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Colloquinm on
Nuclear Spaces and Ideals in Operator Algebras

Equivalent nuclear systems

by
Ed. DUBINSKY (Hamilton, Ont.)

In this paper we introduce the notion of nuclear system as a means
of constructing nuclear Fréchet spaces whose topologies are defined by
a family of seminorms which are actually norms. We then show that
all such spaces are obtained by this comstruction. The main result
(Theorem, 2) is an “intrinsic” characterization of when two nuclear systems
are equivalent, that is when the spaces which they econstruct are iso-
morphic. This result is then applied to the basis problem for nuclear
Fréchet spaces. Finally some examples and open questions are listed.

This method of constructing nuclear Fréchet spaces gives rise to
examples which have not previously been discussed as well as providing
a new way of studying the familiar gpaces. These examples will be discussed
in detail in a forthcoming paper.

Let Ap:ly—1y, % =1,2,
define the associated space,

B = B{(4)} = {(@k

Thus B is a subspace of the countable product of copies of 1,, and
Wwe may equip B with the topology induced by the usual product topology.
Let Py:H — 1, by Pi((@)) = oy We call (4y), 2 nuclear system it

(i) each 4; has dense range

(ii) each P; is injective.

TuanorEM 1. The associated space of mnuclear system is a nuclear
Fréchet space with a fundamental sequence of seminorms which are norms;
and, conversely, every such space is the associated space of a nuclear system
(up to isomorphism).

Proof. Clearly, B {(4,)} is nothing more than the projective limit
of the sequence of maps, (4;), and hence it is a Fréchet space. Evidently,
a fundamental system of neighborhoods of 0 is given by the sets

, be a sequence of nuclear maps and

D wpely, iy, = Ay, b =1,2,...}.

={(mk)e1§7 o] < k=1,2,...,%}, w=1,2,...,

'n
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and it follows immediately from (ii) that the gage of each V, is a norm.
To see that & is nuclear, set

lall, = ng&ge(Vn)k =max{a), ..., lol}, ©=(@@)eH, n=1,2,..

Then it suffices to show that any |-||,,,-summable sequence, ("),
in Z, is |||}, -absolutely summable. ’

Now if o runs through the collection of finite sets of positive inte-
gers, ordered by inclusion, and 8, = ' 4", then the net (§,), is -], 11

veo

-Cauchy. Hence for each % < n+1, the net (P4(8,)), is Cauchy. In other
words, if #* = (@), then for each k<< a1, (), is a summable family
in I s0 (4,ay), is absolutely summable for % < 51, so (42), is absolutely
summable for each k<, so (2*), is ||-|,-absolutely summable.

For the conmverse let F be given. Since F is nuclear Fréchet, it is
separable, so if ¥ is a barreled neighborhood. of 0, then B is also separable.
Thus we can choose a decreasing fundamental sequence of neighborhoods
.of 0, (Vi), such that :

1° the gage of each ¥V, is a mnorm,

2° each E’Vk is a separable Hilbert space,

3° the canonical map 7 EVk+1—>E'Vk is muclear for k =1,2,,..

Then if 6,: By ~>1, is an isometry and 4, = 6,7,6; L, it I8 easy
to check that (4,), is a nuclear system. Finally, it is well known (and
straightforward :co show) from the theory of projective limits that ¥ is
isomorphic to E{(4,)}.

This completes the proof of the theorem.

It is easy to see that in the definition of nuclear System, condition

(i) is satistied if each A, is injective. If this is 80, 'we shall say that the .

njleleam system. iy énjective. This.is not always the case, in fact we now
give an example of a nuclear. system in which no 4, is injective.
Let ¢",n =1,2,..., be the usual basis for I, and define A : la—> 1, by

1 .

Ae® = -4— “ it = 1’
*1§ o 1 n—1 3

(n—l»l)z - (’I‘b—-———l)Z € ‘ if n>1.

It is easy to see that 4 is nuclear and also ed(ly) forn =1,2,...,
80 4 has dense range. Thus if we take A = A for k =1,2,..., then
we need only check condition (ii). In fact, we first observe that the kernel
of 4 is the subspace of I, generated by the vector #° = (1/n%),. Thus,

if (@) e B{(4,)} and @, = 0 for some k, then Am, , = 0 so we have a scalar

icm
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A 70 with @, = Aa°. Hence
o = A(% m’m) eA (D).
But suppose that o° = A, a;‘= (#,)ely. Then by definition of A4,

80

[

n4-1\? n41\2
wn__(_j,b:__“) mn—l-lz( ), n=1,2,...

