Potentially regular point sets.
By
G. T. Whyburn (Baltimore).

PART L

1. A separable metric space S will be- called potentially regular
if for each point p of § there exists a monotone decreasing se-
quence of neighborhoods [U), (i==1,2,3,...) of p whose boundaries
[B) are finite point sets and such that

p= [0+ B)
1
that is, p is the only. point common to the closed neighborhoods
[T]. The least integer O,(p) for which such a sequence [U)] exists

such that O,(p)=Lim B,, where B, is the power of B,, will be
called the order of p in 8.

For compact or locally compact spaces S, obviously the notion
of potential regularity and the corresponding order of points is
equivalent to the notion of a regular space and the corresponding

order or index of points in the sense of Menger and Urysohn?)..

Indeed any space which is regular in the Menger-Urysohn sense
is also potentially regular. In general, however, the converse of this
statement is not true. For example, the set § of all points ()
in the plane such that y =0 when =0 and y==sin 1/x when
z0 fmd —1<<2 <1 is potentially regular, as is indeed every
set which is connected and irreducibly connected between two

) ) See K. Menger, Grundziige einer Thaorie der Kurven, Math, Ann., Bd,
98, p. 277; P. Urysohn, Comptes Rendus, vol, 175, p. 440 '
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points, but not regular in the Menger-Urysohn sense. However,
part I of this paper is devoted to the proof of the following

Theorem. Let B be any separable metric space which is con-
nected and potentially regular. Then there exists a biuniwalued and
continuous transformation of E into a separable metric space E*
which is connected and reqular in the Menger-Urysohn sense. Further-
more, under this transformation, the property of a finite point set
to separate ?) two given points in R is invariant.

It follows from the second part of this theorem that the order
0.(p) of any given point of R is equal to the Menger-Urysohn
order of the image point p* of p in B*.

The proof for the theorem will be based on the sequence of
Jlommas which follows below (§§ 2—bB) which are valid in the
space K.

2. A separable metric space S ig potentially regular if and only
if every two points of S may be separated in S by a finite set of
points.

That every potentially regular space S hus this property is an
immediate consequence of the definition of potential regularity. For
if p and ¢ are points of such a space, we take the sequence [I7]
of neighborhoods for p and choose i so large that ¢+ U+ B]=0.
Then the finite point set B, separates p and g in §, for S —B=
= U, +[S— U} Let us suppose, then, that the space S has the
property of this lemma, and prove that S is potentially regular.

Since S is separable, it therefore contains a countable sequence
of points p;, Py, Ps,... such that every point of S either belongs
to this sequence or is a limit point of it. Now let p be any point
whatever of S. Since S obviously is potentially regular at each of
its isolated points, we may assume that p, = p, for eachi. For each i
there exists by hyputhesis a finite subset X of S which separates
g and p in S. Clearly there exists a number »>>0 such that X
also separates p and the set V,.(p) of all points whose distance

7) A subset X of B is said to sepurate two points or point sets 4 and B
in R provided that R— X = Fq - Ry, where the sets [, and R; are mutually
geparated (i, e, mutually exclusive and neither contains & limit point of the other)
and contain 4 and B respectively.

Fandamenta Mathematicae, T. XVI. 11
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from p, is <Cr in 8. For each ¢ there exists a number s, 0 < s <
< o(ps, p), such that for every number r, 0<r<Cs, there exists
a finite subset of S which separates p and the set V.(p) in §
but for no >3, does such a set exist, For each 4, let », be a num-
ber so that

2.1) 31>7'[>3,"‘"‘1/?:

and let X; be a finite set separating p, and V,(p,) in S. Then
§— X, = 87+ S5/, where the sets 37 and 5/, are mutually separated
and contain the sets p, and V, (p,) respectively, For each i, let

U=28¢-5¢-8¢... 8.

