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A representation theorem for the
second dual of C[0, 1]

by .
R. DANIEL MAULDIN (Gainesville, Fla.)

Abstract. Assuming the continunm hypothesis is true and the cardinality of
ca(S, 2) is 2%, (as is the case in C* [0, 17), an integral representation of the func-
tionals, T, of the dual of ca(S, Z) is given: T'(u) = [ »du. Here, v is a real-valued

$

function defined on X and the approximating sums are of the form Zy (&) 4 (B), where
the sum is over all sets B of some partition of the space . The integral is the limit
of the approximating sums over the directed set of partitions.

Let M0, 1] denote the space of all real-valued, countably additive,
regular set functions defined on the s-algebra, B, of all Borel subsets
of the closed interval [0, 1], with the norm of a function, x, being the
total variation of 4. Let C[0, 1] denote the space of all real-valued contin-
uous functions on [0, 1], with the norm of a function f being the least
upper bound of |f| on [0, 1]. The space M[0, 1] is isometrically isomor-
phie to C*[0, 1], the first dual of ([0, 1], ([2], p. 252).

Kakutani has shown that there is a compact Hausdorff space K
such that MM*[0, 1] is isometric and lattice isomorphic to C(K) [3]. Yu
Sreider has shown [7] that each functional T in IR [0,1] can be repre-
sented as follows:

T(w) = ful)du(),
[0,1)
where f,(t) is a “generalized function” meaning a function of points ¢
in [0,1] and of measures win IR0, 1].

A. P. Artemenko [1] proved that if {u}.; = MO , 1] is a maximal
set of mutually singular measures (all measures of the form “a value
at a point” belong to which), then

1) For each measure weIR[0,1] there exist measures v, eMM[0, 1],
% < p, Such that p = ) »,.
t=1

2) For any functional TM*[0, 1] there exist functions oL (@)
such that

Tu =§’ jf,;id;z where u =§v,w and v; < fig,.
T=1 0

G=]
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The purpose of this paper is to show that assuming the continuum
hypethesis is true, each functional T in 9*[0, 1] can be represented as:

T(p) = [ viu,
: [0,1]
where v is a bounded real-valued function defix}ed on the Borel subset..s
of [0, 1] and the integral is the limit of approximating sums on the di-
rected set of subdivisions or partitions on [0, 1].

Remark. The techniques employed here can be extended to give
an integral representation of the same type of the bound(lad.. linear funct?ons
on the space ca(8, X) of all real-valued countably additive set functlon.fs
defined on a o-algebra, X, of subsets of a set 8, provided that the cardi-
nality of ca(§,Z) is 2% :

DEFINITIONS. “D s o subdivision of [0, 1]” means that D is a finitt?
collection of disjoint Borel sets filling up the interval [0, 1,] and “D
refines D’ means D’ is a subdivision of [0, 1] and each set in D" is a subset
of some set in D[ 1. If y and x are real-valued functions on B, then “the
sumber w is the integral of v with respect to p” means that if £ >0, then
there is a subdivision D of [0, 1] such that if D' refines D, then

S p(Bu(B)—w|<e.

all Bin D’

1
The integral of ¢ with respect to u is denoted by [ wdu. This is an

0 .
integral of the Kolmogorov—Burkhill type [6]. This integral is linear
in both variables. . ‘
The main result of this paper is the following theorem.
THEOREM. Suppose 2¥0 = N,. Then T is & bounded linear functi(?nal
on M0, 1] if and only if there is a bounded, real-valued funciion v defined
on B such that for each p in M0, 1], v is u-integrable on [0,1] and

1) T(u) = f ydp.

Remark. If a functional 7' on M[0,1] is defined by equation (1),
where y is a bounded real-valued function on B, then T is linear and it

is bounded, since
1

T = du| < (1w blyp(B)) - llull-

Tl =|f v u] < (L u biw(

In order to prove the converse, let {u,}oy = M0, 1] be a maximal

set of mutually singular measures. We can assume that thf: measures

are positive. Since card I = 9% and the continuum hypothesis is assumed,
n

the index set I ean be ordered into type 2. Let F = {u = 211'1-3 v < ,ua,}-
: P
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Of course, F is dense in M[0, 1]. Let TeIN*[0,1] be a non-negative

functional, and (f,)..; & sequence of functions defined by T (by Artemenko’s
characterization). Obviously, f, > 0.