Pagsing to the limit and using the fact that limg, =0, we obtain
3
0 =lima, =1,
n

which is a contradiction. Thus each Py is injective. On the other hand
each Ay, = A has a non-trivial kernel and the desired example has been
obtained. .

It is natural to ask if every nuclear Fréchet space with a fundamental
gequence of norms is the associated space of an injective nuclear system.
To study this question we define two nuclear systems to be eq}nvalent
if their associated spaces are isomorphic. The main result of this paper
will be to give an “intrinsic” characterization of equivalence .and apply
this to the basis problem for Fréchet nuclear spaces. To do th.}s we must
first show that the range of each P, is dense. o

LEvMA. Let By: By =By, k=1,2,..., be @ sequence of ?nye({tzvf;
linear continuous maps of reflexive Banach spaces. Then the inductive limit
of these maps s Hausdorff. ]

Proof. This result is well known. For a proof see [1].‘ .

We now wish to make use of the duality be.twee:n inductive and
projective limits. To do this precisely, some notation is, necessary. Let
F, be the strong dual of B and Ay: Fy,, — Fy the adjoint ?f.B,c. Then
by reflexivity, B, is the strong dual of F; and By is tlfe ad']m.nt of Ag.
Let B be the inductive limit of (By) and F the projective limit of (A).
Then the situation is schematized in the diagrams -

o0 q i
B2 on, ¥ ~ [ %,
\\ P P P
Qi ) k
J b
B - 7y
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where the injections ¢, ¢z, @, and projections p, py, @, have the usual
meanings. The well known fact which we wish to use is that 7 is the dual
of F in the sense that all elements of B’ are obtained uniquely by taking
elements » = (u,), in F and defining a linear functional on elements
& = (»,) in ¥ by the relation,
oo
<£L‘, 'u'> = 2("”7” ’u"n>’
n=1
where this sum is finite because » is finitely non-zero. With this notation,
we may prove the
PROPOSITION. Let Ay: Fy,, —~ Fy be a sequence of linear continuous
maps of reflewive Banach spaces such that each Ay (F, +1) 48 dense in T,
and let ¥ be the projective limit. Then for each k, P, (F) is dense in .
Proof. In the notation described above, the injectivity of By, follows
from the density of A,(Z),). Hence by the lemma, # is Hausdorff. Now
fix & and suppose that wek, = F} such that for each zeF we have
{Ppz,u) = 0. Then,

0 = <-Pkw7'u’> = @kOQm;u‘> = <&, Popu) = {2y Qru).

Since this is true for all weF, it follows that Q,u = 0, and since @
is injective (because B, is) we conclude that 4% — 0. This shows that
Py(F) is dense in Fy.

COROLLARY. If (4) is & nuclear system, then each P;, has dense range.

Proof. The conditions of the proposition are obviously satisfied.

TeEOREM 2. Two nuclear systems (4r)s (43) are equivalent if and only
if there is a subsequence (my), of indices and continuous linear maps
Jorlh—>1,k=1,2,..., such that

(i) -Akfk+1 :—*kank A“lc+r“ k= L2,..,

(ii) each JuPn,, 18 injective,

(1) £ P (B{(40)}) > Pu(B{(40)}), & = 1,2, ...

If (4;) is injective, then (ii) can be replaced by

(ii)". Py, is injective
and (iii) can be replaced by

(@) B, (B{(4L) = P, (H{(4,)))
or

WD (Vg oo gy (W) 2 () o a0,

= =]

Proof. For convenience, we shall write & — Iff'{ (4;)} and F= ﬁ{ (A;)}.

First suppose that the maps f exist. For each zeF and & — 1,2,..,

iom®
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define 4 = fi.Pn, (@). Then
A—k( f‘/k+1) = Akﬁc‘}-ll)nk.\.] (@) = flr:Ank cee 'A"Ic+1—1P“k+1 (#) = ka”k (%) = Y-
Hence (y,ﬁ)elhi‘, s0 we can. define f: F>7 by
| Pif(0) =i (e), k=1,2,..

Clearly, f is linear and continuous, Suppose 2 <F and f(z) = 0. The}t
each f,olsnk(m) = 0, 80 by (ii), » = 0. Thus f is i{ljective. Now 1013 yek.
Tor each i, it follows from (iii) that there exists #* < F' with Py (y) = £, P, («).
But )

f)c»Pnk(.mkM) = -Alc.flc+11)nk+l(mk+l) = 4 Ppp1(y)
.= Pyy) =f7ank(wk)- '

Henece by (i) we have #* = a*"* so f(#!) = v and f is onto. Therefore
by the open mapping theorem, f is-an isomorphism.

