Concerning continuous curves of certain types®).
By
W. L. Ayres (Philadelphia).

A number of authors ¥) have discussed continuous curves 3) which
contain no simple closed curve and have shown that they possess
a namber of interesting properties, It is the purpose of this paper
to show that many of these properties remain true in more general
types of continuous curves.

We shall consider the following five types of continuous cur-
ves M: (1) M contains at most a finite number of simple closed
curves, (2) if ¢ is any positive number, M contains at most a finite
namber of simple closed curves of diameter greater than & (3) M
contains only a finite number of-arcs between any two points of M,
(4) every connected subset of M is arc-wise connected, (5) every
closed and connected subset of M is a continuous curve. A con-
tinuous curve which satisfies the first condition will be said to be
simply cyclic, one which satisfies the second condition will be said
to be almost simply cyclic and one which satisfies the third eondition
will be said to be simply joined.

Of the twenty possible relations between the five types I have
been able to settle all except two. The questions as to whether,
or not, (2) implies (4) and that (5) implies (4) are mnot settled in

1) Presented to the American Mathematical Society May 1, 1996,

%) 8, Mazurkiewicu, Un théoréme sur les lignes de Jordan, Fundamenta

Mathematicae, vol. 2 (1921), pp. 119—130, R. L. Wilder, Concerning continuous
curves, Fund. Math,, vol. 7 (1925), pp, 840377, snd others,

) For deﬁnmons and theorems concerning continuous curves, see R, L, Moo re,
Report on continuous curves from the viewpoint of analysis silus, Bulletin of
the American Mathematical Society, vol. 27 (1928), pp. 269—802.
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this paper!) Excepting these two cases every implication between
the five types is given in this paper. In every other case an example
may be found to show that there is no implication.

Theorem 1. If every connected subset of a continuous curve is
arc-wise connected, then every closed and connected subset is a conti-
nuous curve?®).

Proof. Let K denote any closed and connected subset of the
continuous curve M and let T' denote any open subset of K. If z
and y are any two points which lie in a connected subset of T,
by hypothesis there exists an are 2y which lies wholly in 7. There-
fore K is .a continuous curve by a theorem due to R L. Wilders).

Theorem 2. Every closed and connected subset of an almost
simply cyclic continuous curve is a continuous curve

Proof. Let K be any closed and connected subset of an almost
simply cyclic continuous curve M  Let us suppose that K is not
a continuous curve. Then by the Moore-Wilder Lemma¢) there
exist two concentric circles C, and C, and an infinite sequence of
continua, K, K, K,, K;,..., all belonging to K such that (1) each
of these continua contains a point on €, and a point on C, and
lies entirely in L == C, 4 C, + I, where I denotes the annular
domain bounded by C, and C,, (2) no two of the continua have
a point in common and no one of them except possibly K, is
a proper. subset of any connected point set which is common to K
and L, (3) the set K, is the sequential limiting set of the sequence
of sets K, K;, K,,...5).

!} B. Knaster and C. Euratowski have given an example which satisfies
condition (5) but not condition (4) and thus show that (b) does not imply 14).
See A connected and connected im kleinen point set which contains no perfect
subset, Bull Amer. Math. Soc., vol 33 (1927), pp. 106—9. The question as to
whether (2) implies (4) remains as an unsettled question.

1) To make the statements of tha theorems simpler we will considor a single
point as a special case of an arc or of a vontinuous curve,

3) Loe, cit., Theorem 18, p, 373.

‘) R. L. Moore, loc. cit, p. 296, and R. L, Wilder, loc. cit., p. 871.

