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Integration of evolution equations
in a locally convex space

by
V. A. BABALOLA (Iba-dan, Nigeria)

Abstract. Let H = H(R™) be the space of all real-valued functions in (% (R™)
having every partial derivative in L, (R™) and topologized by the seminorms defined
as follows:

> [ p¥g()ra)t,

v]=0 R™

pile) = ( peH, i =10,1,2,...

Let A De an elliptic differential operator with coefficients possessing bounded deriv-
atives of all orders. This paper solves the Cauchy problem for the system:
ou (£, t)
73
w(0,1) =f(t),

= (du)(&,8), &> 0,teR™,

FeH, teR™,

1. Introduction. The present paper is a follow-up to [2], and its
knowledge is assumed here. Let 2 be an open subset of a Euclidean space.
For convenience we shall denote by 0% = 0*(2) the space of all infinite
times continuously differentiable real-valued functions on 2 and by
CF(Q) the space of functions in 0*(2) having compact support in L.

Now let A Dbe the partial differential operator of 2nth order in
m-dimensional Euclidean space- R™ given by )

n

(L) A= (=1 Y DO, (D",

lel, [v=0

where the coefficients a,, belong to C*(R™) with bounded partial deriv-
atives of all orders. We assume further that a,,(?) = a,,(t) for |o| = |¥]
= n-and there is a constant & >0 such that

- ¥,
(1.2) DTG A N SN
lel=]|=n F=1

for each (fy,...,%,)eR™; so that A4 is an elliptic differential operator.
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Let H = H(R™) be the space of all functions in C°(R™) with every
partial derivative in L,(R™) and denote by H also the topological vector
space obtained by imposing the topology determined by the set {p;: = N}
= {p,: aex} of semi-norms on this family of functions, where

ple) =( Y [1ID90Pay”, peH.

. \7|=0 R .
Note that H is a Fréchet Space.
Tn this paper we prove the following theorem:
1.4 TerorEM. The Cauchy problem for the equation

(1.5) 0¢
u(0,8) =F(1),
is solvable in the following semse: For amy given feH the equation (1.5)

admits a solution u = w(&, 1) =u(§, 15 )eC%((0, o) X R™ satisfying the
following : :

G)  w(E+n,t ) =u(E 1 um, 5 5)

(1.3)

—(Au)(E,), >0, 1eR™,

IeRm,

(E,7>0 and i eR™),

(i) w(&, .;f)eH  for each £>0,
(iii) enr%_u(as,.;f) =f(-) in H.

Moreover, the solution u(&,%;f) satisfying (i) and (i) s wnigquely
determined for feH. .

2. Preliminaries.

91. Notations. For each non-negative integer 4,

@) (g, vh= Y [DOpnDIp(nd;  for all g, peH =H(R)
v =0 R™

and i=0,1,2,‘.“. ) .

(2) H,is the pre-Hilbert space formed by Hunder the inner product (1).

(3) H;is the completion of H; with respect to the norm |-[l; = p;()-

Indeed the p’;s are norms on H. Hence, under the topology ind{wed
by p:(.), the normed linear space formed Dby the elements of H/p;*(0)
can and will be replaced by H; in the sequel. Whenever necessary fi(=5hH
will denote an element of H; seen as a coset. Note that the operator 4
defined by (1.1) with domain H and range in H has the property that the
linear operator A;: H;— H; defined by

) Afy = (Af)
is woll-defined. For, cleaily, f; =¢; in H; =f(1) =g¢() = A(f—9)(1)

fieH;

icm
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i
=0= 3 [IDVA(f—g)(})Fdt = 0 = (Af—4g); =0 = (4f); = (4g)

v]=0 B™ -
= A;f; = A;g;. Hence A, is well-defined on H;. Observe that 4, is effec-
tively the operator 4 taken as acting on the normed linear space H; into
itgeld. ‘
We define the adjoint A* of 4 by
n
A = —(—=1) (—1)le+" DO g (1) DO,

lel,l»[=0

(2.2)

Note that feH ean be approximated by a sequence of functions in O (R™)
(cf. [4] page, 58). Thus, since (a) the inner product (-, defined by 2.1(1)
on H x H is continuous, (b) 4* is continuous on H and (e¢) by partia
integration (Af, @), = (f, 4% p), for all Oy (R™), it follows, in the limit
that

(2.3)

(Af7 o = (f; A*g)o for all f, geH.