For each y and e, 1<y < a< O, let B,, be a Borel set such that
4y(B,,) =0 and x,(B,,) = 0, where B, denotes the complement of B,,.
For each ¢,l1<a< @, let B, =[\B,;u(B,) =0ify<a and

y<a
Ha(By) = 0.

If B is a Borel set and there is some «,1<a< £ such that Bc B,

and u,(B) > 0, then B does not have these properties with respect to

any other ordinal number y,1 <y < £ and wu,(B) = 0. It follows that
the following function.is well-defined for each Borel set B:

(g 1D fi(B), i wm(B)>0,
g.1.b. f,(B), if B< B, and p,(B)> 0
for some a,l<a< 2,
0, otherwise.

p(B) =

The function y is a nonnegative, real-valued function defined on B
and ¢(B) < |T|, for each Borel set B.

Suppose » is a nonnegative measure and » < y,, for some a,1 < a < 0.
Let ¢ > 0 and let D be a subdivision of [0, 1] which is a refinement of the
subdivision {B,, B,} and such that if D’ refines D, then

6> T(»)— D'(g.1.b. £,(B))»(B).
&
Suppose D' refines D. If #»(B)> 0, then u,(B)>0 and B< B,.
Hence, g (g1 b. f,(B))»(B) = ¥ #(B)»(B). Thus,
o

a>lT(v)—Zap(B)v(B)‘.
+

Using linearity arguments, it follows that v is integrable for all ue#
and using eonvergence arguments, u is integrable for all ueIR[0,1].
1

Let I'(u) = [ pip for weWN[0,1]. Since T'¢ M*[0,1] and T(u) = T ()
Q 1

for ueF, we have T(u) = T(4') = [wdu for ueM[0,1].
[

The general representation theorem follows from the facts that
every bounded linear funetional on M [0, 1] is the difference of two nonneg-
ative bounded linear functionals on MM [0,1] [4], and that the integral
is linear in the first variable.

The author would like to thank the referee for his comments and
suggestions.
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On the isomorphism of cartesian products
of locally convex spaces

by
V.P. ZAHARIUTA (Rostov on Don)

Abstract. The following relation R between topological linear spaces is studied:

(X, ¥Y)eR iff every continuous linear operator T: XY is compact. The results

concerning the relation R are applied to give conditions which guarantee that the

[~ o
. isomorphism of certain product spaces .X X;and X ¥Y;implies near isomorphisms

i=1 =1
X; ~ ¥; (ie. the existence of Fredholm operators from X; onto ¥;) fori =1, 2,...,
and to establish some criteria of quasi-equivalence of all bases is product spaces X x ¥,

§ 1. Let X and ¥ be locally convex spaces (les’s) (). A linear oper-
ator I': X — ¥ will be called a near-isomorphism (mourn wmsomopdusm)
if the following conditions are satisfied:

a) T(X) is closed in ¥ and T is an open map from X onto 7(X),

b) a(T) = dimKerT < oo,

¢) f(T) = codimT(X) = dim ¥ /T(X) <oco (cf. [24])(%). The les’s X
and Y are said to be nearly isomorphic (mourn msomopdurmm) (X ~ Y)(2)
if there exists a near-isomorphism 7' from X onto Y.

In this paper we give some general conditions under which from
(near) isomorphism cartesian products of les’s X,x X, and Y,;X ¥,
there follows that the factors are (near) isomorphic (Section II), The
binary relation (X, ¥)eR defined on the set of pairs of leg’s by the con-
dition “every continuous linear operator from X to Y is compact” plaiys
a very important role here. The greater part of this paper, Sections I, IIT
is an examination of this relation. Our methods lead effectively to an
answer to the question of the isomorphism of a wide class of spaces which.
are not distinguishable by their diametral dimension: I'(X,x X,)
=I'(Y,; x ¥,) = I'(X,), ¢f. [2], [17], [21]. In particular, we give a complete
isomorphic elassification of spaces of the form X, x X,, where X; are
finite or infinite centers of Riesz scales which are Montel spaces (§13).

() We consider only Hausdorff locally convex spaces.
(2) In [24] T is called an o-map; one says also that T is a Fredholm operator
or d-operator.

() If X and Y are isomorphic we ghall write X ~ ¥.
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