%) The point set Ko, i8 said to be the lémiting get of the sequence of point
sete K, K,, K,,... provided that (a) each point of K. is the sequential limit
point of an infinite subsequence of some sequence of points p,, p,, p,. . such
that, for every n, p. belonga to K,, {b) if p,,2,,p;,... i8 a scquence of poiats
such that, for every s, p, belongs to K,, then K contains the sequential limit
point of every subsequence of p,, #,, 7,,... that has a sequential limit point, If
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Let K=K+ K, + K, +... The sets K, and K — K, are
both closed and have no common points. Then for each point of K,
there exists a circle whose interior contains this point but no point
of K — K,. The set of all such interiors of circles for all points
of K, forms a connected domain containing K, but no points
of K— K,. The set of points of M lying in this domain is an
open subiset of M. The continuum K, contains a point 4, on G
and a point B, on C,. Then M contains an arc 4, B, which lies
wholly in the open subset of M) and thus contains no point of
K— K,. The arc 4, B, has a last point z, on C, and the subare
x; By, of 4, B, has a first point y, on %)

Let us continue this process. In general, the sets K, and
K,=K— (K\+K+.. +K)+z 942y + ... 2y Yoy are
closed and have no common points. Then for each point P of K,
there exists a circle whose interior contains P but no point of K.
The set of all such iuteriors for all points P of K, forms a con-
nected domain D, containing K, but no point of K,. The set M. D,,
the intersection of M and D,, is an open subset of M. The con-
tinnum K, contains a point 4, on €, and a point B, on C; and
thus M contains an arc 4, B, which lies wholly in the open sub-
set M.D, The arc 4, B, contains a last point #, on C, and the
subarc z, B, of 4, B, contains a first point y, on C,. The arc x,y,
lies, except for its end-points, wholly in the set I.

Let Ny==,5. Then M contains an infinite sequence of arcs
Ny, Ny Ny,... such that no two of the ares have a point in common
and, for every value of 4, N, contains a point #, on C, and a point y,
on C, and, except for these two points, N, lies wholly in I. There
exists a sequence of . positive integers Myy g, My . and two points X
and ¥ such that (1) X lies on C, and is the sequential limit point
of the sequence z,,, #,,%,,,... and Y lies on 0, and is the sequential
limit point of the sequence y,,, ¥u,, Yoy, .- (2) all of the points =, lie
on one of the two ares of €, from z, to X and in the order

the farther condition is satisfied that every infinite subsequence of the sequence
K, K, K,,... has the same limiting set Ko, then Ko is said to be the se-
quential lumtzng set of the sequence K, K,, K|,

1) Cf, R. L. Moore, Concerning contmuoua curves in the plane, Mathema-
tische Zeitachrift, vol. 15 (1922), pp, 264—260.

*) In referring to the first or last points of & set on an arc %y, the order from a
to y is implied,
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Loyy Bag Ty X and all of the points y, lie on one of the two ares
of C, from Y», to Y and in the order y,,y., ., .. Y.

The limiting set N, of the sequence N, N, N,,... is con-
nected !) and contains X and Y. It thus contains a point on every
circle concentric with and lying between C, and C,. Let the radius
of C, be denoted by », and suppose % is a number such that

n—r210n>0 and r,>2

Let C; and C, be circles concentric with C, and with radi{ r,+7
and r,—n respectively. The set N, contains a point Z, on G,
and a point Z, on C,. Since M is connected im kleinen at Z,
and Z,. there exists a positive number J such that every point
of M within a distance d of either Z;, or Z, can be joined to that
point by an arc of M every point of which is within a distance %
of Z, or Z, as the case may be. There exists an inieger », such
that N, contains two points p, and p, such that

dp, Z,) <6 and  d(p,, Z,) <6
Then p, can be joined to Z, by an are U, of M and p, can be

joined to Z, by an are U, of M such that every point of U, is

within a distance  of Z;, and every point of U, is within a di-
stance 7 of Z,.

The arc U,(i = 1,2) has at least one point in common with N,
for ever j 2= k. The urc U, has a last point L, in common with N, "
The subare L, Z of U, bhas a first point F,; in common with N, »
and the are F\,Z, of U, has a last poiut L, in common with N,
Continuing we hawe, for each ¢ and j (i=1,2; j=1,2,3,.. ),
the subare L, .Z; of U, has a first point Fj in commo with N,,
and the subarc Fj;Z, of U, has a last point L in common with N, .
For every j, the are F, L, ,,, has vne end-point on N, . and the
other on N, apbmt and no other point in common with either are.
Then the ares K Ly, of Th, Ly, Liy,s of N,y Lo Fp
of Uy and F F;y of N, " form a simple.closed curve .J; which is
of diameter greater than 6% since U, lies in the interior of a circle
of radius r, 4 24 and U, lies in the exterior of a concentrie circle
of radius v, — 29>=7r, 4 8.

