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Sequential theory of the convolution of distributions
by

J. MIKUSINSKI (Katowice)

1. In [3], a concept of regular operations hag been introduced. Such
operations extend automatically from functions to distributions and
retain their properties. Operations which are not regular, are called
irregular. Irregular operations can not be extended on arbitrary distri-
butions. However, there exists a general method which permits, in cases
where it is possible, to perform such an extension (see [2]).

COonwolution is one of the most important irregular operations. Its
extension on distributions was largely investigated by Laurent Schwartz [4]
and other authors. The sequential approach which is the gsubject of the
present paper makes use of the general method of defining irregular oper-
ations so that the definition of the convolution is nothing else but a par-
ticular case of it. It turns out that this definition embraces all cases in
which the convolution was defined previously by other methods. This
uniform. approach can also be considered as more elementary, because
it does not need any concepts of functional analysis or topology.

Beside the new approach to known facts, there is also a number of
theorems which are stated, in this paper, for the first time.

In what follows we shall use the notation and the terminology of [3].

2. If ¢ i3 a smooth function of bounded carrier, then the convolu-
tions

oo

1) fre= [flo—tpma and exf= [p—t)fHat

-—00

are defined for every distribution f, as regular operations, performed
on f. (It should be emphasized that the convolution is an irregular opera-
tion only if it is considered as an operation on two functions or distri-
butions. Otherwise it is regular.) Such convolutions preserve, for any
distribution f, their ordinary properties:

(2) o = o*f,
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(fitfo)xo =firo+fare,
Fr(pi+@.) = frg+frps,
(M) xp =f*(Ap) = A(f*p) (2 real or complex number),

fOxp = fro® = (frp)®,

(4) (Frp1) ¥pg = f*(py*py).

All the above facts follow from the general theory of regular opera.
tions, presented in [3]. The distributions and functions are considered
as defined in a Buclidean space R? of any fixed number of (imensions q
There is no reason to restrict oneself tio functions and distributions whose
values are real or complex numbers. Although such o restriction wag
made, for didactic purposes in [3], the whole theory presented in that
paper applies also, when admitting the values in a Banach space. Tn.
what follows, all results can be interpreted for real or complex valued
functions and distributions as well ag for functions and distributions
with values in an arbitrary given Bamach space. However, in the lagt
case, some explanations are needed. Namely, in order to make sengible
the products under the integral gign in (1), we have to say, generally,
what a product ab of elements means, when none of factors a and b is
& number. Let By, B, and B, be three given Banach spaces. We shall
assume that, if a<B; and beB,, then abeB, and that the following prop-
erties are fulfilled (see [1]):

1° (@i+ @a) (by+by) = a3by + @y by Oy Dy -ty by

2° Aaw-wb = Ax-ab (4, % real numbers);

3% lab] < lal « bl.

The modulus sign in equality 3° is used for norms in the correspond.-
ing Banach spaces. Properties 1°3° engure that equalities (3) ave true.
If we assume, moreover, that ab = ba, then also (2) holds. In ovder to
ensure (4), where the values of f, p,, p, belong to Banach, spaces By, By, By
respectively, we have to assume that the commutativity of multiplica-
tion, a(be) = (ab)¢, holds generally for @eBy, beBy, ceBy (the product
may then be an element of another Banach space B,)

3)

.

3. In the contrary to the preceding cage, if we consider the eon-
volution fxg ag an operation on two functions or digtributions f and ¢,
then this operation is irregular; it is not defined for avery pair of digivi-
butions (and even not for every pair of funetions). We say that the con-
volution fxg is defined for distributions fand g, itf, for any delba soquence
8n, the sequence (f6,)*(g*4,) is defined and converges distributionally
to a distribution h. Then wo pub, by definition, & == f*g, This definition
?leeds Some explanations. First of all, we must say what & delta sequence
is. This will be, in the sequel, any sequence of real-valued smooth func-
tions 8, with the following properties (see [2])

@
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1° There i8 a sequence of positive numbers «,, convergent to 0,
such that &,(2) = 0 for |o| = a,. .

[++]
20 [ 8y =1

3° There are numbers M, My, ... such that
oo
ay [ 100 < M
—0a

holds for m ==1,2,... and every order k.

