On the spectral radius in group algebras

by

A. HULANICKI (Wrocław)

Let G be a discrete group and $l_1(G)$ the group algebra of G. For every x in $l_1(G)$ the spectral radius of it is defined as

$$\nu(x) = \max\{|\lambda|: \lambda \in \operatorname{Sp}(x)\} = \lim_{n \to \infty} \sqrt[n]{||x^n||}.$$

If G is Abelian, then $l_1(G)$ is a commutative semi-simple Banach algebra and

$$v(x) = \max\{|\hat{x}(\chi)|: \chi \epsilon \hat{G}\}.$$

Then, of course, ν is a norm on $l_1(G)$, i.e.

$$v(x+y) \leqslant v(x) + v(y)$$

and (**)

$$\nu(x) = 0$$
 if and only if $x = 0$.

For non-Abelian G relation (*) remains true for all pairs $x, y \in l_1(G)$ such that xy = yx (cf. [2], p. 10). If x is hermitian, i.e. if $x = x^*$ (x^* being defined by $x^*(g) = \overline{x(g^{-1})}$), then (**) holds for any G.

If $l_1(G)$ is symmetric (i.e. for each x in $l_1(G)$, $\operatorname{Sp}(x^*x) \geq 0$), then, by Raikov's theorem (cf. [2], p. 238), for any hermitian element in $l_1(G)$

$$\nu(x) = \sup ||T_x||,$$

where the least upper bound on the right-hand side is taken over all *-representations of $l_1(G)$ into the algebra of bounded operators in a Hilbert space. Therefore if $l_1(G)$ is symmetric, then (*) holds for all x and y in the real subspace of hermitian elements of $l_1(G)$.

The aim of this note is to show that (*) does not generally hold even for hermitian elements x, $y \in l_1(G)$ for a solvable group G. Thus, by Raikov's theorem, we obtain an alternative proof of a recent result by Jenkins [1] that solvable groups need not have symmetric group algebras.

1. The group. Let A(R) be the affine group of the real line, i.e. the group of pairs of real numbers (ξ, η) , with $\xi \neq 0$ and multiplication defined

by the formula $(\xi, \eta)(\xi', \eta') = (\xi \xi', \xi' \eta + \eta')$. Let a be a transcendental real number and let G be the subgroup of A(R) generated by the pairs a = (a, 0), b = (1, 1). Then for any integers m, n we have $a^m b^n = (a^m, n)$ and consequently

(1.1)

$$a^{m_1}b^{n_1}\ldots a^{m_k}b^{n_k}=(a^{m_1+\cdots+m_k},n_1a^{m_2+\cdots+m_k}+n_2a^{m_3+\cdots+m_k}+\ldots+n_k).$$

LEMMA 1. Suppose $l \leq k$ and $m_i, n_i > 0, i = 1, ..., k$. If

(1.2)
$$a^{m_1}b^{n_1}\dots a^{m_k}b^{n_k} = a^{m'_1}b^{n'_1}\dots a^{m'_l}b^{n'_l}$$
 and $m'_2,\dots,m'_l \neq 0, n'_1,\dots,n'_l \neq 0.$

then $m'_1 \neq 0$, $n'_l \neq 0$ and k = l.

Moreover, if $m_1',\ldots,m_l',n_1',\ldots,n_l'$ are all different from zero and $l\leqslant k$, then

$$a^{m_1}b^{n_1}\ldots a^{m_k}b^{n_k} \neq b^{n'_1}a^{m'_1}\ldots b^{n'_l}a^{m'_l}$$

Proof. By (1.1), equality (1.2) implies

$$(1.3) m_1 + \ldots + m_k = m'_1 + \ldots + m'_l$$

and

$$(1.4) n_1 \alpha^{m_2 + \dots + m_k} + n_2 \alpha^{m_3 + \dots + m_k} + \dots + n_k$$

$$= n'_1 \alpha^{m'_2 + \dots + m'_1} + n'_2 \alpha^{m'_3 + \dots + m'_1} + \dots + n'_1.$$

Since α is transcendental and the exponents $m_2+\ldots+m_k, m_3+\ldots+m_k,\ldots,0$ are all different (and $l\leqslant k$), they must be equal to the exponents $m_2'+\ldots+m_l',m_3'+\ldots+m_l',\ldots,0$ in some order and similarly n_1,\ldots,n_k must be equal to n_1',\ldots,n_l' in some order. Hence l=k and $n_l'\neq 0$. If $m_1'=0$, then, by (1.3), $m_1+\ldots+m_k=m_2'+\ldots+m_k'$ which is equal to one of the numbers $m_2+\ldots+m_k,m_3+\ldots+m_k,\ldots,0$, but this is impossible since m_1,\ldots,m_k are positive.