Clearly U, is an open neighborhood of p and the sequence [U]
is monotone, (i. e, j>i implies U;C U). And since the boundary

1]
B, of U, is a subset of ?’X,,, obviously B, is finite. It xemains, then,

to show that p is the only point common to the elosed neighbor-
hoods [U]]. Suppose, on the contrary, that some other point ¢ is
common to all the neighborhoods [U]. There exists, by hypothesis,
a finite subset X of S which separates p and ¢ in § Hence
S—X=48,+ &, where §, and S, are mutually separated and

contain p and ¢ respectively. There exists a positive number
such that

2.2) V(9 C 8,

Since ¢ is a limit point of the sequence Pry Puy...y there exists
an integer ¢ such that

2.3) 1/i<r and V.(p)Dyg.
Now 2.2) and 2.3) together give that Var(p) C S, and therefore
24) 8= 2r

Then 2.1) and 24) give that »,>>r Hence V, (
_ . (2) DV, (p) Dy
[by 2.3)]. Thus ¢ 8}, which contradiots the suppo:zition that ; be-

longs to T, because U;» Sy==0. Therefore pmﬁ (U4 By, and
our lemma 2) is.proved. :

3. In the space R, every component of’the y ,
set is apen. d p f " the complement of a finite
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Let B==p,+p, 4 ps ... p, be any finite subset of R, let C
be any component of EB-—B, and let # be any point of ., For
each 4, 1 <Ci<Cm, by virtue of § 2, there exists a finite subset K,
of B which separates p, and z in B. Therefore, M—K,= M,(x)+
~+ M,(p), where the sets M(z) and M(p,) are mutually separated
and contain the points » and p, respectively. Now let '

M(@) = ]I M(z) and N() =2M, (p).

la=]

Then' clearly :

M=M()+N() + I K,
1

and

Mia) N = KC Yz

Therefore K is finite and contains. say k, points. But by a the
orem proved by Knaster and Kuratowski?®) and independently
by the author, the set M(x) K is the sum of a finite number
m<n of mutually separated connected sets Cy, G,..., 0,. One of
these sets, say O, contains the point z. Sinece B (C N(x), therefore
C+B=0 and hence (;(C C. Clearly x is not a limit point of
M — G, and thus it follows that a neighborhood U of z exists such
that UC G;C C. Therefore ¢ is open in R; and our lemma is
established.

4. The set Q of all local separating points 4) of R of order >2
is countable. T

Suppose, on the contrary, that @ is uncountable. Now for each
point ¢ of @, a connected neighborhood R, of ¢ exists whose boun-
dary B, is finite and such that ¢ is a cut point of R, For each
such point ¢ of @, there exists a positive number r such that the

% Bee A remork on a theorem of R. L. Moore, Proc. Ntl, Acnd. of Scien-
ceos, vol, 18 (1927); also see an abstract of a paper by the author in the Bull.
Amer. Math, Soec,, vol. 83 (1927), p. 888.

4) A point p of a connected potentially vegular set B will be called a local
poparating point of R provided that p is a cut point of some connected open

subset of B whose boundary is finite.
11%*
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set V,(q) of all points of B whose distance from ¢ is less than
is a subset of E,. Then since, by supposition, @ is uncountable, it
follows that there exists a point « of @ and an uncountable sub-
set K of Q such that for each point y of K, &, Da. Now there
exists a monotone decreasing family of neighborhoods [U/(z)]
(1==1,2,8,..) of » with finite boundaries B, such that

= [0+ 8]

By virtue of § 3 we may assume that each ot the neighbor-
hoods [Uj(2)] is connected; for we may replace U,(x) by the com-
ponent of U(x) which contains #. Now for each positive integer 4,
let K, denote the set of all points ¢ of K such that B,. U,(i) == ().

