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Weak type estimates
for the Hardy-Littlewood maximal functions
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Abstract. In this paper we give sharp estimates for the weak type constants
for the Maximal Operator of Differentiation. This is done in the case of one parameter
m-dimensional parallelopipeds as a differentiation basis. The dependence on the
parameter is asked to be more general than the usual monotonic one. '

Introduction. The purpose of this paper is to improve and to extend
results which have been obtained by Cotlar in [3] and [4]. These results
are going to be used in [1].

1. Statement of results.

1.1. R(z,t) will denote an m-dimensional rectangle having edges
parallel to the coordinate axes, centered at the point # and edges given
by ki), § = 1,2, ..., m. Here k;(#) will denote the edge length correspond-
ing to the #; axis. The functions h;(¢) are assumed to be continuous
and non-negative and sytisfying the following conditions:

(1.11)
here k; depends only on j and %; >0, j =1,2,...,m,

(1.1.2) Ty() >0, t> 05 y(0) =0, j =1,2,...,m,
(1.1.3)

1.2. By f*(#) we denote the maximal function
Y

Gty = Ry hy(t) = (), § = 1,2, ..., m,

Iy (t)—>o00, as t—o00 for j =1,2,...,m.

(1.2.1) sup
>0

w
= | fiu
/‘(R(w’ t)) RGA
where R(z,t) aie rectangles under the conditions of (1,1), x is a non-
negative c-additive measure defined on the Borel subsets of R™ and f
is any p-measurable and w-locally integrable function. In the same way
we define »*(@) for any c-additive measure defined on the Borel subsets
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of R™, having bounded variation there

(1.2.2) v[B(z, t)]{-

1
sup | s |
o | nlE@ 0] )

TuEoREM 1. Under the conditions of (1.2), the maxtmal function satisfies
the following inequalities:
i) if fe I, (R™) then
‘7“‘m'” [2 4logy(k;+1)]
p{B(f* > 1)} <

1F1 @,

A zm
i) of the total variation V(v)(R™) is bounded then

m

2mm! [ [ 12 +logs(ly+1)]
w{B* > )} < =1

; V)R,
iwhere the Ty are the constants defined in (1.1.1) and log, S denotes the loga-
rithm on basis 2. Here the symbol B (f > 1) denotes the set of points © where
flo) > 2.

2. The basic lemmas.

21. LeMMA 1. Let Q5 j =1,2,...,%k be a family of cubes in R™
having edges parallel to the coordinate axes. Suppose that for ¢ > j the center
of Q; does mot belong to @; and k-1; > 1, (k = 2), where I; and I; denote respec-
tively the lengths of the edges of Q, and Q).

Then every xe R™ belongs to at most

2[(2™ —1) (1 +log, (k)] +2™
different cubes.

2.2. LEMMA 2. Let {R}}; j =1,2,...,k, ... be o family of ;rrL—dimaf)z-
sional rectangles having edges parallel to the coordinate axes. Suppose that
Jor ©>j the center of R; does mot belong to R; and there ewist constamts

kyy Boy ooy Ky such thait:
ko B>%, s=1,2,...,m,

where I denotes the length of the edge corresponding to the z, awis of the
rectangle R;.

Then, every x in R™ belongs to at most

m
2mm! [ [ [1+1og, (% +1)]
j=1
different rectamgles.
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2.3. Lemwma 3. Let 8 be a bounded set in R™. Suppese that for each
xze S there ewists o non-degenerate rectangle R(x) centered at x under the
conditions of (1.1).

Then, there exists a denumerable family subfamily {R(x,)} such that:

i) UR(z,) > 8.

il) Bach x< R™ belongs to at most
2mm!n [2 +log, (L +%;)]
j=1

different rectangles.

3. Proof of Lemma 1. Let 2, be a point belonging to the. eubes
le y -y Qg . Without loss of generality we may assume that z, is the
origin, and in order to simplify notation let us write Q; instead of Qa;-
Among the @; consider the subset of cubes Qs Qh , ... such that ‘bheu*
centers are located in RY. Consider the length 1; of the first cube whose
center lies on R7T and let us introduce an zmxihmy cube @, defined by:

(3.1.1) 0w, <y, s=1,2,...,m.