In 3°, if the oxder of differentiation is & == (xy,..., »%), then by o
we undergtand the number ¢it-+a, )

Now, the convolutions f* 3, and g*4, are fully defined in the sense
of section 1. Moreover, it is known that those convolutions are smooi?h
functions. Still, the convolutions (f*é,)*(g+*d,) need not be defined, in
general. Denoting f* 6, and ¢* 8, by fu and g, respectively we shall say
that the convolution f, *g, is defined, iff, given any orders % and I, the

integral }o 0 (5 —1) ¢ (1)@t exists in the Bochner sense, i.e. if the integral

}o g (w—ft) O (1) dt converges. Then we putb
~to

(F* 0n)* (g% On) = [ Falo—1)gn(t)dt.

Directly from the definition it follows that, if convolutions fi*g
and f,*g exist, then also the convolution (f;-f,)*g exists and

(fu+fo)*g =Fi*g+1a*g.

Tf the convolution f*g exists, then also the convolutions (if)*g
and f*(Ag) exist for every real number A and we have
() *g = F*(2g) = A(f*g).
If f*g oxists, then also f®+g and f*¢® exist for every order % and
> have
. fAag = frgth = (Fg)®.

The associativity (f*g)*h = f*(g*h) does not hold.in general, even
it Dboth sides arve meaningful. But this is nob astomk'zhmg, because th‘e
associativity of the convolution does not holdz even if .both‘fa,ctors ave
real-valued smooth funections and the convolution is defined in the ordi-
nary way. K.g., let @ be a real variable and let

Floy =1, g =a*, h= [e"adt

9

Then it is easy to verify that (f+g)*h =0 and F*(g*h) = /2.
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Note that, if one of distributions f or g reduces to a smooth function
of bounded carrier, then the convolution f+g, defined in the senge of
this section, does exist and is equal to the convolution in the sense of
section 1. Therefore the same symbol f*g may be used in both cages.

We are going to investigate, now, & few particular cases in which
the existence of the convolution is ensured.

4. In this section we shall be concerned with the case which, is related

to the theory of p-integrable (1 < p < oo) functions in R% The space '

of thoge functions will be denoted by L,. The following classical theorem,
due to Young, plays here the striking role:

IffeLy, gely and 1fr = 1[p--1/q—1 2 0 (0 < p, q << 00), then frgelL,.
Moreover, |f*gl < Iflp-9le-

This theorem iy known mainly for real-valued functions, but it is
true also for functions whose values are in Banach spaces. The proof
remains the same, needs only a more general interpretation.

In the above theorem, the convolution ig understood in the sense
of the Bochner or of the Lebesgue integral. Qur first task is to show that,
under the hypotheses of the theorem, the convolution f*g exists also in
the sense of section 2, and represents the same function.

If feLy and 8, iy a delta sequence, then

F*on—ft =| [f(@~1)—f ()] 8, (1)1
< I @—1)—F (@) 10, (P2« 8, ()P .
Hence, by the Holder inequality,
I+ 811 < ([ 1f@—t)—F (@) 8u() 1) 7 21,
in view of property 3° of delta sequences. This implies
7% =Tl < 3y [ ([ 1 (@—1) = F (@) 8, (1) ) do
= M, [(ou(®)ldt [ |f(@—1)— f (@) da.
Sinee [|f(x—1t)—Ff(@)Pda -0, a5 £ - 0, there is a sequence of num-

bers e,>0, tending to' 0, such that S1f@—t)—~F(0)["dw < &, for |1] = tye
Henee

If* bu—fllo < Mo [ |80(8)] 0t en << Mo, > 0.

. We can similarly prove that feL, implies f *6;{“)51'/,, for every k
and n.

If f and g satisty the hypotheses of the Young theorem, we have
(5) (f*%)*(g*%) =(f*{/)*(an*(sn)-

) Since Oy = 0, %6, is a delba, sequence as well ag d,, the above equality
implies that (f*6,)*(g*d,) converges in the r-th mean, thus also distri-
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butionally, to f*g. Thus the convolution f*g exists in the sense of section 2
and represents the same function as the convolution in the ordinary sense.
In the preceding argument, one might ask about the validity of
equality (5). This easily follows from the following known theorem (being
a simple consequence of the Fubini theorem on multiple integrals, see
e.g. [1]):
¢ If f,q,h are measurable functions and the convolutions (If]*I|g|)*|h]
and g*h ewist, then also all the convolutions in the equality (f*g)*h
=f*(g*h) ewist and the equality holds.

