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On the spectral radius in group algebras
by

A. HULANICKI (Wroctaw)

Let @ be a discrete group and I,(@) the group algebra of @. For every
» in 1,(@) the spectral radius of it is defined as

»(s) = max{|3]: 1Sp(a)} = lim"vnw"u :

If G is Abehan, then I,(@) is & commutative semi-simple Banach
algebra and

»(@) = max{|d (1)|: 1<G}.

Then, of course, » is a norm on 1,(&), i.e.

(%) v(@+y) <v(@)+ ()
and
(%) v(z) = 0 if and only if # = 0.

For non-Abelian @ relation (*) remains true for all pairs x, y <l (&)
such that sy = yw (cf. [2], p. 10). If » is hermitian, i.e. if # = o™ (#* being
defined by #*(g) = #(¢™")), then (**) holds for any G-

If 1,(§) is symmetrie (i.e. for each x in 1,(&), Sp(#*x) > 0), then,
by Raikov’s theorem (cf. [2], p. 238), for any hermitian element in 1,(G)

v(@) = sup|iTs,

where the least upper bound on the right-hand side is taken over all
*.representations of I,(@) into the algebra of bounded operators in a Hil-
bert space. Therefore if I,(@) is symmetric, then () holds for all # and y
in the real subspace of hermitian elements of ,(&).

The aim of this note is to show that (x) does not generally hold even
for hermitian elements #, ¥ I, (@) for a solvable group G. Thus, by Raikov’s
theorem, we obtain an alternative proof of a recent result by Jenkins [1]
that solvable groups need not have symmetric group algebras.

1. The group. Let A (R) be the affine group of the real 1ine; i.e. the
group of pairs of real numbers (£, ), with & # 0 and multiplication defined
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210 A. Hulanieki

by the formula (&, 9)(&, ') = (&€, &'n-+n'). Let « be a transcendental
real number and let ¢ be the subgroup of 4(R) generated by the pairs
& = (a,0), b = (1, 1). Then for any integers m, n we have a"b™ = (a™, 5)
and consequently
(1.1)

(I/mlbnl . amkb"k — (am“' ...+'mk’ ’"11 amz-j- ...+mk+n2 am3+"'+mk+ . + 'n'lc) .

Lemma 1. Suppose 1<k and my, m>0,4=1,...,k If

(1.2) a™p™M... a"™kp" = a™B™ L g% and
Mgy cuny MY 5% 0y Mgy ooy Mi_y 550,
then my #0, np #0 and & =1.

o 1 ’ ’ o '
Moreover, if myy...,my,myy ..., ny are all different from zero and
1<k, then ’

aMB L, B £ DML M L B,
Proof. By (1.1), equality (1.2) implies .

(1.3) My my = my .. g
and
(14)  mya™F et g, gty

L . , ,
= my @™t g @Mt e g

Since o is transcendental and the exponents my- ...+ m, .
+ my, e 0 are a,lll different (and I < k), they must Ebt eq:;ul ‘éﬂc; ';V;;;L ex.I');l——
nents My+...4-my, my+...+mi,...,0 in some order and simﬂaﬂy
COR mu’st be equal to uy,...,m; in some order. Hence I — % and
m # 0. It my =0, then, by (1.8), my4...-Fmy = Mg+ ...--'my, which
is equal to one of -the numbers Myt oo Mgy Mg o -y 0, but
this is impossible since my, ..., m; are positive, B

