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Homogeneeus operators

by
GABRIJEL TOMSIC* (Ljubljana, Jug.)

Abstract. A sclf-adjoint operator A defined on a separable Hilbert space is
called homogencous if, for every real A, the operator .4 — A1 is unitarily equivalent to 4.
Similarly a unitary operator U on a separable Hilbert space is called homogeneous
if for each ae R the operator %2 U is unitarily equivalent to U. It is proved that every
homogenceous self-adjoint operator is equivalent to the operator of multiplication
by the independent variable in the space of square integrable vector-valued functions
of areal variable. A similar characterization is given for homogeneous unitary operators.

The purpose of this paper is to present the concept of homogeneity
of operators on a Hilbert space and to give a characterization of such
operators. We begin with self-adjoint operators.

A self-adjoint operator 4 defined on a separable Hilbert space will
be called homogeneous if, for every real 1« R, the operator 4 — AI is unitarily
equivalent to 4, i.e. there exists a unitary operator U, such that

A—2I = U, AU;.
From this definition it follows that a self-adjoint homogeneous operator
A4 is ynbounded and that the realline R is in the continuous spectrum of 4.

A simple example of a self-adjoint homogeneous operator is the

operator of multiplication by the independent variable ¢ in L,(R),

1) (Az)(2) = 1 (t)

xe Ly(R). Another example, which is a slight generalization of the first
one, is the operator 4 which acts on a direct sum of copies of L,(R), i.e.
on the Hilbert space of vector-valued functions of a real variable and is
defined by the same formula (1). We will prove that these are essentialy
the only homogeneous self-adjoint operators.

TaBOREM 1. Let A be a self-adjoint homogeneous operator on a separable
Hilbert space H and let A have spectral multiplicity %, £ =1,2,...,n,
n << co. Then A s equivalent to the operator of multiplication by an inde-
pendent variable in the divect sum of & copies of L,(R). ‘

‘We can prove similar results for homogeneous unitary operators.
A unitary operator U in a separable Hilbert space will be called homo-
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geneous if, for each ae R, ae[0,2x], the operator ¢°U is unitarily
equivalent to U.

Let K denote the unit circle in the complex plane. The preceding
definition implies that for the homogeneous unitary operator U the spectrum
o(U) is continuous and equal to K.

Consider the unitary operator U in the Hilbert space L,(K) (with
a Lebesgue measure on K) defined by

@) (Uw)(e) = 2u(e)

@eLy(K), [2| = 1. The operator V,on L,(K) given by (V,2)(2) = ¢~ (c"2)
is unitary and V, UV, = ¢ U; hence U is a homogeneous unitary operator
on Ly(K). Again we can generalize this example by replacing the scalar
function # in (2) by a vector-valued function. In analogy to Theorem 1
we have

TanoREM 2. Let U be o unitary homogeneous operator in a separable
Hilbert space H and let U have spectral multiplicity &, k =1,2,...,n,
n < oo, Then U s equivalent to the operator of multiplication by the indepen-
dent variable z (|2| = 1) in the direct sum of & copies of Ly(K), where K is
the unit circle in the complex plane and the measure in K 4s a Lebesgue
MEASUTe.

The tools we need to prove above theorems are: the theory of spectral
and ordered representation of unbounded self-adjoint and bounded normal
operators ([1], Ch. XTI and Ch. X) and the theory of quasi-invariant
measures ([2],[4]). We use the same notation as is used in [1]. We frequent-
Iy refer to Definition XIL.3.4 in [1].

We algo introduce the notion of  quagi-invariant measures [2].

DEFINITION. Let G be u locally compact (compact) commutative topolo-
gical group. A regular Borel measure u defined on G is called quasi-invariant,
if for every measurable set D <@ for which u(D) =0, p(—x+D) =0
for each ze@.

LevwA 1. If the finite positive mom-zero regular Borel measures u
and o on B are quasi-invariant, then u ~ o.

Proof. We will prove that u and ¢ are equivalent to their convolution
pxo. Let u and o be finite Borel measures on a locally compact group;
then their convolution p*p is defined by

(w*0)(D) = [ u(—t+D)de(s) = [ o(—t+D)du(t),
Q G

where D i3 a Botrel subset of @ and te @. The convolution u*p is a finite
regular Borel measure on & ([3], [8]). Far our purpose G is the real line
and the group operation is addition. )
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Now (cf. [4]) we take a Borel set D = R such that u(D) =0, and
form the convolution

. ¢«

(wxe)(D) = [ p(—t+Dyde(t).

—~00

Since u is quasi-invariant, u(—t+ D) = 0 for every te R. Then (ux*g)(D)
= 0 and it follows that the measure u* g is absolutely continuous with
respect to u.

Let us choose a set D < R such that (u#g)(D) = 0, ie.

o

J #(=t+D)dett) = 0.

—o0

Then p(—t+ D) = Oa.e. [¢]and hence there exists a t, such that u( —t, + D)
= 0. By quasi-invariance we have u(D) = 0. We have thus proved u*po
=~ ¢. In a similar way we see that o = u%* g, hence u =~ .