Then since K =3 K, and since K is uncountable it follows that
1

for some i, say i==m, K, is uncountable,

Now for each point p of K, B, U,(@)=0. And since
R, U,(x) Dz and U,(w) is connected, it follows that for each
point p of K, B, U,(x). Since p is & cut point of &,, therefure®)
p is also a cut point of U,(z). But since K, is uncountable, it fol-
lows€) that at least one point h of K,, is & point of order two in
the sense defined in this paper of U,(x) i. e, 0, (%) ==2. But since
Un() is an open subset of B and the boundary of U,(x) is finite,
it is readily seen that 4 is a point of order x of X, i. e, Op(h)==2
This contradicts our supposition, and therefore ¢ is countable,

8. Let K be any definite countable subset of B which is dense
in B (i. e, K=1R) and which contains the set Q of all local sepa-
rating points of R of order > 2. Let p be any point of R and let
B, be any neighborhood of p whose boundary B, is a finite point get
every point of which is a limit point of R — R,. Then there exists
a connected neighborhood R, of p with boundary B, belonging to K
such that R, C R, and f;,< E

%) See R. L. Moore, Proceedings Ntl. Acad of Sei,, vol. 14 (1928) pp. 8688,
f) See my paper On Non-seporated Cuttings of -Connected Foint Sets {to
appear), where it is shown that all save a countable number of the cut points

of any connected separable matric space § are points of order 2 in & in the
sense of this paper.
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Proof. By virtue of § 3, we may suppose, without loss of gen-

erality, that R, is connected. Let z be any point of B, It readily

follows from § 3 that « is a limit point of some single compunent
C of R—R,; and therefore it follows immediately that « is a local

separating point of B — for there exists a connected neighborhood
U of  with a finite boundary and such that U-(B,—z)=0,

and therefore U——a=R,.-U+ (R—R,).U. Thus since Q (K,
either = belongs to & or else x is a point of order 2 of R.

Let x,, ®y,..., T, (m< B, be the points, if any such exist,
of B, which do not belong to K. For each ns<{m there exists
a monotone decreasing sequence of connected meighberhoods [Uf)

(t==1,2,38,...) of x, whose boundaries contain exactly two points
A} and B} and such that

a:,,;—..—”_ﬁ[‘, and p.Ur =0,

Joal

It is readily shown that there exists an integer j such that for
each pair of integers » and s<{m, U+ Uf =0, and such that for
each n<m, one of the points 47 and B} (i>j), say A7, belongs
to R, and the other to R —Z&,. For each n<m, the point z, se-
parates the points 47 and Bj in the connected set Ur. Thus Up— @,=
= U"(a) 4 U"(b), where the sets U”(a) and U"(b) are mutually
separated and contain A} and B} respectively. Let V, denote the
connected 7) point set U”(a) + x,. Now let h,==»h denote the set
of all points of ¥, =V which separate 47 =a and z,==b in V.

Clearly %, exists and indeed contains 3 A7 I shall now show that
0>/

it contains at least one point which belongs to K.

If on the contrary, no point of % belongs to K, then since
clearly every point of & is a local separating point of B and QCK,
it follows that every point of k is a point of order two of E.
I shall show that under these conditions b=V —(a ). Suppo'se,
on the contrary that there exists a point ¢ of V—(a+9) which -
does not belong to k. Now for each pointy of k, V—y="Va(y)+
+ V,(y), where the sets V,(y) and V,(j) are mutually separated

") See Kunaster and Knratowski, Fund. Math., vol. 2., pp. 206—253, see
Theorem 6.


Yakuza


166 ~ G. T. Whyburn:

and contain @ and b respectively. Now let 4, be the set of all
points y of h such that ¢ belongs to the set Fy(y), and let hy =
=h—~h,. Then in the order from a to b there must exist a last
point &) of ky, i e, & point f of k; such that A—fC Vo(f). For
if not, then using°the fact that A, is separable, it is easily shown
that a sequence £, /3, f3,... of points of A exists such that A C A==

