exclusive, 8ee M o ore, Concerning triods
in the plane and the junction points of plane continua, Proceedings of the. Natio-
pal Academy of Sciences, vol. 14 (1928), pp. 85—88.
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has the arc property it readily follows that K contains two simple
continuous ares 4, X; B; and 4, X, B, lying in s, and s,, respecti-
vely, except for their end points, which lie on J in the order
A;A,B,B,. By hypothesis the simple closed curve 4,X, BB, X, 4,4,
separates K into two sets, # and i,. Suppose #, contains the con-
nected set s,. Then ¢, contains every point of J which does not
belong to A4, X, B, B; X, A, 4,. But it is easily seen that ¢, must
contain some point of J. Thus we have reached a contradiction,
which shows that K is homeomorphic with the complement on
a sphere of a closed and totally disconnected (or vacuous) set, and
is therefore locally a plane. Then M is locally a plane at the
point P 1),

2. Now let P denote any point @,-8; (i==1,2,..., k), and let K
denote M — 3*a . For euch & (h < k) let X, be a point of @, not
on f,. Let £ be any positive number. As M is locally a plane
at X,, and K is connected and connected im kleinen, it readily
follows that K contains a connected set 7|, such that (1) 7, con-
tains, for each kb (A < k), a set F, such that F, 4 X, is a simple
closed curve on which X, can be approached from both sides of @,
(2) T, does not contain P, but does contain every point of M at

a distance greater than & from P, and (3) T, contains an open sub-
set containing the curve @, (j=4). Let H denote the component
of M— T, which contains P.

As H is locally a plane at every point except possibly P it
follows that it contains points G and L on o, on either side of P (in H)
and that there exist in XK. H sets S,, S,, Sy, and 8,, each homeo-

morphic with a plane, and such that (1) §;-S,=GP and §;-S,=LP
(where GP and LP are arcs in @, and in H), and (2) (5,4 S;)-

-(Sy48,)=P. As M has the arc property it readily follows that
we can let a denote 1 or 2 and b denote 3 or 4 so that H con-
tains infinitely many distinet ares 4, B,, 4,B,, Ay B,,..., which lie

1) We now have the result that M is locally a plane at all but a finite num-
ber of its points. It does not follow that such a set is locally & plane at all of
its points, even if we assume the arc property. A simple example showing the
truth of this is obtained by building a sphere with infinitely many handles,
taking care that the second handle is on the first, the third on the second, etc.
A set is thus obtained which has the arc property and is locally a plane at every
point except one, but is not locally a plane at that point,
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in K except for their end points, which are on the ares GP and
LP respectively, and such that for each i the are 4, B, has two
segments 4,C, and B, D, lying in S, and S,, respectively. Let ¢
be a point on the segment 4, B,.

Suppose that the segment 4,Q B, does not separate K. Then
there exists in K a simple closed curve W on which Q can be
approached from hoth sides of 4,QB,, and W.4,Q0B, = Q. The
curve W separates K, and thus separates the segments 4,( and
B,Q in K. Now for some n the arc 4,B, has no point on W.
Moreover for every ¢ the set of points of S,(S,) at a lower distance
less than ¢ from @, contains a connected subset containing arc seg-
ments which are subsets of 4, Q(B, @) and A,B,, respectively. But
for some e such a set contains no point of W. Thus K — W con-
tains a connected set containing the segments 4,Q and B, Q.. Thus
we have reached a contradiction, which means that the segment
A, QB, separates K.