Similarly
i i
(2.4) ( Z (—1)" D® DW 4f, g)o - (f’ Z (—1)"’"A*D(")D(")g)o
[7=0 17i=0 :
for all f, geH.

Extend the inner product on H; by continuity to H,. Still denote
the extension by (v, w); for all v, weH; and the corresponding norm by
IIll;- Sinee CF(R™) is ||.||;-dense in H, the following is immediate.

2.5. LEMM. Let f, geH;. Then (f—g, ¢); = 0 for all peOF (R™) implies
f=g¢in H;.

We now state a suitable form of Gérding’s inequality.

2.6. LEMMA. Suppose the differential operator

J
(2.7) A =(=17 ) DPa,(1)D"
18l,171=0

’ defined on H into H satisfies the following: .

(L) The ag,’s are funciions in O°(R™) with bounded partial derivatives
of all orders.
(@) gy (1) = ayp(t) for Iyl =18l =
(3) There cwists a positive consiant & such that
m

gy ()M . 1 G > Eo(zt%)
1Bl=ly|=F i=1

for all (tyy ...y tn) e R™ (that is, “A is strongly elliptic).

i

2 — Studia Mathematica L.2
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Then there ewist positive constants ¢ and O such that

(Af, o= clfIF—CIfI}
Proof. By [1], Theorem 7.6,

(2.8) for all feH.

(2.9) Clills

for all peCP (R™). This elass of functions is dense in H. Hence, for any
feH, there exists a sequence {g} < Oy (R™) such that hmtpk =fin H.

(Ag, 9)o = cllgli —

Now observe that the operator A the norms |||, I Ho are continous
on H and the inner product (-,), is continuous on H x H. Henee, by
taking ¢ = ¢, in (2.9) and letting k - oo, we obtain the lemma.

9.10. COROLLARY. Let A be the differential operator defined by (L.1).
There exist positive constants ¢; and C; such that if A > C; then

(@11) (X (~UPDODIGI-4), f),

Iy!=0
=(f7 2(

71=0

1)1 (AT — A% (V)Dy)f) 1 f s

for all feH. Further, for each positive A, there exists a positive constant
K, ; such that

(2.12) !( j} (—1)" DY DD (31— A)f, g)n‘

¥|=0

SIIE

7|=0

1AL — A*)D(")I)(V)g)‘ B, il f s 19l

for all f,geH.
Proof. The equality in (2.11) is true by (2.4). It is easy to show that
i
the differential operator ( —1) 2 —1)" D DW A satisties the hypotheses

of Lemma 2.6. Thus there ex1s1: positive constants ¢, 0; such that

—1)" D9 DO AF, f) > eillflhs—Gillfly  for all fe.

—(i(

lv|=¢ 71=0

1)"11D(‘)D(7)Af,f)
0
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for all feH. Thus

i

(2.13) ( (-

7|=0

1M DI D (I A)f, f ) Gll flfes+ A —C I
for all feH. Therefore, provided A > C;, we have

i
D (—)M DDV QI A)f, ) > elfiliss

lvi=0

(2.14) (

for all feH, and (2.11) is true.
Bach (;)D(ﬂ) a5, is bounded. Hence (2.12) follows as a consequence
of the Schwartz inequality and the corollary is proved.

3. Proof of Theorem 1.4. We would have proved Theorem 1.4 if
we had shown that the differential operator 4 with domain D(4) = H gen-
erates an L (H)-operator semi-group of class (Cy,1). For this purpose
we shall employ a variant of a technique of Yosida ([4], pp. 413—416).

Tt is clear that the linear operator 4 with D(4) = H is continuous
and therefore closed in H. It is also clear that D(4) = H is dense in H.
We have already noted that 4; = A: H; - H; is well-defined. Now to
show that A with D(4) = H genérates an L, (H)-operator semi-group
of class (Cy, 1) we still need, according to [2], establish the following:

[ (i) For each i, 4, is closable in H.