— 3 7,(f) and such that, for each 4, fy CV,(f) Since 4 is an
feal

open subset of V, there exists at least one point p, of V-—4 which
is a limit point of 4. No other point p, of V'— 4 is a limit point
of 4; for if so, there exist, by § 3, mutually exclusive connected
neighborhoods U; and U, of p, and p, respectively; and then there
exists an i such that V,(f)- U, 5= 0 V,(f): Uy; and since p, 4
+ 0, C V,(f2), it follows that f;C U,- U, contrary to the fact that
U;+Uy=0. Thus p, is the only limit point of 4 in V—4; and
since, as is easily seen, b belongs to V' — A—p,, it follows that
p, separates @ and b in ¥ and therefore belongs to h. Furthermore,
since ¢ belongs to V'— 4 —p,, which is identically the set V,(p,),
then p, belongs to h,, contrary to the fact that h, (C A. Thus the
supposition that A, has no last point is false, and accordingly there
exists a last point f of h,.

Since f is point of order 2 of V, there exists a sequence of
neighborhoods [U] (i==1, 2,...) of f/ with boundaries B, containing

just two points, say #, and s, and such that f= I (U;+ B). Now
1

for each i sufficiently large clearly », and s, belong to A; and if
we agree that r, always precedes s, in the order 4, b in V, then
r; belongs to b, and s to k,. For each i,

V="V,(r)+ Vy(r)- Va(s) + Vi(s) + v+ 5.

Now by the definition of the sets h, and hy, it follows that g be-
longs to neither V,(r) nor V,(s); and since # 4 s, h, therefore
gC Vy(r)- Va(s). But the set V,(r,)- V,(s) is connected ¢) and con-
tains the point # of U, but no boundary point of U, and hence is
a subset of U, Thus ¢ belongs to U, for every i, contrary to the

%) The points of h are linearly ordered in ¥ from a to b, The point y of h
precedes or follows the point & of h according as y helongs to Va(m) or to V().
See my paper in the Bull, Amer. Math. Soc., vol, 85 (1926), pp. 87—104.

%) Bee my paper in the Bull, Amer, Math, 8oc,, loe. cit,
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faet that f is the only point ecommon to U,. Thus the supposition
that A is not identical with the set V' —(a—-b) leads to a contra-
diction. Now since by hypothesis K is dense in R and A=V~ (a--b)
is an open subset of R, therefore h contains at least ome point
y which belongs to K.

Returning to the points =, #y,..., #,, let us select, for each
integer n < m, a point y, from the set h,- K. For each u, let us
replace the point , in B, by the point y,, and call the set thus

obtained B,; i. e, B,= B,—3a, + §y,,. Then clearly. B,C K and
1 1

B,==B,. If R, is the component of B — B, containing the point p,
then since, for each m, y, separales A’ and @, in V, it follows
that B,C R, and that B, is the boundary of R,. This completes
the proof of the lemma in this section.

6. Proof of the Theorem. Let us select some definite subset
K of R satisfying the conditions on the set K in §5. Let G be
the system of all connected open subsets U of M such that the
boundary of U consists of a finite number of points of K. Now
since the set of all finite subsets of K is countable, sinece no two
connected open sets having the same boundary can have a point in
common without being identical, and since R is separable, it follows
that the system G is countable. Now let £ be the system of all
open sets in R whose boundaries are finite point sets. Let p be any
point of B and R; any set of the system E which contains p. Now
B contains a neighborhood R, of p which also belongs to Z and
every point of the boundary of which is a limit point of R—R.
For by § 1 it follows that there exists a neighborhood U of p
whose boundary B is finite and such that U~ B(C E;. Now add
to U all the points of B which are not limit points of R—T, and.
the set R, thus obtained has the desired properties. Then by § 5,
there exists a set R, of the system G which contains p and is
s subset of R, and hence also of B,. Clearly every set of the system
G is itself an element of the system K. Therefore the neighborhood
systems G and E are equivalent. _