Then, clearly @y = ¢;, and since no center of @j,» § > 1 is contained in Q;,
there is at most one center in @,. Consider now the set of 2™ —1 cubes
adjacent to @, with edges of length 3l;, and lying in RT.

In each of the adjacent cubes there is at most one center. In fact,
suppose that in one of the cubes there are two centers O, and O’ji. Then,

for some 4, 1<i<m

Where x;[0; ] designates the 4th coordinate of Cy,. 8o, I;_and ;
than 1; emd gince

, are bigger

[ar [Gj 1—a, [Oj < %ljl

for r =1, 2,...,m; it means that 0, lies in @;, and conversely, which
is a contradiction. Consider now the auxiliary cube ¢, defined by the
inequalities:

According to the preceding reasoning at most (2™ —
in Q.

Now we shall be concerned with the family of cubes with centers
not on ¢,. Consider now the 2™ —1 cubes adjacent to ¢, such that their
edges have length ;. As in the preceding reasoning there is at most one

1)+1 centers are
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center in each adjacent cube. Notice that here the role of @, is played

by ;.
Call @, the cube defined by
(3.1.2) 0< <2y, ¢=1,2,...,m.

According to the preceding reasoning there are at most 14 (2" —1)4-
=4 (2™ —1) centers in @,; that is 1+ (2™ —1) in @, and (2™ —1) in Q, ~Q,.
As before, we consider the 2™ —1 cubes adjacent to @, having edge length
2l; and contained in RY'. Again, each one of the adjacent cubes contains
at most one center.

The induction is now clear; we have constructed Qq, @y, ..., @,,
here @, is defined by
{0 <2 ;5 1<i<m).

Q, contains ¢,_, and its 2™ —1 adjacent cubes having the same size. So,
there are at most 1+5(2™—1) centers in ¢,. Recalling the fact that
ljr < TM,I, every center lies in the cube @ defined by:

0 <, <k .

Then, if 23"11,-1> k-§l;, (that is, s> logyk), @, contains @. It can De
readily seen that in R there are at most 1+ (L+log,k)(2™ —1) cubes
containing 0 = z,. By a symmetry argument in R™ there are at most

27 [L+ (1 +log, k) (2™ —1)].
This finishes the proof.

4. Proof of Lemma 2. For m = 1 is the preceding lemma. We shall
prove it for m =2 a typical case.
Ag in the preceding lemma, let 2, be a point belonging to By, Ry,

Rd‘, .

’ We may assume that x, is the origin and that the centers of By,
B,y -y By, ... are in RY. Consider now the rectangle R, defined by
(4.1.1) SHolBz)y 0<y< 3,(By).

‘Clearly R, = E;, and there iy at most one center in it (that of By
We are going to define the following two families of strips. For the y-axis
we have the following strips:

8, = {(x, y);

For the z-axis

2[Ry ] <9 <¥YL,[Ry T, 3> 0).

Ty = {2, 9); 270 [Ry] <@ <2, [Ry ],y > 0).
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Every center belongs to B which iz defined in the following way:

(4.1.2) = {(z, ¥); < by 3[Ry ], 0 <k 3L,[R, 1.
On the other hand:

o )
(4.1.3) B (US)UUT)UR, it o= logyks, o> log,k,

1 1

In particular, we may choose 7, and %, to be the first integers satisfying
the inequalities (4.1.3); therefore, it will be valid also that:

(4.1.4) < 1-+logaks, < 1-+logyky

We are going to evaluate how many centers there are in each strip. Con-
gider the strip S, and the rectangles Rc’li with centers in §,; then

(4.1.8) 3L,[R1= 2L, [Ry 1.

Now, if we cut the rectangles with the line ¥ = 2721, y[Bs ], we have
a family of segments Id satisfying the following conditions:

1) (0, 2"7%,[Rqg,]) belongs to I for all &,
2) if d; < dy, then &, -length {I;} > length {I;j},
8) if d; < d;, then the center of I; does not belong to I,.