(i) For each i, there exist positive numbers o;, M; such thab

the Tosolvent R(%; A;) of the closure A; of A, in H; exists
for all A >o; and

(LR (A; AT <

We first take up (3.1){).
3.9. LemMA. The linear operator A; = A: H; — H,; is closable in H;.
Proof. Let {f} =« D(4) = H; < H, be such that 1111:1 Iifill; = 0 and

11m\|_/11f,c—q1|, =0, gef;. It remains to show that g = 0 in H; to prove

(3.1)

(A—e)™® dforall A>ogand k=1,2,...

the lemma. Now for any q750°° (R™),

(3:3) (Aefi o) = ‘ Z ()" DV DI Afyy )
i
- (fk; Z (—1)" A;‘D("’D(V)tp)o
l7{=0

for all k =1,2,... and @eC®(R™). Note that the inner products (-, );
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and (), are continuous on H; x H;. Hence, passing to the limit in (3.8),

we have

(0 5" —1)" 4F D D» ) = 0.

Iv|=0
Hence, by Lemma 2.5, g = 0 in H;. This proves the lemma.

To establish (3.1)(ii) we need a few preparatory results.

3.4 LmMA, Let a positive number A; be so chosen that Corollary 2.10
48 valid for A= 2;. Then, for any feH, the equation

(9, 0% =

(3.5) M—Auw=Ff, (A=4),
has a solution uy,eH, ., 0 C™ in the sense that
(3.6) (AT —A)uss, 9) = (£, 9);  for all p<CF (R™).

Moreover, ty, is unique in IE_I,IH n C™.

Proof. Observe that AI —A4 is strongly elliptic. Define a bilinear
funetional

By s(u,0) = ( 5’(—1)“1(/11 4 DIDVa, o)
Ivl 0

for all 4, veH. From Corollary 2.10,

(B (1, 0)] < Ky lwflorillollngs = o llulfh -

Henee we may extend B, ;(u, v), by continuity, to a bilinear functional
B“(u v) defined for u, /ueH,m and such that

(3.7)  1Bui(u, v)| < Ky lllnsri ol > o llulp s

The linear functional F,(u) = (u, f); defined on H,,;, is bounded sinee
!(u il < lleells 111 <5 el fl[, Hence, by the Riesz representation theorem,
in th.e Hilbert space H,,;, (see [4], pa.ge 90), there existis a uniquely de-
termined v = v(f)eH,; sueh that (u,f); = (u, 0(f))pys for all weH, ;.
Thus, by the Lax-Milgram theorem ([4], page 92),

(%, f) = (“’a ’U(f))n-(--i =B,; (’“; Sa,i”(f))
where 8, ; is & bounded linear operator from H,,; onto H, ;. Let {0} = H
be a sequence such that I}im]]'uk —8,:%(fllnss = 0. Then for we (P (R™) < H,

and B ,(u, u)

and B (u,u)

for all ueH, .,

El,i (’U', S:.,»;’U(f)) = limE“(fu, Vr)

=0

=HmB, ;(u, v;)
J—o0

<

= lim (=LY (AL — A*) DW) PPy, z»k)
Ic~>r>c. 171=0 0
=( Y (-1"(I— 4% DA DO, 8,0(f))

|¥[=0 ’ 0
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so that
()= (s X (=" DV D),
ly|=0
%
= ( S (—1)71 (2L — 4% DV DA, 8y 0(f) ),

I7|=0

for all %<0 (R™). Henee by the strong ellipticity of (Al —4) and by the
fact that feC®(R™), we see, from the Weyl-Schwartz theorem ([3], page
136), that uy, = Shu(f)eHnH is a solution in C°(R™).

The uniqueness of such a solution % = uy; of (3.5) is proved as follows.
Let a funetion ucHn s N C% satisfy Ju—Auw = 0 in the sense of (3.6).
Thus Aw = JueH,,; N € and so the expression (Au—du, u); is defined.
and has value 0. As a consequence of Corollary 2.10, there exist C;, ¢; and
K, all positive sueh that 2> C; implies

4

(>

17]=0

Kl = (Gu— Au, w); = —~1)" D® DO (Jas — Auy, 'M«)D N 7]

for all weH. This means. that (21 —A4)-,); is an equivalent norm in Hy,;.
Thus taking {u;} = H such that limlju—ul,.; = 0 gives
. Fe—>00

0 = (Au—Au, u); = lim (luy,

koo

——A-'"’]c: uk)i 2 Gi”u’”i—!—i'

Hence |[#l]yq; = 0, that is, 4 = 0in H“,W- N ¢*. We have prbved the lemma.