Now let E* be the space whose points are identicelly the same
as the points of R but in which ,limit point* is defined by means
of the system of neighborhoods E. That is, in the space B* any set
R, of the system E is a neighborhood of the point p* if and only
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if B, contains p*; and a point p* of E* is a limit point of a set
of points M* if and only if every neighborhood of p* belonging
to £ contain at least one point of M¥ distinet from p*. The space
RB* as thus defined obviously satisfies the four axioms of Hausdorff
and therefore it is a topological space in the sense of Hausdorff1)
Since, as shown above, the countable subsystem G of £ is equivalent
to £, therefore R* is perfectly separable. From § 1 it follows that
within every neighborhood U belonging to E of a point p* of E¥
there exists a neighborhood V of p* also belonging to E (since
every neighborhood in R with a finite boundary belongs to Z)
which lies together with its boundary in U. Thus the space E* is
,regular in the sense of Alexandroff- Urysohn. Therefore R* is
metric 1), When we suppose that a distance function is defined in
B* then it follows immediately from the definition of the system B
that R* is regular in the semse of Menger. And since by definition
every set which is open in B* is also open in R, it follows that B*
is a biunivalued and continuous image of R. This completes the
proof.

7. Remarks. A general problem. If K iz any subset of B of
the type considered in § 5, then it follows by § b that the order
0.(p) of every point p of B is unchanged if we restrict ourselves
in defining order of points in § 1 only to neighborhoods of the
system G of all connected open subsets of B whose boundaries are
finite subsets of K. Hence the order of every point p of B relative
to K is the same as the order of p relative to K. Thus the set K
is a very simple and well defined countable subset of R (or & is
an equally well defined countable family of neighborhoods in R)
relative to which the true order of every point of R is determined.

In the special case %) in which B is a regular curve in the
sense of Menger, such a set K may be defined for B in the follo-
wing manner. Let H be the set of all ramification points of R,
i. e, all points of order >2 of R, and let hy, hy, h,... be the

components of B—H. Then for each 4, h, is either an open or

%) Bee Hausdorff, Grundzilge der Mengenlohre, 1914,

V) See Alexandroff-Urysohn, Math. Ann, vol. 93 (1924), p. 263; and
Tichonoff, Math. Ann., vol, 98 (1925), p. -801.

1) For a discussion of this special case, see m note by the author, ,Uber die
Struktur reguldrer Kurven®, Wiener Akademie Anzeiger, 1980, No 6,
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semi-open are. For each i, let %, be a countable subset of 4, which
is deuse on %;, such as, for example, the image set of the set of
all rational points on the open or semi-open unit interval when
this interval is put into a topological correspondance with h; and
let K= -4 2k, Then K satisfies all the conditions on the set K

Ie1,9,00

in § 5, and accordingly the order of every point of R relative to K
i the same as its order relative to the entire curve R.

Let Z be any system of closed sets in a separable metric space
S which is monotone and additive, i. e., every closed subset of an
element of Z is itself an element of Z and the sum of every two
elements of Z is also an element of Z. Suppose we say that a space
S is uniordered !#) relative to such a system Z provided that for
each point p of S there exists a monotone decreasing sequence of
neighborhoods [U)] (i=1, 2, 8,...) of p with boundaries [U,] which

belong to the system Z such that p= ID}(U,—{- B)). Then the method
1

of proof given in § 2 may be employed to prove the following
more general theorem.

In order that a space S should be uniordered relative to the sy-
stem Z it is necessary and sufficient that every two points of S may
be separated by a set of the system Z.

The lemma in § 2 gives only the special case of this general
theorem in which Z is the system of all finite subsets of S. Another
interesting special case of this theorem is that in which the system
Z consists of exactly the null set. In this case we have the con-
clusion that every set T which is separated between each pair of its
points is ,zero-dimensional® in the sense that there exists a sequence:

of neighborhoods [U}] of p with vacuous boundaries such that p—-—=Iil’ U,

although there exist 4) such sets 7' which are one dimensional in
the Menger-Urysohn sense. It would be interesting to determine if
every such set 7 may be transformed by a biunivalued and con-

13) This notion resembles the notion of piibergeordnet” due to Menger and
Hurewicz (S8ee Menger, Dimensiontheorie, pp. 123—126) in the same way as
the motion of potential regularity resembles that of regularity in the Menger-Ury-
sohn sense, Monotone and additive set-systems have also been studied by Menger,
cf,, for example, Grundziige einer Theorie der Kurven, loe. cit.