W 7. Janiszewski, Surles continus ivréduciibles entre deux points, Journal
de I'Ecole Polytechnigue, Ser. 2, vol. 16 (1912), p. 98, Theorem 1,
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Since for i=fj, J; and J; are different simple closed curves,
M contains an infinite number of simple closed curves of diameter
greater than 67. But this contradicts the hypothesis that A is an
almost simply cyelic continuous curve. Therefore every closed and
connected subset K of M iz a continuous curve.

Theorem 3. Every connected subset of a simply joined continuous
curve in arc-wise connected.

Proof Let K be any connected subset of a simply joined
continnous curve M and let 4 and B be any two points of K.
Since M is a continuous curve there exists at least one simple
continuous are of M from 4 to B and by hypothesis there are
not more than a finite number of these ares. Let C,, G,,... G, be
the set of all arcs of M from 4 to B. If any are of this set lies
wholly in K our theorem is established. If not, then each arc C,
must contain a point P, which does not belong to K. But M—
— (P, + Py+...4+ P) iz an open subset of M and 4 and B lie
in a connecled subset, namely K, of this open subset. Therefore
M— (P, P,+...4 P.) contains an arc C from 4 to BY). But
as C contains no one of the points P,, P;,... P, it is different from
any of the ares of the set C,, C,,... C,. But this is contrary to the
hypothesis that this set contains every arc of M from 4 to B.

Theorem 4. Every closed and connected subset of a simply joined
conbinuous curve is a continuous curove.

This result is a consequence of Theorems 1 and 3.

Theorem 5. A simply joined continuous curve is almost simply
eyclic.

Proof. Let M denote a simply joined continuous curve. Sup-
pose there exists a positive number ¢ such that M contains an
infinite set J;,J;, J;,... of simple closed curves each of which is
of diameter greater than & For each i, J; contains two points A,
and B, such that

d(4,B) > =

There exists two points 4 and B and an increasing sequence of
integers n,7,,7;,... such that 4 is the sequential limit point of
the sequence 4, 4,,4,,... and B is the sequential limit point of
the sequence B,, B,, B,,,

*) Cf. R. L. Moore, Concerning continuous curves in the plane, loc, cit,
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Case I. Suppore that [J,] contains an infinite subsequence
Ji1s ey gy (8>, Jyy=1J, and Jj;==J, , then k> m) such
that each curve J;, contains both A and B By hypothesis M con-
tains only a finite number of ares C,, G, G;....C, from 4 to B
such that no two have any points in common except 4 and B.
Let L; denote the set 5 C.. The set L, contains only a finite number

fmml
of simple closed curves so there exists an integer », such that
for iZ>r, J,, contains at least one point not in L,. Then J,,,
contains a point p, not in L,. On the are Ap, B of J;, let x, be
the first point of L, on p, 4 and y, the first point of L, on p, B.
Suppose x, belongs to C, and y, to C,, s and # being not neces-
sarily different but if s, = #, then we will suppose the order 4, y, B.
Let C,,, be the arc formed of Az, of C,, 2, p,y, of J;, and y, B of C,.

Continue this process with IL,,, in place of L,. In general the
set L., , contains only a finite number of simple closed curves.
Thus there exists a number 7, such that if j = », then Jj; contains
at least one point mot in L, ,. Then J;, contains a point p, not
in L, 4. On the arc Ap, B of J,, let z, be the first point of L.y, ,
on the arc p, 4 and y, be the first point of. L, ; on p,B. Sup-
pose #, belongs to C, and y, to C,. If s, =1, then we will suppose
the order Az,y, B on C,. Let C,, be the arc of M from 4 to B
composed of Az, of C,, z,p,y, of Jy, and y, B of C,.

The set L,,, contains at least i arcs from 4 to B in M and,
since we may continue the process indefinitely, the hypothesis
that M is simply joined is contradicted.

