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Optimal control by means of switchings
by
J. ZABCZYK (Warszawa)

Abstract. A stochastic control model is considered. A general theorem about
the optimal strategy and. the maximal reward is proved. In two special cases the
optimal solutions are found effectively.

Introduction. Let {X%,, be a finite family of Markov processes
and let non-negative functions f, ¢; (d< D), be defined on the state space B.
At time ¢ = 0, when being in a state #< B we choose a process X%. The
cost arising from thig choice is equal to ¢a,(%). We observe the process X%
and at the stopping time 7, we choose a process X%. Our reward at any
time ¢ < 7y is equal to :

i
[ Fa)ds — e ().
0

Next we observe the process X% and at the stopping time 7, > 7, we choose
& process X%, At time te [z, 7,) our reward is equal to

( [ Fioyas — o, (@) + ( f £ (i) ds — o ().

0 Ty

Suppose that we can repeat these selections N times. What is the
maximal total expected reward? Which strategies should be chosen to
maximize the total expected reward starting in some state ze BY

In this paper we prove a theorem which gives an answer to these
questions. In two special cases we tind cffectively the maximal reward
and optimal strategies. _ :

The author of this paper wishes to thank Professor B.B. Dynkin
whose questions, posed on his Seminar in Moscow, suggested the subject
of this note.

The optimality theorem. To precise the above problems we shall.
formulate the described situation in terms of controlled Markov: chains.
To do this we assume that the Markov processes X¢ are equal to (2, M,
My, X, 0,, P where only P¢ depends on d (see [1], p. 20).
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If deD and v is a stopping time (with respect to {M,}) we define
transition probabilities:
P (@, A) = Piw,eA),wc B, A a Borel subset of B,
P@N(4,{4}) =1, 4 an arbitrary element not in I,
and the reward function

799 () = 2 ( f f(ms)ds) —6y(@),

o

fe9(4) = 0.
A strategy = is a sequence

7w = (847 73) = (81, 1), (8, )y +--)

where d;, 83, ... are Borel measurable functions from ¥ u{4} into D, z,,
Ty - .. are stopping times with respect to {M,}. We define also the operators
PO by

POAF(z) — f PN @, dy)fly), weB.
y

For any strategy = and any number ¥ <. + oo we have the total expected
reward:

v = fOrT) 4 ( p(ﬂm)) f(dz-fz)+( PCN-13v-1g ... 0 p(-’m)) f(hvﬂz\ﬁ_

If the limit: lime% exists, we define
N

Ve = limof,.
N
Finally we define

Vo = SUPVT,.

vy = Supuy,

We agsume in the sequel that X% (de D) are standard processes with
the same fine topology for which the excessive functions are Borel meagu-
rable.

For the notions of standard Processes, fine topology, excessive fun-
ctions and so on refer to see [1] or [2]. We shall need the following special
cage of a theorem of Dynkin (see [4]).

TeEpoREM (Dynkin [3]). Let X be o standard Markon process and
let g be a bounded, finely continuous Junction on the state space B. Then v,
where

v(@) = s B,(g(x.), @B, v stopping time,
8 @ finely continuwous function and for every &> 0 and for v, = int {t = 0;
(@) < g(@)+ ¢} we have v(2)— e < B, (g(w, )], we B.

If g = 0 then v is the smallest excessive Junction for which v 2 g.
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Now we shall prove the following theorem:
TeBoREM 1. Let g and ¢ (de D) be non-negative Borel functions on
E u{d} for which

+o0 ‘
sup [Eﬁ(f g(ms)ds)+a,l(w)]< + oo,
xell,deD 0
holds, moreover let oy (de D) be finely continuous. Then

1° vy are bounded, finely continuous Borel functions,

Uy 20y for N=1,2,...,
and
lim'UN = Vw.
N

2° Uy (@) = sup (F™) (@) + PO vy(2)), e B,
s
8% v () = sup (4 (2) + P4, (2), ve B.
d,r

Proof. We first prove by induction in N that vy are bounded, fingly
continuous Borel functions, and that for any &> 0 and N there exists

a strategy @ = ((5,,, 7,)) such that

v%(m)}vN(w)——e for each xe E.

