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thor'st}, Pis regularly accessible from E, and hence E-} P is arcwise
connected. Hence it follows that G - P is arcwise connected, and
therefore, by another theorpm of mine?) G 4 P is arewise con-

nected im kleinen. But since H is connected im kleinen, it follows

with the aid of a theorem of R. L. Wilder's?) that P is not a limit
point of H—(G + P). Hence H is arcwise connected im kleinen
at every point of K. It was shown above that H is arewise con-
nected im kleinen at every point of H— K. Hence H is arewise
connected im kleinen at every one of its points. Then since H is
connected, it follows by a theorem of the author’s4) that H is are-
wise connected.

I have just shown that every connected subset of each maximal
cyelic curve of I is arcwise connected. Therefore, by a theorem
of mine?), every connected subset of M is arewise connected.

Theorem 31. If no maximal cyclic curve of a continuous curve
M contains an infinite collection of mutually exclusive simple closed
curves, then every counected subset of M is arcwise connested.

Theorem 31 follows immediately from Theorems 7 and 30.

Theorem 32. If the ramification points of each mazimal eyclic
curve of a continuous curve M are finite in number, then every con-
nected subset of M is arcwise connected.

Theorem 32 is an immediate consequence of Theorems 1% and 32.

Problem. If the ramification points of each maximal cyclid curve
of a continuvus curve M are countable in number, then is every con-
nected subset of M arcwise connected?

!) Loc. cit. Theorem 15.

) G. T. Whyhurn, Concerning certain types of continuous curves, loc.
cit. Theorem 5.

3 A Theorem on connected point sets 1wchich are connected im kletnen, Bull.
Amer. Math Noe., vol. 82 (1926), pp 338—340.

4 G. T. Whyburn, Concerning the complementary domains of eontinua,
loc. eit.. Theorem 12.

8 G. T. Whyburn, Concerning the structure of a comtinuous eurve, loc.
cit., Theorem 83. This theorem is as follows: In order that every connected
subset of a continuows curve M should be arcuise connected it is necessary

and sufficient that every connected subset of each maximal eyelic curve of M
should be arcwise connected.

University of Texas, Nov. 14, 1927,
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A éeparation theorem.
By
R. L. Moore (Austin, Texas, U, S. A).

In my paper Concerning the separation of point sets by curves )
it is stated that if 7" is a totally disconnected closed subset of the
boundary of a simply connected domain D and there exists a con-
tinnum K containing 7' and such that K— T' is a subset of D then
there exists a simple closed curve J containing 7' and enclosing
K— T and such that J—T is a subset of D. That this proposi-
tion does not hold true, in the form in which it is stated, even for
the case where T' is a single point on the outer boundary of D,
may be seen with the aid of the following example.

Example. Let T, 4, B and C denote the points (0, 0), (2, 0),
(2,2) and (0, 2) respectively.- For each positive' integer n, let' F,
denote the point (1, 1/n) and let T, denote the point whose abscissa
is 1/n and whose ordinate is (2n--1)/(n*-+-n). Let M denote the
continuum composed of the straight line intervals T4, 4B, BC and
CT together with all the straight line intervals of th.e sequence
TF,, TF,, TF;,... Let K denote the sum of all the intervals of
the sequence T7;, TT,, TT;,... Let D denote the_bounded com-
plementary domain of the continuum M. There exists no simple
closed curve J containing T and enclosing K — T and such that
J— T is a subset of D. ' .

The following modification of the proposition in question ho}ds
true and suffices as a substitate in some of the applications in which
the use of that proposition may seem to be indieated.

1) Proc. Nat. Acad. Se., vol. 11 (1925), pp. 469—476.
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Theorem. 1If, in space of two dimensions, T is a totally discon-
nected closed- subset of the boundary of a simply connected bounded
domain D and K is a continuum containing T and such that K—T
is a subset of D, and L is a mazimal connected subset of K — T
then there exists a simple closed curve J containing a part of T and
enclosing L and such that J—J.T is a subset of D— (K—T).

Proof f). Let S denote the set of all points of the plane and
let H denote the boundary of D. Since T is closed and bounded
there exists a sequence of bounded point sets D,, Dy, D,,... such
that (a) for every , the set S—.D, is closed and D.,, is a sub-
set of D,, (b)T is the set of all points common to the point sets
Dyy Dy, Dy, ..., (c) not all points of K belong to 1. For each n
let K, denote the set of all those points of K which do not be-
long to D;. There exists a finite set G, of eircular domains, all
of diameter less than 1, such that (a) every point of K belongs
to some domain of the set Gy, (b) no point of D;~+H is in, or on
the boundary of, any domain of @,. There exists a finite set G,
of circular domains, all of diameter less than 1 /2, such that (a)
every point of K3 —X, is in some domain of G, (b) no point of
D;4-H is in, or on the boundary of, any domain of &,. There
exists a finite set G of circular domains, all of diameter less than
1/3, such that (a) every point of K;— K, is in some domain of
Gy, (6) no point of D{+ H or of &§—D, is in, or on the boun-
dary of, any domain of @, This process may be continued. Thus
there exists an infinite sequence Gyy Gy, Gy,... such that (a) for
every n, G, is a finite set of circular domains, all of diameter less
than 1/n, (b) for every n, G, covers K, s—K,., but no point
of D, o+H or of S—D, is in, or on the boundary of, any domain
of G,y Let Z denote the set obtained by adding together the do-
mains of all the sets Gy; Gy, Gy.... and let B denote the greatest
connected subset of Z that contains L. The continuum R’ is con-
nected im kleinen. For suppose first that P is a point of B’ not
belonging to T, There exists a circle C with conter at P and
ueither containing unor enclosing any point of T. There exists
a positive integer m such that if n>m then no domain of the
set Gf, contains a point within C Let Q. denote the point set

*) This proof has mueh in common with the proof of Theorem 2 in my
above mentioned paper.
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obtained by adding together all circular domains g such that, for
some i less than or equal to m, ¢ belongs to the set G, and lies
in B. The point set @, is the sum of a finite number of circles
plus their interiors. Hence ¢/, is connected im kleinen at the point
P. Since @, is a subset of R’ and contains every point of R’ that
lies within C therefore R’ is' connected im kleinen at P. Thus R’
is connected im kleinen at every point of B — E'.7T If there
exist any points of R at which it is not connected im kleinen
there must exist a continuum of such points and this continuum must
be a subset of T, contrary to the hypothesis that 7T is totally dis-
connected. It follows that R’ is a continuous curve. Let E denote
the unbounded complementary domain of R’ and let g denote the
boundary of K. The point set 8 is 1) a continuous curve. Hence
the outer boundary of £ with respect?) to R is a simple closed
curve J. The curve J is a subset of the houndary of B and it
encloses [, and therefore L. Since it is a subset of the boundary
of B it contains no point of H4+K—T But it is a subset of D+H.
Therefore it contains points of D, Hence there are points of D
without . Therefore, since D is bounded, there are points of H
without J. But there are points of K within J and K -+ H is con-
nected. Hence J contains at least one point of K- H. Thus it
containg at least one point of T

) Loe. cit, page 476.
3 Loc. cit.
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