Case II. Suppose that [J,] contains an infinite subsequence
Ja1s Jas4 Jag,--. soch that each curve J,, contains A but does not
contain B. Let K; be a circle with center at B and radius }e.
The exterior of K, contains 4. Since M is connected im kleinen
at B there exists a circle K, with center at B. such that every
point of M in the interior of K, can bé joined to B by an arc
of M every point of which lies in the interior of K,. As B is the
sequential limit point of the sequence [B, ), there exists an integer ry
such that J,, contains a point ¢, in the interior of K,. Let G
be an arc of M from ¢, to B lying entirely in the interior of K.
Let p, be the first point C; has in common with Jj, inethe order
from B to ¢;. Let C, be the arc from B to 4 which eonsists of Bp,
of C; together with either of the ares of J,, from p, to A.
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Let K, be a circle with center at B whose exterior contains J,,,.
There exists a circle K, with center at B such that every point
of M in the interior of K; can be joneid to B by an arc of M
which lies wholly inside K,. There exists a curve J, which con-
tains a point ¢, inside K,. Let C, denote. an arc of M from g,
to B which lies wholly interior to K, and let p, be the first point
least one of the two ares of J,,, from p, to 4 is not a subset of C,.
Let p, 4 be an arc of J,, having this property. Let C, be the arc
of M from B to A composed of Bp, of C, and p, 4 of J,,. Let ¢,
be the first point the are p,B has in common with the arc p, B
in the order p, to B if it is distinet from B and let #,, be the
first point the arc p; B has in common with the arc p, B in the
order p, to B if it is distinet from B, If either of the points is
not distinet from B then f,, or ¢, as the case may be, denotes
a vacuous set.

Let K, be a circle with center at B whose exterior contains
Jy,, + 5 + %, Repeat the above process with K, in place of K,
In general let K, be a circle with center at B whose exterior con-

n 2
tains Jy, 4 3 (fu_y,i 4 t,a-1), Where #; denotes the first point the
=]

arcs p,B and p,B have in common in the order p, to B if it is
distinet from B and, it not, £, 18 a vacuous set There exists
a circle K, with center at B such that every point of M in the
interior of K, can be joined to B by an arc of M which lies wholly
interior to K,. There exists a curve J,, which contains a point g,
interior to K,. Let C, denote an arc of M from ¢, to B which
lies interior to K, and let p, be the first point the are C, has in
common with J,, in the order B to g,. At least one of the two
arcs of J,, from p, to A is not a subset of any one of the arcs

C,, Gy, ..C,, and let p, A denote this arc. Let C, be the arc of M
from B to A consisting of the are Bp, of C, and the arc p, 4
of J, et

As this process may be continued indefinitely, there exist an
infinite number of ares of M from 4 to B, C,, G, Cy,... But this
contradiets the hypothesis that M is simply joined.

Case III. Suppose that [J,] contains an infinite snbsequence
Ja1sJ34,-Jgay.-. such that each curve .J;; contains B but does not
contain A.
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Case IV. Suppose that [J,] contains an infinite subsequence
JutyJasy Jys. such that each curve J,, contains neither 4 not B.

Cases IIT and IV may be proved impossible by methods similar
to those of Case II. Thus all four cases are impossible. But if M
is not almost simply cyclic we must have one of the four cases.
Therefore the continuous curve M is almost simply eyclic.

Theorem 6. A simply cyclic continuous curve is almost simply
eyclic. ’

This is an obvious consequence of the definitions.

Theorem 7. A simply cyclic continuous curve is simply joined.

This result may be proved by methods very similar to those
used in Case I of the proof of Theorem 5.

Theorem 8. Every connected subset of a simply cyclic continuous
curve is arc-wise connected.

This theorem is a consequence of Theorems 3 and 7.

Theorem 9. Every closed and connected subset of a simply cyclic
continuous curve is a confinuous curve.

Theorem 9 follows from Theorems 1 and 8.

Theorem 10. Every boundary point of an S-domain?) of a simply
joined continuous curve is accessible from the domain.