Levua 2. The measures uy, of the ordered representation corresponding
to the homogeneous operator A are quasi-inveriant.

Proof. For ¢ = R and i¢ R denote by e+ 4 the set e translated by 2.
First we prove that u is quasi-invariant. To begin with, notice that the
spectral measure ¥ of operator 4 is quasi-invariant, i.e. B(e) = 0 implies
H(e-+A4) = 0 for every e R. Indeed, since A and A -AI are unitarily
equivalent, ¥ is equivalent to the spectral measure &, of 4 —AI. Hence,
if E(e) = 0, then H;(e) = 0. But E,(¢) = H(e+ 1), which proves our claim.

Notice now that u = u, (see Lemma X.5.8 of [1]). In other words,
the element @; of H cotresponding to x, is maximal. Now, if u,(e) = 0,
then py,(e) = 0for k = 2, 3, ..., which implies that H(e) = 0. It follows that
E(e+2) = 0 and consequently u(e-+2) = py{e+2) = (Ble-+A)wy, #,) = 0.

Let ey, k =1, 2, ..., be the multiplicity sets of the ordered represen-
tation relative to 4. Fix a A¢ R. Define Borel measures », by

(8) ele) = p(en (A4 ey))-
Denote

Hy= Y ®L(wm) and H, = D@ L)
k=1 k=1
By .Theorem XTI. 3.16, [1], to the operator 4 corresponds in the space
H, the operator of multiplication by ?, and to the operator 4 —AI the
operator of multiplication by t—A. Define a map V: H,—~H, as

V(wl(t)i @, (1), ) = (ml(t—}-}.), @y (E+2), )
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‘where (ml(t), @y(t),...)e Hy. V is an isometric isomorphism:

IV fo (O} = [ (6 + M} = 2 [ e (8 )1 (1)
k=1 B
Z [ lop(t+ 2)rap(t) 2 [ Im(m)rau ()
k=1 ep+2 k=1 ey

o

=3 [ I (0Pdun(s) = o)l

To the operator A — AI corresponds in the space H, the operator of multi-
plication by t:

V(E—2)[V 7 y100), 9208)s --)] = VE=D[92(t—2), 9a(t—2), ...]
VIE—y(t—2), G—Aya(t—2),...]
= (t?h(t): Ws(t), )

From the above fact and definition (3) it follows that H, is an ordered
representation of H relative to the A4 —Ail.

The operator 4 is homogeneous, and hence unitarily equivalent
to 4 —AL. To unitary equivalent operators correspond equivalent ordered
representations (cf. [1], Def. XTI. 3.15). Hence we have u; = ;.

Let ¢ be a Borel set with u(e) = 0, i.e. u(ene,) = 0. Since y;, =~ %,
v(e) = ulen(A+e,) = 0. Since g is quasi-invariant, ,u((en(l—l—ek))~l)
=0. But (en(A+e))—i = (e—A)ne,. Hence u((e—Ai)ne,) = mle—7i)
= 0. Thus from y(e) = 0 it follows that u,(e—A1) =0 for every Fk, ie.
the measure g is quasi-invariant, as was to be proved.

Let the measure g be defined by do = dz /(14 2?); o is a positive finite
regular quasi-invariant measure. It is easy to see that the measure p and
the Lebesgue measure m are equivalent, ¢ o~ m. From Lemmas 1 and 2
follows that uy;, =< ¢; hence p; = m for all k.

Proof of Theorem 1. Since u; =~ m, by the Radon—Nikodym
theorem there exists a positive funection 7(f) integrable on every finite
interval and such that

du, = h(3)ds
Algo,

b = 1/h(t) A,
Define V: Ly(uy)—>Ly(m) by

(1) = m(t)l/m,

h(t)e L.

@ (%) e Ly (uy). This map is obviously an isometric isomorphism between
Ly () and Ly(m). Evidently 4 = UAU! is equivalent to the operator
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of multiplication by ¢ in Iy(m):
(VAT y) (1) =ty (),

y(t)e Ly(m), which completes the proof.

The proof of Theorem 2 is similar to the proof of Theorem 1. Unitary
operators arc bounded and normal, and hence the theory of spectral and
ordered representation ([1], Ch. X.5) applies. There exists an isometric
isomorphism of the Hilbert space H onto Y@L, (u;), where uy are positive
regular measures on the circle K. If we replace the locally compact group
E by the compact group K, Lemma 1 is also valid. Every measure cor-
responding to a homogeneous unitary operator is quasi-invariant, which
can be proved in the same way as in Lemma 2. From these results it follows
that every quasi-invariant measure defined on K is equivalent to the
Lebesgue meagure on K. Now we can complete the proof of Theorem 2
in a similar way to that followed in the case of homogeneous self-adjoint
operators.

Acknowledgement. The author wishes to express his sincere thanks
to Professor I. Vidav who suggested the problem and closely attended
the work. He also thanks the reviewer for his helpful suggestions.’
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