Let U, and U, denote mutually separated sets whose sum is K
minus the segment 4,QB,. Suppose U, contains the connected
set 7. It is readily seen that every point of the are A,QB, is
a limit point both of U, and of U,. Let V denote an arc in ¥
containing the are 4,QB, and infinite sequences converging on 4,
and lying in U, and U,, respectively. The arc ¥ contains infinitely
many subares lying in H— 4,QB,, such that the end points of
each arc belong to U, and U, respectively. Each such arc contains
a first point in the order from U, to U, which is not in U,. This
point is on @, as it is in H but not in K. It readily follows that
one of the two arcs A4, PB, and A, X;B, (subsets of &) is on the
boundary of U, Now X; is not a limit point of U, since 7, helongs
to U, and 7, contains a neighborhood of X,. Thus we see that U,
is bounded by the sum of the arcs 4,QB, and A, PB,. It is easily
seen that U, is connected, and that if J is any simple closed curve
in U, then U,—J=1Y,+Y,, where ¥; and Y, are mutually
separated connected sets. and ¥, has no limit point on the simple
closed curve 4, PB, Q4,. Thus it follows that the axioms of
R. L. Moore's set!) 3, are satisfied, and U, is homeomorphic
with a plane. ‘

Let EOQF denote any arc which lies in H, and except for its

1) Loe. cit.
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end points lies in U,, such that £ and F lie on the ares G'P and LP,
respectively. Then the are EPF which is a subset ot @, lies in H.
As proved above the segment EOF separates K into two sets Z,
and Z,. Suppose that Z, contains T,. Then it follows that Z, is
bounded by the curve EPFOE. But as Z; also has limit points on
the are EPF it fillows that Z, contains U,, so that U, and Z,
have no common point. As above it follows that Z; is homeomorphie
with a plane. Now let J denote the curve 4,QB,+ B F+-FOE+EA,,
where B,F' and Ed, are arcs which are subsets of o;- A. Let N,
be U, Z, plus the segment EPF, and let N, denote the remainder
of M—J. It is obvious that no point of N, is a limit point of NN,
as the sets U, - 4,QB, -+ 4,PB, and Z;,+ EOF 4 EPF are
closed, their sum contains N;, but contsins no point of N, As M
is locally a plane at every point of the segment E PF except pos-
sibly P, and each such point is a limit point of U, and of Z, it
follows that no point of the segment EPF except Pis a limit point
of N,. Now the sets' U, and Z, are open with respect to M. Thus
either P is a limit point of N; and is the only such point in N,
or Ny and N, are mutually separated. As the fact that M has the
arc property makes the first situation impossible the second obtains.
Thus we have established the following

Lemma: If e is any positive number then there exist points A,
E, F, and B, on @, in the order A, E,PF,B, and arcs 4,0, B,
and E, O, F, having only their end points not in K such that the
simple closed curve J, (J,=A4,0Q,B,F, 0,E,4,) divides M into two
connected sets onme of which is N,, where (1) N, coniains P, (2) N,
is of diameter less than & and (3) the seyment E,PF, divides N,
into two mutually separated sets each homeomorphic with a plane.

Now Schoenflies has proved !) the following theorem: ,If J,
and J, are simple closed curves in a plane and s, and s, respec-
tively, denote their interiors, then any continuous 1 —1 correspon-
dence between J; and J, can be extended to a eontinuous 1 — 1
correspondence between s + J, and s 4 Jy%. It is not difficult
to show that the following analogous proposition is true: ,If M is

') Bettrdge zur Theorie der Punktmengen, Mathematische Annalen, vol, 62
(1906), pp. 286—325. Bee also J. R. Kline, A new proof of a theorsm dus to

Schoenflies, Proceedings of the Nationgl Academy of Sciences, vol. 6 (1929),
Pp. 529—581. ‘ '
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a continuous curve in which simple closed curves J; and J; bound
sets 8, and &, which are homeomorphic with a plane, M is locally
a plane at every point of J, and of J;, and J; and J, contain
limit points of M —s, and M — s, respectively, then any conti-
nuous 1 — 1 correspondence between J; and J, can be exlended
to a continuous 1-— 1 correspondence between J;-}s and J, 4 3,%

Now let Jy, Jyj, Jip,... denote an infinite sequence of curves
each with the property of the curve J, of the lemma, and the additio-
nal property that N, contains J; 4y, The point set (N4} ) —Nyern
is readily divisible into two sets, each of which, by theorem of the
preceding paragraph, is homeomorphie with a eirele plus its interior,
and whose common part is the sum of the two ares Ej, 4ya4
and Fy; Byuyn on @, With the facts here presented ome can set
up & continuous 1 — 1 correspondence between any J,-- N, and
a circle plus its interior.