To prove the latter part of the lemma, we note that

$$b^{n'_1}a^{m'_1}\dots b^{n'_l}a^{m'_l} = (a^{m'_1+\dots+m'_l}, n'_1a^{m'_1+\dots+m'_l} + n'_2a^{m'_2+\dots+m'_l} + \dots + n'_la^{m'_l}).$$

Then the equality

$$a^{m_1}b^{n_1}\dots a^{m_k}b^{n_k}=b^{n'_1}a^{m'_1}\dots b^{n'_1}a^{m'_1}$$

and $l \leq k$ imply, as above, that n'_1, \ldots, n'_l are equal to n_1, \ldots, n_k in some order, $m_1 + \ldots + m_k = m'_1 + \ldots + m'_l$ and $m'_1 + \ldots + m'_l, m'_2 + \ldots + m'_l, \ldots$ \ldots, m'_l are equal to $m_2 + \ldots + m_k, m_3 + \ldots + m_k, \ldots, 0$ in some order, whence $m_1 + \ldots + m_k$ is equal to one of the numbers $m_2 + \ldots + m_k, m_3 + \ldots + m_k, \ldots, 0$, which is impossible, since $m_j > 0, j = 1, \ldots, k$.

COROLLARY 1. Let

$$g = a^{m_1}b^{n_1}...a^{m_k}b^{n_k}$$
 with $m_j, n_j > 0, j = 1, ..., k$,

and suppose that g is expressible as a product

$$q = q_1 q_2 \dots q_t, \quad t \leqslant 2k$$

such that the g_j belong either to $A = gp\{a\}$ or to $B = gp\{b\}$ and if $g_j \in A$, then $g_{j+1} \in B$ and if $g_j \in B$, then $g_{j+1} \in A$. Then all g_j are different from the unit of G, t = 2k, $g_1 \in A$ and $g_l \in B$.

LEMMA 2. Suppose that for a positive integer N we have $n_i \neq 0$,

$$(1.5) N \leqslant m_j < 2N and N \leqslant |m_j'| < 2N, j = 1, ..., k.$$

Then the equality

$$(1.6) a^{m_1}b^{n_1}\dots a^{m_k}b^{n_k} = a^{m'_1}b^{n'_1}\dots a^{m'_k}b^{n'_k}$$

implies $m_j = m'_j$ and $n_j = n'_j$ for all j = 1, ..., k.

Proof. As before we infer that (1.6) implies the existence of a permutation σ of the indices $\{1, \ldots, k-1\}$ such that

$$n_1' = n_{\sigma(1)}, \ldots, n_{k-1}' = n_{\sigma(k-1)}, \quad n_k' = n_k,$$

and

$$m_1'+\ldots+m_k'=m_1+\ldots+m_k$$

$$(1.7) m'_2 + \ldots + m'_k = m_{\sigma(1)+1} + \ldots + m_k, \ldots, m'_k = m_{\sigma(k-1)+1} + \ldots + m_k.$$

But, in virtue of (1.5), m'_k cannot be a non-trivial sum of the m_i 's, and, consequently, by (1.7), $\sigma(k-1) = k-1$ and $m'_k = m_k$. Hence, by (1.7) again, $m'_{k-1} = m_{\sigma(k-2)+1} + \dots + m_{k-1}$ and, similarly, $m'_{k-1} = m_{k-1}$ and $\sigma(k-2) = k-2$. Proceeding in this way we complete the proof of the lemma.

2. A trigonometric polynomial.

Lemma 3. For every $\varepsilon>0$ there exists a positive integer N and a trigonometric polynomial

(2.1)
$$T(t) = \sum_{n=N}^{2N-1} (c_n e^{int} + \overline{c_n} e^{-int})$$

such that

$$\max_t |T(t)| < rac{arepsilon}{4} \sum_{n=N}^{2N-1} |c_n|$$
 .

In fact, let

$$f(t) = \sum_{-M}^{M} d_n e^{int}$$

be such that

$$\max_{t} |f(t)| < \frac{\varepsilon}{8} \sum_{-M}^{M} |d_n|.$$

(For the existence of f see e.g. [3]). Then

$$g(t) = f(t) \exp[i(3M+1)t] = \sum_{n=N}^{2N-1} c_n e^{int},$$

where $N=2M+1, c_n=d_{n-3M-1}$. Clearly

$$\max_{t} |g(t)| < \frac{\varepsilon}{8} \sum_{n=N}^{2N-1} |c_n|$$

and it suffices to put $T(t) = g(t) + \overline{g(t)}$.