Oonversely, suppose we have an isomorphism f: }f’ T’E' By tohe
continuity of F' and the definition of the topologies on E, F we can find
a sequence (n,) of indices such that m, < m, and

fll@n) s [ml <1 for n< m)) © {(g) e B: [yl < ¥ for n <K}

Now define g,: Py, (F) = 1s by giPy, (@) = Pif(@). This definition. is
unambiguous because lsnk is injective. First we check the continuity of gy.
Choose 6 < 1 such that

s <mnin{d, ... Ayl 0 < m}.

Then if |[B, (@)l < 6, Where & = (,) eﬁ,_ it follows that |Ppa] <1
for m < ny, 80 ||P,f(@)] < k for n < . In particular,

1P @] = P @) < .
Thus g, i continuous, so it may. be extended to fi:l, 1. We
“check the three eondi‘pions.

Sy oo Ay 11 Pa = FiPry = 9P, = Puf =

= -Akgk+11;nk+l = Akfk+1Pn;,+1 .

APrf

Thus (i) holds on the range of 13,‘,c - which is dense by the 901'0]1;1‘3
and hence (i) holds. For condition (iiz we observe that fkan,, = I1Pry, =
which ig injective. For (iii) let yeF and take z = f (y? e¥. Then

foPy (8) = 6By, (@) = Pif(0) = Py,

and the first part of the theorem has been completed.
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Next we observe that (ii) = (i)’ and for the converie, we have for
any k that

fanl =4,... A;c—lfk-Pnk

and since f1P, , 4 ... 4,_; are injective it follows that fhl;nk is injective,
Also it is clear that (iil) = (iii)’ and if we have (iii)’ then for any %,

Ay A fiPo(F) = B, (B) > Py(B) = 4,... 4 ,P,(B),

50 (iii)" follows from the injectivity of 4, ... 4,_,.
Finally, (i) follows from the observation that in any nuclear system
(4;) we have

P(E) = k(i Ag . A,

and the proof is completed. .

We now apply Theorem 2 to nuclear spaces with bases, If F is
a nuclear Fréchet space whose topology is determined by norms and
¥ has a Schauder basis then it follows (see [3], Chapt. 10) that B is iso-
morphic to a nuclear sequence space. This means that ¥ is isomorphic
to some E{(D,,)}, ‘where each Dy: 1,1, is a diagonal map. Furthermore
each D has only non-zero terms on its diagonal else it would fail to have
dense range. Thus (D) is an injective nuclear system. We see thit Theorem
2 can be applied in several different ways depending on which form of

"the statement is used and on whether (D,) replaces (dy) or (A~k). For con-

venience we state only one version.

COROLLARY. Let (A4;) be an injective nuclear system. Then E{(Ak)}
has o Schauder basis if and only if there ewist diagonal nuclear maps

Dyp: 1,1y and continuous linear maps fi: ly—>1,, % = 1,2, ..., such that

(i) Akfk+1 =fk-chy k= 1,2,..,
(i) fiD, is injective,

(i) fl(le Dy ... Dy(ly) > {lel'...Ak(lz).

The corollary permits us to establish the existence of Schauder bases
for many examples of nuclear Fréchet spaces. We list a few here and save
the details for a forthcoming paper which will be an extensive study of
examples of nuclear systems.

X 1° If each 4, i equal to a fixed A:l,— I, which is normal, then
F has a basis.. :

2° If each 4, is a weighted permutation of the usual basis vectors

in I, then ¥ has a basis.
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3° If Q2 is a sufficiently nice bounded open region in R™ and
02(R) = {peC™(Q): DPp(0Q) = 0 for all p}

and 03"(5) is given the topology of uniform convergence of each deriva-
tive, then 05°(R2) is a nuclear Fréchet space with a Schauder basis.
Finally, we list some open questions which might have a hearing
on the Schauder basis problem for nuclear Fréchet spaces.
1° Under what conditions is a sequence (By), of operators on I, of
the form By = 4,...4,, where (4;) is some nuclear system.
‘ 2° Liet A: I, — I, be a nuclear operator. Is the sequence space Q A*(1y)

equal to a power series spaco (see [31). Ist it even a “Stufenraum”? (see [2]).
3° Under what conditions on a nuclear system (A;) does there exist
an operator A on I, such that QA"(ZE) = A(l,).

4° Ig every nuclear system equivalent to an injective nuclear system

Rince every Fréchet nuclear space with a’ basis is the 'a,ssbociad_:ed
space of an injective nuclear sysbem, a negative answer to this question
would imply a negative answer to the basis question.

Added in proof. The details and computations in example 3° are
equivalent to those provided by H. Triebel,. Math. Z. 90 (1963),
p. 825-337. See also M. Zerner, 0. R. Acad. Sc. Paris 268 (1969), p. 218-220.
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