Thus M is loecally a plane at every point and is therefore ')
a closed, 2-dimensional manifold.

The necessity of the first condition has been consideréd in the
introduction, From § 25, p. 48 of Veblen’s Analysis Situs?) it is
easily seen ?) that } contains mutually exclusive simple closed curves
@, Gy,..., @ whose sum does not separate M but such that i — i a,
is separated by every simple closed curve which it contains. The
necessity of the second condition of the theorem now follows from
the fact that M is locally a plane,

Example: Let J, be the circle in 4-dimensional space with
equation z? 4 y* =18, 2==0, w=0. Let P(6) be the point of J;
such that the angle between the positive part of the z-axis and the
radius vector through P(6) is 8 (0 < 6 < 2x). Let 4,(6) (i=1,2,3)
denote a continuous point function of § such that (1) for every 6
(0 = 6 < 2m) the interval 4,(8) P(6) is of ynit length, (2) the set
32 4,(6) P(6) is a triod lying in the plane normal to J, at P(6)
and (3) A;(27)=4,(0), 4,(2m)="A4,(0), and 4,(27) = 4,(0). Let H
be the point set containing the are A,(f) P(8) for every i (i=1, 2,3)
and 6 (0 < 8 < 2n). Then H contains the circle J;. Moreover the
collection of points 4,(8) (i=1,2,3; 0<6=2n) is a simple

1) See the introduction.

%) Loc. eit. One sees that M is the sum of a subset of & sphere and k dis-
tinct sets, each being an anchor ring or a projective plane. From each such anchor
ring and projective plane is obtained one curve of the set a,, a,,..., .
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closed curve which I shall call J;. There exists (in 4 dimensions)
a set K which is homeomorphic with a plane, contains no point
of H, but is such that K + J; is homeomorphic with a circle plus
its interior in a plane. Let M denote H-- K. Then obviously A/
is not a manifold, But it has the arc property, and contains a simple
closed curve J, such that M -—J, is connected and every simple
closed curve in M - J, separates M — J,.

Consider the following condition: ,The set M contains & mutually
exclusive simple closed curves e, @,..., @, whose sum does not
separate M, but such that M — 3% e, is separated by every simple
closed curve which it contains“. The example given above shows
that if this condition replaces the last condition of the theorem the
conclusion no longer follows.

The University of Ponnsylvania,
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Concerning the proposition that every closed,
compact, and totally disconnected set of points
is a subset of an arc.

By
G. T. Whyburn (Baltimore).

1. The theorem that every closed, compact and totally discon-
nected set of points in a space 3 is a subset of a simple continuous
are in 3 was stated by Riesz !) in 1906, and by Denjoy? in
1910 and was generalized and proved by Moore and Kline?)
in 1919 for the case where 3 is the plane. It has been well reco-
gnized among topologists that this theorem holds true in case X is
a euclidean space of any number of dimensions ¢). Evidently it is
not valid in case 3 is the space composed of the points of a con-
tinuous curve M [= a conuected, locally connected, loeally com-
pact, metric and separable space] unless some restriction be placed
on the continuous eurve. For if M is the sum of three ares az, bz
and cx, where az. bz = bz.cx = ax - cx = z, then obviously no are
in M contains the set a4 b c.

The problem of finding a simple and not too restrictive con-
dition on a continuous curve M in order that this proposition be
valid in M has been the source of eonsiderable discussion among
topologists in recent years. In this article I shall give a solution to
this problem embodied in the condition that the continuous curve M

1) Comptes Rendus, vol. 141, pp. 650—655.

1) Ibid, vol. 1561, pp. 138—140.

3) Ann, of Math., vol. 20, pp. 218—223.

4) Bo far as the author kmows, however, no proof has been given, up to the
present time, even for this case of the theorem.
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