3. The Theorem. Let A and B be the infinite cyclic subgroups of G generated by a and b, respectively, c_n , $N \le n < 2N$, the coefficients in (2.1). Let $x, y \in l_1(G)$ be defined as follows:

$$x(g) = egin{cases} rac{c_n}{c_n} & ext{if } g = a^n, & N \leqslant n < 2N, \ rac{c_n}{c_n} & ext{if } g = a^{-n}, N \leqslant n < 2N, \ 0 & ext{elsewhere}, \end{cases}$$

$$y(g) = egin{cases} rac{c_n}{\overline{c_n}} & ext{if } g = b^n, \;\; N \leqslant n < 2N, \ rac{\overline{c_n}}{0} & ext{if } g = b^{-n}, \, N \leqslant n < 2N, \ \end{pmatrix}$$

Then, clearly,

(3.1)
$$||x|| = ||y||$$
 and $v(x) = v(y) < \frac{\varepsilon}{4} ||x||$.

We have

$$(x+y)^{2k} = \sum x^{u_1}y^{v_1} \dots x^{u_l}y^{v_l} + \sum x^{u_1}y^{v_1} \dots y^{v_{l-1}}x^{u_l} + \sum y^{v_1}x^{u_2} \dots x^{u_l}y^{v_l} + \sum y^{v_1}x^{u_1} \dots y^{v_l}x^{u_l},$$

where the summation extends over all positive integers

(3.2)
$$\begin{cases} u_1, \dots, u_l, v_1, \dots, v_l & \text{with } u_1 + \dots + u_l + v_1 + \dots + v_l = 2k, \\ u_1, \dots, u_l, v_1, \dots, v_{l-1} & \text{with } u_1 + \dots + u_l + v_1 + \dots + v_{l-1} = 2k, \\ u_2, \dots, u_l, v_1, \dots, v_l & \text{with } u_2 + \dots + u_l + v_1 + \dots + v_l = 2k, \\ u_1, \dots, u_l, v_1, \dots, v_l & \text{with } u_1 + \dots + u_l + v_1 + \dots + v_l = 2k, \end{cases}$$

respectively, and $l \leq k$.

Let

$$C_N = \{a_1b_1 \dots a_kb_k: a_j = a^{m_j}, b_j = b^{n_j}, N \leqslant m_j, n_j < 2N\}.$$

Now we evaluate $(x+y)^{2k}$ on C_N . Let $q \in C_N$. We then have

(3.3)

(a)
$$x^{u_1}y^{v_1}\dots x^{u_l}y^{v_l}(g) = \sum_{a_1'b_1'\dots a_l'b_l'=g} x^{u_1}(a_1')y^{v_1}(b_1')\dots x^{u_l}(a_l')y^{v_l}(b_l'),$$

(b)
$$x^{u_1}y^{v_1}\dots y^{v_{l-1}}x^{u_l}(g) = \sum_{a_1'b_1'\dots b_{l-1}'a_l'=g} x^{u_1}(a_1')y^{v_1}(b_1')\dots y^{v_{l-1}}(b_{l-1}')x^{u_l}(a_l'),$$

(c)
$$y^{v_1}x^{u_2}\dots x^{u_l}y^{v_l}(g) = \sum_{b_1^{'}a_2^{'}\dots a_l^{'}b_1^{'}=g} y^{v_1}(b_1^{'})x^{u_2}(a_2^{'})\dots x^{u_l}(a_l^{'})y^{v_l}(b_l^{'}),$$

(d)
$$y^{v_1}x^{u_1}\dots y^{v_l}x^{u_l}(g) = \sum_{b_1'a_1...a_l'b_1'=g} y^{v_1}(b_1')x^{u_1}(a_1')\dots y^{v_l}(b_l')x^{u_l}(a_l').$$

Since $x^u(a') = 0$ for $a' \notin A$ and $y^v(b') = 0$ for $b' \notin B$, by corollary 1, we see that only (a) in (3.3) can be different from zero and in this case, by corollary 1 again, l = k, whence, by (3.2), $u_1 = \ldots = u_k = v_1 = \ldots = v_k = 1$. Consequently,

$$(x+y)^{2k}(g) = \sum_{a_1'b_1'...a_k'b_k'=g} x(a_1')y(b_1')...x(a_k')y(b_k').$$

We have

(3.4)
$$g = a^{m_1}b^{n_1} \dots a^{m_k}b^{n_k}$$
 with $N \leqslant m_j, n_j < 2N$,

and $x(a_i) \neq 0, y(b_i) \neq 0$ only if

(3.5)
$$a'_j = a^{m'_j}, b'_j = b^{n'_j} \quad \text{with } N \leq |m'_i|, |n'_i| < 2N.$$

By lemma 2, we infer that g is expressible in the form

$$a_1'b_1'\ldots a_k'b_k'=q,$$

where a'_j and b'_j (j = 1, ..., k) satisfy (3.5), only if $m'_1 = m_1, ..., m'_k = m_k$, $n'_1 = n_1, ..., n'_k = n_k$. Thus we obtain the equality

$$(x+y)^{2k}(q) = x(a^{m_1})y(b^{n_1}) \dots x(a^{m_k})y(b^{n_k})$$

for all g of the form (3.4).