To prove the latter part of the lemma, we note that

o o me g , . . , .
b"a™ . BT = (gMat et nia"‘”"'*’”‘l—kn;a"‘z*'"""ml-}—...—|—n§aml).
Then the equality ‘
aMYM L a™ER = M g™ | prg™
and 1< k impl ; ; '
< ply, a.sla,bovez, that ny, ..., 77 are equal o u,, ..., ny in some
order, my+...4mp =m+...~m, and m’ 1y M ‘
:m,; . equa,l PR 1 m1+...—!—ml,m2+...+m,,
seny e , i
" + My Mg+ myy ..., 0 in some order,

whence m;-+-...4my is equal to one of th
; 18 equa e numbers my+ ...+ m,
+...4+my, ..., 0, which is Impossible, since m; > 0,5 -_i 1, _t k.k’ et
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CoroLLARY 1. Let
g = a™Mb™ ... """ with m;,n; >0,5=1,..., %,
and suppose that g is expressible as o product
g =102 Gy 12k

such that the g; belong either to A = gp{a} or to B = gp{b} and if g;e4,
then g;.1¢B and if g;eB, then g, cA. Then oll g; are different from the
unit of G,% =2k, g,eA ond g;eB.

LevumA 2. Suppose that for a positive integer N we have n; #+ 0,
(1.8) N<m<?2N and N<|mj<2N, j=1,..,k

Then the equality
(1.6) AL qMERE = g . @™ b
implies m; = m; and n; = n; for oll j =1, ..., k-

Proof. As before we infer that (1.6) implies the existence of a permu-
tation ¢ of the indices {1,..., k—1} such that

"’1 = No(1)y =+ +» %;c—l = '”'c(k—d), %;c = Mk,
and
Myt ooy = My Ty

@an ., , .
Myt oo Mg = Mopyp1t oo Mgy oy My = m,,(k_,)+1+...+mk.

But, in virtue of (1.5), m; cannot be a non-trivial sum of the m;’s,
and, consequently, by (1.7), 0(k—1) = k—1 and my, = my. Hence, by
(1.7) again, mi_; = Mog_z41t--.+ Moy and, similarly, Mip_y = Mp_y
and o(k—2) = k—2. Proceeding in this way we complete the proof of
the lemma. ;

2. A trigonometric polynomial.

LeMMA 3. For every s > 0 there ewisis a positive integer N ond a iri-

gonometric polynomial
2N-1

@.1) T() = D (ea6™+0a07™)
n=N
such that
aN—1
e 1
T <~ 3 jeal.
max| ()l<47%viﬂl.

In fact, leb
M
f(t) — Zdne'int
7
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be such that
max|f()] < Z AR
—-M

(For the existence of f see e.g. [3]). Then’ s

g(t) = f)expliBM+1)t] = D' cne™,
n=N
where N = 2M -1, ¢, = dp_sz_;. Clearly
aN_-1
maxlg(9) <3 D) lon

nsN
and it suffices to put T(f) = gt +g(0).

3. The Theorem. Let 4 and B be the infinite cyclic subgroups of ¢
generated by a and b, respectively, ¢,, N <n < 2N, the coefficients
in (2.1). Let z,yel (&) be defined as follows:

¢, iftg=a", N<n<2V,
$(g)={0—n itg=a"N<n<2N,
0  elsewhere,

o it g=0", N<n<2N,
y(g)=[a& ifg:b_nyN<W:<2N7
0  elsewhere.
Then, clearly,
(3:1) lel =gl and (@) = »@) < 5 el
‘We have
(m+y)2k = Zwulyvl oo YL Zm"ly”l R VS

+Zy”1m”2 R 2T Zy"l Lyt

where the summation extends over all positive integers

Uy veey Ugy Opy oeny Uy with %+ ...+t o,+...+v =2k,
3.2) Uiy ooy Ugy Vyyoeey Oy With w-+ o duto 4. 040y, = 2k,
Ugy vuny Ugy Vyyeeey Uy with wy4- ...+ wt-vi+...4+v =2k,
|'u.1, teey Ugy 0y, ...,.fuLA with w4 ...+ w4 v+ ..o, = 2k,
respectively, and I < k. )
Let ‘
Oy = {asdy ... axby: a; = o™, by = b, N < my, n; < 2N}.

e ©
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Now we evaluats (z+y)™*
(3.3)