Oonditions 1) and 2) can be readily checked. Suppose 3) fails for
I,'zi,I'dj, d; < d;; then it means

(4.1.6) [2[0g,] —2[0g]l < $:(Bz);
on the other hand,
(4.1.7) ly[Cq,] —y[C,zl]l <27, [Ry ] < $1,[RG].

But (4.1.6) and (4.1.7) say that R,i contains Od , contrary to the hypo-
thesis.
For m = 1 the lemma iy valid, so in the strip S, there are at most
(14log,%,) eenters;
0

In the union |J G, there are at most (1 --log,k,) (1;{—10g2k1) centers.
1 0

By using the same argument, we see that in the union { J 7, there-are at
1

most (1-+log, %) (1 +log,k,) centers. Tn R% there are at most

2[logyky+1][logok, +1]  centers.
Therefore in R? there are at most
22]2! H [1+logsfy1-+1]  centers.

=1
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Hence it has been shown that the case m = 1 implies the case m = 2.
In general the case m —1 implies the case m. This is done by defining

the following ‘“strips”:

(4'1'8) S:C] = {(xly Bay eeny mm); 21-~2lj (Rdl) < &j < 2r—1li (Rdl)a

2,20,k =1,2,...,m}.
Cutting the rectangles centered in the strip by the hyperplane a;
=2""%1;(Rq,). We reduce the m-dimensional case to the (m —1)-dimen-
sional one and everything follows as in the 2-dimensional case.

5. Proof of Lemma 3.

5.1. Consider #f = sup{f,} where R(f,) is the rectangle associated
with #e 8. If ] = oo, we can choose a rectangle so big that S iy contained
in it and we stop the process. If f} < oo, then it is possible to find a point ,

such that the rectangle associated with i, R(f,), satisties:

(5.1.1) 2t > L), §=1,2,...,m.

If R(t,) covers § we stop the process. Suppose that R(f, ) does not
cover S. We shall consider then the sub-family of rectangles with centers
outside of R(t,). t; will be the sup{f,} such that @ ¢ B(t,). Clearly & < 17;

1y, Will be chosen so that
(3.1.2) 20y (k) > | (13)
If R(t

j=1,2,

b )V R (L) = 8 we stop the process. If it is not so, we continue.

"
If after a finite number of steps () R(f,) = S then
1

1) if @ > b the center of R(%, ;) 18 not contained in R(t, ),

2) twd\tb, thus 4 (t,) < & (tl,) < 2k;l(t,,) for j =1,2,...,m,
then we are under the conditions of Lemma 2, except for the fact that
the values of the constants are 2k; instead of 70,, In this case Lemma 3
is already proved.

If the process has a denumerable set of steps, that is, we have U B(t,,

then in this case, we have already the properties 1) and 2) of Th(\ pre(*ed
ing discussion and in order to prove the lemma, it remains to be shown
that: -
(6.1.3) Y < U B(t,).

Consider the family {R(%, )} obtained from the family {E(t, )} by contract-
ing each R(t;) about lts center in such a way that the 1ength li(t, ) is

1
transformed into —— T;( b)), j=1,2,..

.m from properties 1) and 2) we
4k; i

icm®
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have that the I?(tms) are pairwise disjoint and since they are bounded

uniformly and § is bounded, it follows that:

=~
ZEwsi<m
1

This Shows that t, —0, since k;(t) > 0 for 1> 0 and they are continuous.
Therefore, ;-0 also. (Recall that Zizj(tms)z h;(83).) Suppose that there
exists a point x such that:

(5.1.4)

@ @ R(L)

Then 1, < t for all n, therefore 7, = 0 which is a contradiction since
we have assumed that the rectangle associated with each point is not
degenerate. This finishes the proof of the lemma.

6. Lemma 3 is the key for the proof of Theorem 1, which follows by
using a standard type of argument (see for example [2], Part I, p. 126,
Lemmas 1.9 and 1.10).

Remark. Lemima 1 is a sharpened version of the corresponding
lemma proved by Cotlar (see [3], p. 59 and 60). Lemma 2 is a sharpened
generalization of the same lemma to the case of rectangles.
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