Now we have

$$\begin{split} \|(x+y)^{2^k}\| &\geqslant \sum_{g \in C_N} |(x+y)^{2^k}(g)| \\ &= \sum_{m_1=N}^{2N-1} |x(a^{m_1})| \sum_{n_1=N}^{2N-1} |y(b^{n_1})| \dots \sum_{m_k=N}^{2N-1} |x(a^{m_k})| \sum_{n_k=N}^{2N-1} |y(b^{n_k})| \\ &= \left(\frac{1}{2}\right)^{2^k} \|x\|^k \|y\|^k = \left(\frac{\|x\|}{2}\right)^{2^k}. \end{split}$$

A. Hulanicki

Hence, by (3.1),

$$v(x+y) = \lim_{k \to \infty} \|(x+y)^{2k}\|^{1/2k} \geqslant \frac{1}{2} \|x\| > \frac{1}{\varepsilon} \left(v(x) + v(y)\right).$$

We summarize the obtained result in the following

THEOREM. If G is the discrete subgroup of the affine group of the real line as defined in section 1, ε a positive number and x and y the hermitian elements in $l_1(G)$ defined in section 3, then

$$\varepsilon v(x+y) > v(x) + v(y)$$
.

References

- J. W. Jenkins, An amenable discrete group with a non-symmetric group algebra, Notices of the Amer. Math. Soc. 15 (1968), p. 922.
- [2] C. E. Rickart, General theory of Banach algebras, 1960.
- [3] A. Zygmund, Trigonometric series, vol. I, Cambridge 1959.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 4, 3, 1969

Restrictions and extensions of Fourier multipliers*

by

MAX JODEIT, Jr. (Chicago, III.)

Introduction. In this paper we derive certain relations between spaces of Fourier multipliers defined on R^N, Z^N, T^N (definitions and notation are given in section 1). The main result, Theorem (3.7), is for N=1: if $1 and <math>\{m_n\}$ is a multiplier sequence of type (p, p), then the piecewise constant function $m(x) = m_k$ (k is the greatest integer $(x+\frac{1}{2})$) is a multiplier of type (p, p) for Fourier transforms. In the case $1 \le p \le \infty$, the piecewise linear continuous extension of a sequence of type (p, p) is a function of type (p, p) (see (3.6)).

Sections 2 and 4 contain mostly known results, for which we offer alternate proofs. With one exception the results are due to de Leeuw [3]. Theorem (4.3) is due to Igari [2]. The relations between $M_p^p(\mathbb{R}^N)$ and $M_p^p(\mathbb{R}^N)$ are given in section 2, and restrictions to \mathbb{Z}^N and \mathbb{R}^M of elements of $M_p^p(\mathbb{R}^N)$ are treated in section 4.

Among the applications of these results are

- (i) the Marcinkiewicz multiplier theorem for the line follows from the sequential version (section 4),
- (ii) a function m defined on R^N , continuous except at 0, and homogeneous of degree 0 $(m(\lambda x) = m(x) \text{ for } \lambda > 0)$ is in $M_p^p(R^N)$ if and only if its restriction to Z^N is a sequence of type (p, p) (section 4).

Questions raised by Professor R. Coifman and Mr. David Shreve led to this work, which has also profited by a comment of Professor Calderón.

1. Preliminaries. We first set down for reference some conventional notation. R^N denotes real N-space, x, y denote points of R^N , with coordinates $x_1, \ldots, x_N, y_1, \ldots, y_N$. $|x| = (x_1^2 + \ldots + x_N^2)^{1/2}, x \cdot y = x_1 y_1 + \ldots + x_N y_N$. $Z^N \subseteq R^N$ is the set of points n with integer coordinates. If $S \subset R^N$, $a \in R$, then $aS = \{as : s \in S\}$, and if $x \in R^N$, then $x + S = \{x + s : s \in S\}$. T^N , the Cartesian product of N copies of the unit circle in the complex

^{*} During the preparation of this paper the author was partially supported by the National Science Foundation under NSF grant GP 8855.