14) See Mazurkiewicz, Fund. Math,, vol. 2, p. 201; for a quite simple
example, see Kuratowski, Ann. Soc. Math. Pol, vol. b (1926), p. 109.
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tinuous transformation into a set which is zero-dimensional in the
Menger-Urysohn sense or, in general, to solve the following general

Problem. Can every space S which is uniordered relative to
a system Z be transformed by a biunivalued and continuous transfor-
mation into a separable wmetric space S* in which every point p* is
contained in arbitrarily small neighborhbods with boundaries belon-
ging to 27

PART IL

Completely Partitionable Connected Sets.

We here consider a special type of potentially regular connected
point sets. A connected set M, lying in a separable metric space,
will be called completely partitionable provided that every two points
of M/ may be separated in M by some third point of M. We give
below a characterization of these sets and also characterize the con-
nected sets which are homeomorphic with a subset of an acyclic
continuous curve as sets which are completely partitionable and at
the same time regular in the Menger sense, I note here the fact
that, contrary to a statement made in the abstracts of this paper !5),
it is not necessarily true that in a completely partitionable con-
nected set M, every two points may be joined by an irreducibly
connected set. For let I, be the set of all points (v, y) in the plane
such that y =0, 0 <Co<<1; let I, be the set such that y==1,
1<<z<C2; for each positive integer n, let L, be the set such that

z=(n—1)n 0<y<<Ll Finally, lot X=1I 4 I, + 5L, and
1

let 4 and B denote the points (0,0) and (2,1) respectively. Then
M is connected and completely partitionable, but there exists in M
no irreducible connected set between A4 -and B.

Ay. In order that a connected set M (in a separable metric space)
should be completely partitionable, it is necessary and sufficient that
there exist a biunivalued and continuous transformation of M 1tnto
a subset of an acyclic continuous curve.

1%) Wiener Akademie Anzeiger, 1980, N° Y i also Bull, Amer, Math, Boc,,
March,, 1930. The second characterization of completely partitionable connested
sets announced in these abstracts is therefore mot valid

.
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The condition is necessary. For let I be any completely par-

' titionable connected set. By § 2, I is potentially regular. Accor-

dingly, by the theorem stated in § 1, there exists a biunivalued
and continnous transformation 7, of 37 such that 7, (27) is con-
nected, regular, and completely partitionable 16). But then T,(i)
is connected im kleinen, and by a theorem of the author’s 17) there
exists a biunivalued and continuous transformation T, of T,(I)
into a subset A of an_acyelic continuous curve, i. e., 7, (7, (M)] = H.
Now for each point p of M, let T(p)= T, [Ty(p:]. Then it is easily
seen that 7' is a biunivalued and continuous transformation of 7
into H.

The condition iy also sufficient. For obviously every connected
subset of an acyclic continuous curve is completely, partitionable,
and indeed, ¢/ for the connected set M, there exists a biunivalued
and continuous transformation T of M into a completely partitionable
set T(M), then M itself must be completely partitionable. For let A
and B be any two points of M. There exists a point X in 7'(J)
which separates 7(4) and T(B) in T(M). Thus T(M) — X =
== N; + N,, where N, and N, are mutually separated and contain
T(4) and T'(B) respectively. But since 7' is biunivalued and con-
tinuous, it follows that T~'(N,) and 7-'(N,) are mutually separated
and contain 4 and B respectively and that 7-'(N,) 4 T='(N,) =
== M — T'(X). Therefore, the point 7*(X) separates the points
4 and B in M, and thus M is completely partitionable,

Ag. In order that a connected set M should be topologically con-
tained in an acyclic continuous curve it is necessary and sufficient
that M be completely partitionable and reqular.