This is true when N = 1 because

+o0
0,(#) = max (@9 () —cz(w)), where G?g(x) = B2 U g(w,,)ds).
a 0

Suppose that the above statement is true for some N. For every strategy
% = ((8,, 7)) We have »
Oy41(0) = fOON (@) 4 (PO T (2),  weB
‘where
= ((627 72), (83 7a), )
Hence
Uiy (0) < OO (@) + POy () < sup (147 (@) + P40y (0)

and therefore
Vg € s;lp(f"’") iy G )
23
Let -
Tyaa = 5up (f& ) L POy,
d,r

Since }
Ty (@) = max [sup (B2 (vy — G%F)(@,)) + G%f (@) — 6a(2)]
d 3
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and in virtue of our supposition and Dynkin’s theorem the function
sup [Bf) (vy — 6% )(2,)]

is bounded, finely continuous and Borel measurable, thus also 7., is
a bounded, finely continuous and Borel measurable function.
Dynkin’s theorem implies again that we can find a stopping time 7
and a Borel measurable function § such that
FO@3) () 4 POE) g () > weB.

Ty (o) —e,
Thus

Ty < ’”S\(ia’r) ) 196 < Oyyy +2¢

and consequently Ty, = vy4,. Induction iy completed. Also 2° is thereby

proved.
For

T = ((67:,’ Tn)) w = ((6;, 7 >)
where (6,,, rn) = (8,,7,) for n # N and &y = 8y, iy = —[— oo, 'we have

W < vy = R
and so
Oy <Uypy, N =1,2,...
From the last inequality and the definitions we obtain
limoy = v,.
N
To prove 3° we notice that

Voo => Vg > fOD L POy,
This implies

N =1,2,..

Voo = f &L P@y_ for any d, v,
hence

Do 3> Sup [f@7) L P@Iy_1,
On the other hand *
O = SUDLFED + PO y] < sup[ 10 4 Py, ]
and hence

< sup (f(d:‘f) + Pl Do)+
d,x

Thus 3° holds and the proof of Theorem 1 is complete.

icm
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Remarks. Theorem 1 is also true if the reward function is defined by
F5* (@) = BY(4,) —cq(w),

where A = (4,) is an additive functional (see [1], p. 148) of X% with
bounded potentialy G4(4.):

G4(4,,) (@) = BYA4,,) for each de D, zek.

Dynkin’s theorern and Theorem 1 give an algorithm to calculate
Uy, Vg, +.» cODSECUtively.

Two special cases. In the sequel we shall use the notations

a>0; D={-1,1}.

X!, X' are Markov processes which are solutions of the equations
AX = —dt+dw,, dX} = dt+dw,

The states —o,a are stopping points for X, X3,

01 (0) = 0;(w) =‘

For any sequence (y,), 0 <

B =[—a,a],
in (—a,a).
¢ for z|<a, ¢>0,
0 for z| =«a.

nS a,n =1,2,... we define the strategy

7 (yp): .
w(y,) = ((6: Td.yl), (6, Tﬁ-yz)’ )’
where
5(@) = {1 for #e[—a, 0],
-1 for ze(0, a]
and

o = inf{t > 0; 4, = a, ac[—a, aJ}.

When y,, =y forn =1,2,... we put 7x(y) = w(yu)h
Theorem 2 deals with the case when the reward is equal to the sejourn
time in the interval ( — a, a) and Theorem 3 with the case when, roughly

speaking .
. 0
g(@) = | ’

+ 00,
TimoruM 2. Assume that g(@) =1 for || < a, g(®) =0 for || =a
and that 'y is a positive solution of the equation

@ 0,
@ = 0.

& — e“"”
pTny T p= = 2y —¢.
10 If 7 < a and (¢ -+6~%)"1 > 2a(6® —6™2) ™ then

V(@) = 927 (),

Vo (@) = lwl—(a~f-5) + (¢ e~ — ) for o< a.
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2 Ify=aory<aand (46l g 2a(6**—¢72%) 7 then
(@) = 0% (@),
2a ezm
Voo () = 0] — () +2a-—6?2-a— Jor 2] < a.

Proof. In the first case it is sufficient to prove that the function
"‘7’( satisfies equation 3° from Theorem 1 and in the second cagse that
o5 (-) satisfies the same equation. Indeed, it is easy to show by induction

that then these functions are greater or equal to vy (N =1,2,...) and
therefore are greater or equal to v,
To prove 1° we notice that for y€(0, a) and ze(—a,0) we have

1’;@(‘y)('f‘v) = [m}—qa,y)( ) 0] +-P(——a y)( ) g”(?)?
where
a Q[
M(a,b) () = B (mm("m Tb))y )
for deD, ve(a,b), —a<a<b<a.