(a) a1y

on Cy. Let geCxy. We then have

iy = D

Bt}
a.lb "'albl=‘7

aig) =

by 1a=g

2 (a)y" (B)) ... 2™(a)y™(By),

(b)  ayht... yPi-1 @)y (By) . .. Y1 (by_y) 2 (af),

(€ gy = 3T g (B))a™(a]) ... 5(al)y" (D)),
b;a;.“a;b;=a
@ ) = Y g 0)a (e) .y () e a).

b ﬂ albl=g

Since #“(a’) =0 for a’'¢4 and y"(b’) = 0 for ¥’ ¢B, by corollary 1,
we see that only (a) in (3.3) can be different from zero and in this case,
by corollary 1 again, | = %, whence, by (3.2), u

e = U =01 = ..
= v = 1. Consequently, .

@+9™ g = 3 o(@)y)...o@)y ).
b akbk=g
‘We have
(3.4) g =a™Mb™ ... a"b"  with N<my,n < 2N,

_and z(a;) #0,y(bj) %0 only if

(3.5) af = @™, b =B with N < |m]], m,] <2¥.

By lemma 2, we infer that g is expressible in the form
a.. b, =g,

where a; and b; (f =1, ...,

k) satisfy (3.5), only if m; = m,, ..
Ty = Ny, «eny Bfp = Ny

Thus we obtain the equality
(@+9)"(g) = w(@™)y(B™) ... m(a™¥)y (5™)

for all g of the form (3.4).
Now we have

,
.y Mg = Mg,

oty = D i@+9* )
geC Ny
2N-1 2N-1 2N—1 aN
Z (@™ D ™)l ... ) |e(a™) 2 ly (0"%)]
my=N ny=N Mmp=N ny=N

(1) ol g = (Ilzn)
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Hence, by (3.1),

1
slo9) = lim o+ > 5 ol > o)+ 1)

‘We summarize the obtained result in the following

THEOREM. If G is the discrete subgroup of the affine group of the real
line as defined in section 1, e a positive number and & and y the hermitian
elements in 1,(G) defined im section 3, then

ev(@+y) > v(@)+(y).
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Restrictions and extensions of Fourier multipliers*
by

MAX JODEIT, Jr. (Chicago, Il.)

Introduction. In this paper we derive certain relations between
spaces of Fourier multipliers defined on RY, Z~, TV (definitions and
notation are given in section 1). The main result, Theorem (3.7), is for
N=1:if 1 <p < oo and {m,} is a multiplier sequence of type (p, p),
then the piecewise constant function m(z) = m; (k is the greatest integer
< #+14) is a multiplier of type (p, p) for Fourier transforms. In the case
1< p< oo, the piecewise linear continuous extengion of a sequence
of type (p, p) is a function of type (p, ») (see (3.6)).

Sections 2 and 4 contain mostly known results, for which we offer
alternate proofs. With one exception the results are due to de Leeuw [3].
Theorem (4.3) is due to Igari [2]: The relations between MZ(RY) and
M3(T") are given in section 2, and restrictions to Z” and R™ of elements
of MZ(R™) are treated in section 4.

Among the applications of these results are

(i) the Mareinkiewicz multiplier theorem for the line follows from
the sequential version (section 4),

(i) a function m defined on R , continuous except at 0, and homo--
geneous of degree 0 (m(lm) = m(x) for 1 > 0) is in M’;(RN } if and only
if its restriction to Z is a sequence of type (p, p) (section 4).

Questions raised by Professor R. Coifman and Mr. David Shreve
led to this work, which has also profited by a comment of Professor
Calderén.

1. Preliminaries. We first set down for reference some conventional
notation. RY denotes real IV -space, %,y denote points of RY , with coor-
dinates @y, ..., By Yuy -y Yx. 2] = (@ +...F o) 2y = 29+ .+
—}—wNyN.ZN < RY is the set of points n with integer coordinates. If
8 = RY, acR,then al = {as: seS}, and if zeR", thenw-+ 8 = {&+s : 88}
T%, the Cartesian product of N copies of the unit circle in the complex

* During the preparation of fthis paper the author was partially supported
by the National Science Foundation under NSF grant GP 8855.
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