Proof. Let P be a boundary point of an S-domain D of a con-
tinuous curve S which is simply joined. Then D -+ P is connected
and is therefore arc-wise connected by Theorem 3.

Theorem 11. If & is any positive number, then a simply joined

continuous curve comtains at most a finite number of mutually ex-

clusive connected sets of diameter greater than e.

Suppose that a simply joined continucus curve M contains an
infinite set, K, K,, Kj,..., of mutually exclusive connected subsets
each of diameter greater than some positive number & Each set K;
containg two points ; and y, which are at a distance apart greater

1) A connected subset D of a continuous curve § is said to be a S-domain
if for every point P of D there exists a circle K with center at P such that the
get of all points of § which (1) lie interior to K, and (2) lie with P in a connected
subset of S that lies wholly interior to K, is a subset of D. Cf. R. L. Wilder,
loc, cit., p. 341. A point P is said to be a boundary point of a S-domain D if P
is a limit point of D but does not belong to D. -A boundary point P of a do-
main D is said to be accessible from the domain if for every point @ of the
domain there exists an arc PQ which lies except for the point P entirely in the
domain D, '
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than & By Theorem 3, eacht set K, contains an are C, from a, to y,.
But this is impossible by Theorem 4 and a theorem due to H, M.
Gehmant)

Theorem 12. If ¢ is a positive number, then an almost simply
eyclic contimuous curve contains at most w finite number of mutually
eaclusive closed and conmected sets of diameter greater than e.

This theorem is a consequence of Theorem 2 and a theorem
due to H. M. Gehman?)

1) Concerning the subsets of a plane continuous cui ve, Annals of Mathematics,
vol. 27 (1925), p. 89, Theorem V.

%) Loc cit, Theorem V.

The University of Pennsylvania, Philadelphia, Pa,
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Beweis des Satzes, dass jede abgeschlossene Menge

positiver Dimension in einem lokal zusammenhén-

genden Kontinuum von derselben Dimension topo-
logisch enthalten ist.

Von

P. Alexandroff und L. Tumarkin (Moskau).

1. Unter einer abgeschlossenen Menge wird im Folgenden ein be-
liebiger kompakter metrisierbarer topologischer Raum ) verstanden.
Eine zusammenhtingende abgeschlossene Menge heisst ein Kon-

_tinuum.

Bekanntlich ist ein Kontinuum dann und nur dann stetiges Bild .
der Einheitsstrecke 0<C#<{1, wenn es lokal (oder im Kieinen) zu-
sammenhingend ist3); (im letzteren Satze ist auch die Bedeutung
des Begriffes des lokalen Zusammenhanges enthalten).

Der Dimensionsbegriff wird im allgemein tblichen Urysohn-
Mengerschen Sinne verstanden 3).

Endlich heisst ein topologischer Raum R, in einem anderen’

1) 4. h. ein kompakter topologischer Raum in dem das zweite Abzithlbarkeits-
axiom erfiillt ist. Vgl. hierzu Hausdorff, Grundziige der Mengenlehre (Leipxig,
1914), Kap. VII, aowie P. Urysohn, Zam Metrisationsproblem (Math, Ann., 94,
8. 309) und vor allem P. Urysohn, Mémoire sur les multiplicités cantoriennes
(Fund. Math., VIi, 8, 30—137 und VII, S. 225—359). ’

1) siehe Hahn, Wiener Berichte, 123, (1924), 8. 2433, Magzurkiewics,
Fund. Math,, 1, (1920), S. 167, Sierpifski, Fund. Math. T, (1920), 8. 44, wo
gich auch verschiedene Fassungen des Begriffes des lokalen Zusammenhanges finden.
Als zusammenfassende Darstellung der ganzen Theorie des lokalen Zusammen-
banges sei insbesondere das Buch von Hausdorff, »Mengenlehre* (neue Auf-
lage, Berlin, 1927) erwihnt,

3) siche P. Urysohn's unter 1) zitiertes ,Mémoire sowie K. Menger, Monats-
hefte f. Math, u, Phys,, 33, 34.
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