Py (@) =P5(1b<ra> D oele, ), —es h

But 97 (y) = o7 (—y), therefore
”:’o(y)(“'y) (m(-—a y) )—o)+P(--a y]( )’)"’:o(")(*y)-
. Thus

1
o (=) = can( =)0
1_—"P%—'a,v)('—y)
and for ze¢(—a, 0]

ml
(—ﬂ.v)( —y)—¢

o2 (@) = Pica (=) =0
1— 'P(—u y)( 7)

(’m’%—a,r) (m) - 0) ‘I‘Pz-—al,y) (w)

Since for xe (a,b)
—26_ g~

Mia) (@) = (b—~a)pl,,; (@) — (@ —a), Playy (@) = =T

80

1 e - - —— —
V@) = =0 (at-0)+ Bl (@) [y a- eI O+t y—ae
1‘1’(—::,71)(_'7})
2y —¢

= —r— (a'}" C') +19:—-a,7) (m) W
Ay

. & — g2
=—o—(a+o)+ 7,.——?2—,7(27 0).

When « iy fixed, this function takes on its maximum at the point y (inde-
pendently of z).

icm
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‘We shall prove in turn that for the function v = o2 we have

@) sup [Ei(fg(ws)d84~v(w1))] —c=0(2), a(—a,0]
4 b

@ s [m; (f 9@)ds+o(n))| —e<o(@), we(—a,0].

According to Dynkin’s theorem there exists a stopping time v', which in
fact is the first hitting time of some closed subset of [—a,al, for which

, f 9@)ds-+o(@)) ~ 0 = sup B} (J fo(a) ds +v ()] —o
0

5“11)[111("’ —Ms,0)) (@ Ym0 (@) —

Simple consuieratmns show that +' has the form ¢’ = 7,,, where ' [0, al.
This is equivalent to
,v;(v.v.w.v,---) > ,U:o(v,v.y.-u)
and, by induction, to
n-times
(s y¥'s Fr) APV e)
?)eo reriy » > pvm Qa4 .
Hence
n-times
,vgo(v‘) = limvﬂ”’"""""”"") > ,,,:.gv,v,---) — ,,,zo(v)_
n

Thig gives y’ = ¥, hence (1) holds.
In view of (1), inequality (2) holds for ¢ [0, @) and the hitting time
v_; is optimal for we (—y, a).

Note that
1 de d
(E'W+dw)”"_1 for ve(—a, 0),
and
(1 a d ‘ '
(,.éﬂ,«%ua - (lw) m,(__al o = =1 for me(—a,a);
hence
L@ 4 d ,
(?M&m“ M)(q; m(ma,a)) = -—2—6%4; for e (—a,0).

Therefore the function v — m<_a,ﬂ) is superharmonic for X (see [2], p. 513)
in the interval (- a, y) in which y e 0.

© Since 26-27 == @F -}-¢~% hence —y < 7.
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But lim (v—m’q+¢) =0 and consequently in [—a, —p] the

5 : . . .
function v—m{, ,+¢ is greater than v —m(“_la,,,). This implies that

Sl:.p [E;l (fg(ws)ds +v(w,))] = s111p [E;l(v—m('_lu,a))(m,)]—l—m%__a,a) (@)

A

(/” (w) - m(t-ln,a) (W) + 6‘) + m(_-—la,aj ((L') <0 (w) +e

and (2) holds in [—a, —¥].
To complete the proof of (2) it is suf.flclent to conmder xe(—7y,0).
For these ¢ we have

'u(m)——sup[E"l(ff(m ds+v(z )] +e

= o)= B[ o) tolmez) +o
(]

= (.p%—-a,;) (w) 'D(;) + m%— a,7) (m))
_ M+ +a) (e —

- 2% — o2

(B az)(— )0 () +ml_ 5 (—))

) 20,

We need the inequality

v(y)+ (7 +a)

TR (" —e™™) 20 > 0

for @e(—y,0].