That the eonditions are necessary follows from the well known
facts that every subset of an acyclic continuous curve is regular
and that the properties regularity and complete partitionability are
topological invariants. That the conditions are sufficient follows from
result 4, and the following lemma.

16) That T (M) is completcly partitionable follows from the last part.of the
theorem in § 1; because for each pair of points A and B of T, (M) there exists
a point @ of M which separates 771(d) and 7771(B) in M, and by the last part
of the theovem in § 1, it follows that the point T\ (v) separates 4 and B in T; ('M ).

17) Hoo my paper ,On the structure of connected and connected im kleinen
point sats® (to appear in Trans. Amer. Math, Soc), result 8.2a).
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Lemma. If for the completely partitionable, regular and con-
nected sets H and N there exists a biuntvalued and continuous trans-
formation T of H into N, then the inverse T of T'1is also conti-
nuous, and therefore H and N are homeomorphic.

Proof, Let ¢ bo any simple continuous arc in N joining two
points A and B of N. Now there exists 2¢) in H one and only one
arc t* between the points T-'(4) and 7-)(B). Since I'is biunivalued
and continuous, the image T'(#*) of ¢* under 71'is an are in N from
A to B. But 1) there is only one arc in N from 4 to B. Therefore
T@*) =1, (or T-'(t)=1*), and hence it follows that the inverse
T-* of T is continuous on every simple continuous are ¢ in N,

Now let p be any point of N and ¢ any positive number. Since
H is regular, there exists a connected &neighborhood £ of the
point P== T-*(p) in H whose boundary B in H is finite. Since ¢
N is arcwise connected im kleinen, there exists a neighborhood V
of p in N such that every point # of 7 can be joined to p by an
arc ¢ in N which contains no point whatever of T'(B). But by what
we have just proved, 7'(f)==1¢* is an arc in H from 7"'(x) to
P; and since t* contains the point P of R but contains no point
whatever of the boundary B of R, it follows that #* is a subset

of R. Thus for each point # of V, T-*(z) C R, and therefore 7™
is continuous.

18) See § 7 of my paper just cited above, ref, I7),

John Simon Guggenheim Memorial Foundation.
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Sur une propriété des ensembles G,.
Par
W. Sierpinski (Varsovie).

M. Aronszajn a étudié une classe particulitre des transfor-
mations coutinues des ensembles de points, notamment des fonctions
J(«), définies et continves sur un ensemble donné £ qui trasforment
tout ensemble ouvert relativement & E en un ensemble ouvert rela-
tivement & I'image f(E) de E'1)?%. Il m'a posé récemment le pro-
bléme si toute transformation de cette sorte d'un ensemble G, par-
ticulier donne un ensemble Gy. Je donnerai ici une solution positive
de ce probldme, en démontrant le théoréme général que voiei:

Théoréme: Si E est un ensemble Gy (d’an espace & m dimen-
sions) et si f(x) est une fonction définie et conlinue sur E qui trans-
forme tout ensemble ouvert relativement & E en un ensemble ouvert
relativement & f(E), f(E) est aussi un ensemble Gy ).

Démonstration. Il suffira évidemment de démontrer notre
théoréme pour les ensembles bornés. Nous supposerons, pour fixer
les idées, que E et f(E) sont des ensembles plans.

Soit done % un ensemble Gy plan borné, f(x) — une fonction
définie et continue sur E qui transforme tout ensemble ouvert dans
E en un ensemble ouvert dans f(E)

E étant un ensemble @, plan borné, nous pouvons poser

& E=G64 6,6,

1) Un sous-ensemble H de £ est dit ouvert ralativement & E, ou ouvert dans E,

@il est un produit de E patr un ensemble ouvert.
%) Cf. 8, Storlow: Fund. Moth. t. XIII, p. 186, ‘
%) Quant & une application de ce théorbme, voir la Note de M, Aronszajn

qui paraitra dans ce volume.
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