3.8. COROLLARY. For each i, a positive constant o, exists such that for
any feH, the equation

—Aw =f, (A=),
admils o uniquely delermined solution wu = wupeH, s 0 0% in the sense of
Lemma 3.4, Moreover,
(3.9) flugls < (A= o3) " Iflls -

Proot. It is clear from Lemma 3.4 that if 1 > ¢; > C; then the solution.
u = u, existy in the sense of (3.6) and is unique. We now obtain the
estimate (3.9). The inequality (2. 13) implies

)1 D DO (AT — A)a, u)o = (A—0)|lull;

[
(3.10) (Y=

17{=0
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for all ueH and A >C;,. N .
inequality, i~ Now, for each weH, we have, by the Schwartz

7

[( > (1) D% o (31 —A)yu,u )O’z

Iyj=0

(3.11)

1

<( X [ip0ar—ajupa)( [100u(ea)

I7'\=.0 RM™ R
<[ 2 Jour=agra)( 3 [10ora)

= [[(AI — 4)u[Rllulf.
Combining (3.10) and (3.11) gives
(3.12) WAL —A)ull; = (A—C))lull;  whenever ueH.

Since the solution u = u A
o he = U = Uy eH, ;N C® of (3.5) is approximate
in 1” l‘l,? w-norm by a sequence of functions in H and since th(;:p Iliorm i j]i] Cd.
§ larger than the norm |[-|;, we obtain, passing to the limit, o
ledls < (A— o)~ if:
which concludes the proof.

3.13. CoROLLARY. The closure A, in H,
RY. los ; of A; in H,; possess
the resolvent R(A; A,) defined on E; into 1ﬁ ; suci I:hwt o k=

(3.14) z

Az oy

LR A)T<(A—o)7, k=1,2,...

Proof. Let feH. Now (1I—A)feH. Set (AI—A)f =g. Note that *

i «H is unique. If 1> o, thgn as a consequence of this uniqueness and
emma 3.4, the map f — ¢ 18 one-one from H onto H. Thus if we set
f =R(1)g, then R(J) is a linear opsrator from H onto H. Now ‘

(3.15) (ML—A)R(A)g =g for all geH.

'Furf.he'rmore, consider .R(l)(ZI —A4)g, geH. We have just seen that geH
implies that there exists heH such that R(1)h = g. Hence we hs
R()(AL—A)R(A)h = R(M)h = g¢; that is, e
(3.186)

RBAYAMI—A)g =g for all geH.

Now by Corollary 3.8

IRl < (A—0)igll; for all geH.

Thus R(1) is a continuous linear operator on H, onto H,. Hence it is

uniquely extensible to a continuous linear operator &;(1) on H, into
1 i
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H, such that
(3.17)

By Lemma 3.2, A=A is_closa.bl_ej in H;. Its closure is denoted by 4;.
Since H; is_!l-]li—dense in H, and R;(1) is continuous on H; we see that,
for any geH,, there exists a sequence {g} = H,; such that |lgz—gll: = 0
and || B;(A)g—B;(A) gl — 0 as T —> 0. Clearly {B;(\)g} = D(4;) and
A, being closed in H;, we have, for any ged;,

I R4 gl < (2= o) gl ~ for all geH.

(A — A B(2)g = lim (I —Z;) Bi(2) g, = Lim (Al — A) B(A)g, = limg,, =g
Je—>00 k>0

Je—00
in the topology of H, (consequence of (3.15)). Similarly,
B(A(AI—4)g =g for all geD(4)).
Thus R;(4) is the resolvent E(4; A,) of A; over the space H;. Moreover,
(3.17) gives :
IR (25 Al < (A— o) gl
from where it follows that
[TR(A; ATl < (2—0i)7"

This proves the corollary.

We have thus established (3.1)(ii). It follows that the differential
operator A: H - H, defined by (L.1), is the infinitesimal generator of
an L, (H)-operator semi-group of class (Cy, 1) and thus Theorem 1.4 is

established.

for all geH; and 4> o0y,

for all 2>0; and k=1,2,...
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