—22 622:

The function — is decreasing for #< 0 and therefore it suffices

to show that

lim o)+ +a) e“’“‘—e””‘<1
el € —ew —2 )

The last inequality is true, since

lim w — (" — "2“”) 20 =¢> 0.
e

We now assume that ¥ >0 or y< 0 and

(627 + e~2) ! 2 (620 — 2L,
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Tn this case the function »X)(a), for fixed @, takes on its maximum at
y = a. Assume that for we (—a, a)

ID(/D) = vn(a)( ) = m}-a,a)( - Iml) -

62a 2[@1

|w|~—(a+0)+20

—e

In the same way a8 above we prove that the function v satisties equality (1).
Inequality (2) is also true, since

(1my0) (@) =~ €) = ({0 (— @) — ) > 0
This completes the proof.
TrnoREM 3. Assume that (A, 8 o local time at 0 (see [1], p. 212).
1°If 0= 1 then

Voo () = 03 (@)

for we(—a, 0).

for 2| < a.
Let o<1 and 7 be a positive solution of the equation
1, e

l—o 2
2° If y< o and
B (L—e-%)—0¢ 1—g2
6% — =27 ¢ — g2
then
Voo () = 054" (),
(oo 2lul - 64;)_ _
Voo (w) - (0 4 ) eﬂ;_e_a;
3°If y> a or
(L—e-w)—o  1l—eg™
oy —g-1 g™

then
Voo (1) = 03 (@),

el
Voo (1) mam (02" Ozlwl) 2‘2“;““';:‘2; for o] < a.

Proof. The potential kernel (see [1], p. 69) of the process X* in the
interval (a, b), where a, b are stopping points for X*, has the form .

for a<< y<b,

Dy (@) G (Y) RS \
’ for a<y<a<d,

G(la.p,) (wyy) = (1 ___pz.%b)(m))a(?/)
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where
(e—zy_ 6-2b) (6—-241__ evzy)
G(y) = ] 0—21/(6—-21}__6—-20)

Moreover, if 0« (a, b), then (see [1], p. 279)
CBL(Ay) =@y (@, 0) for we(a,d).
Consequently, for ye(0, a), #e (—a, 0) it holds

Gl (—y,0)—0
,0;5?) (a)) = G%—-a,'y) (w, 0) +p%—a,7)(w) —..i —:7’21( 14 __) —
p(-—a,y)( ”“7/)

= Dica0) () [0, (0) 95 () + G, 51 (0, 0)] —e.

Since
2a —2 2a 2y
e —e [ —
(7) —= —e )
'veo (9/) - ezy__e_z,, [6241_6...2,, (1 (7 ) 0]’

we have

20 2a 2

e —1 e — ¥ _
'U;gy) (#) = Z’%—-a,o)(m) [627/_3~27 ’ 620 — g—2¥ (1‘_6 Zy) -

_o) | (—e) <e“-1)] N

& g prrmmp—
o , ¢ (L—e™%) [ e gt
= P(—a,0)(#) (¢ 1) [“ o2y + & g \ g g2 +1)[—e

(1—e)—¢

= (e”“—-e‘”")[ ] —c¢ for we(—a,0).

& g

We now assume y < « and

(I—e™)—¢ 1—¢2
e Fo g

let
v E o1,

We shall prove that v satisfies equation (8°) in Theorem 1. To prove
thig it is sufficient to show that

(3) Sup|B; (4, +o(@,))] —¢ = o(@) for ze(—a,0),
(4) sup (B (4, + v (@) —e < v(2) for we(—a,0).

The proof of equality (3) is analogous to that of equality (1) in Theo-
rem 2 (the following equality is helpful in the proof:

SUP | (4, +0(2.))] = sup [Bo(0,) — @, (01, )] + Gy (2, O)).

icm
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Now we shall deal with inequality (4). We restrict attention only to
@e(—7,0]. For these # we have .

(@) —sup [B; (A, 40 ()] +¢

= {Plew) (@) [0(7) = Gy (7,0)] + G, oy (, 0)) —
= P (—) [1( ) =000 (—7, 01+E, o (@, 0)}
= [P0 (@) = Pla) (= )] [0(7)—~ Bl oy (7, )] +
A Gy (@5 0) =G, oy (—, 0).
Therefore we need only to show that
(B) [Pl (®) = Diea,y (— )] [0(7) ~ @ aa (7, 0)]+
+ Koo (7, 0)—Gi_o0(—, 0) 0.
Note that
Plap( =D —plap(@) -1 e — g
C":(l—a,m) (w, 0) ""G%ua,rx)("‘m7 0) G%—u,a) (0,0) (& +1)“(9‘2z+92n62w) )
Since inequality (5) is true for » sutficiently close to —y and the funection

e-—ﬂx — ezm
(eza +1)___‘ (6—2m+82062m)
I8 increasing in (—a, 0], thus inequality (5) holds for every ze(—y, 0].
The proof of 2° iy comyplete. :

The proof of 1° is easy and the proof of 3° is analogous to that of 2°
and will be omitted.
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