The assertion remains true if we replace the hypothesis that g*h
exists by the hypothesis that f # 0 on a set of positive measure.

If f and g satisfy the hypotheses of the Young theorem, then the con-
volution of distributions f® and ¢® exists, in the sense of section 2, for
any orders &k and 1. If @_’,;p (see [4]) denotes the linear space generated
by the et of distributions of the form f® with feIL, and arbitrary %,
then it follows from the preceding argument that the convolution f*g
exists for distributions fe@z» and geDrq, where 1jr = 1/p+1/g—1. Evi-
dently f*gePzr.

Combining the . Young theorem with the associativity theorem,
quoted above, it follows that, if feL?, geL? heLl” with 1/p+1/g-+1fr = 2,
then (f*g)*h = f*(g+*h). This implies the following associativity theorem
for the convolution of distributions:

TEEOREM 1. If fe Do, g e Dia, he Drr with 1[p+1/g+1[r>=2, then all the
convolutions in the equality (f*g)*h = f*(g*h) ewist and the equality holds.

5. If feL,, then for every ¢ > 0 the set of points at which |f| > e
is of finite measure. In this sense we may say that the functions of class L,
are small at infinity. Consequently, the theory presented in the preceding
section applies to a restricted domain and fails for polynomials, for in-
stance, and other functions which increase at infinity.

However, the convolution f*g makes senge even when f increases
at infinity, provided the second factor g decreages then rapidly enough.
Such cages are important in the theory of Fourier transform of distri-
butions, for instance. We are going to gather them, in this section, in
a more general scheme.

We shall say that a real-valued function  is subemponential, if it
is positive, locally integrable, and satisties the inequality

w(z+y) < w(w)u(y).

The functions €, 2" |2 and ¢® are examples of subexponent.ial
functions. In these examples, # may be a real variable or a point
@ = (£, ..., &) of the g-dimensional space R'; in the last case & is to
be read as &1t
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TeroreM 2. If f and g arve locally integrable functions such that the
quotient f(w)]u(w) is bounded and the product u(—wx)g(a) is integrable for
o subemponential function w(x), then the comvolution h ==fxg ewigls in the
ordinary sense, as well as an irregular operation, and represents o locally
integrable function such that the quotient h(m)/u(w) is bounded.

Proof. Let |f(z)| < Ku(w). Then

If*gl <If1*lgl < K-urlgl = K [u(@—1)|g(t)|at
< Ku(w) fu(mt) lg (4| dt <5 I, u ().

We can al:o verify that the quotient (f* 6%”)/14, i bounded and the
product @(g*64), where B(w) == u(—a), is integrable. Bvidently, we have

(f* 0n) * (g% 0n) == (f*g)*gm

where 0, = dn*J, I8 a delta sequence. This completes the proof.
Retaining the assumption on u, if there are two functions ¢, and I
such that the products u(—w)g(w) and u(—a)g,(2) are integrable, then
the. convolutions (u*gy)*g, exist, which is asserted by a repeated appli-
caimon of Theorem 2. Similarly, the convolutions IRENA exist.
Since % > 0, this implies that also the convolutions 42*([{7,[*195[) exist.
Let & = |g,] *|gsl- Then, | '

Ju(=06@)dt < u(—a) [ u(@—)@0)ds = ux(lg,]* |ga),

which implies that the product w(— )@ (x) is integrable. Conscquently
also the product u(—a)(g, (a) *g,(w)) is integrable.

Thus, if K, denotes the set of all functions ¢ such that the product
u(—a)g () 'is integrable, then the convolution _(jl* ¢s oxists and 'belongs‘
:Jﬂ(; elzu% Eso:;dedlglt .and gz belong to I,. Similarly, if ¢y, ¢, g, belong to By,
Fieriiog) j;?:l(gm?; )(lgrlpl 11‘i]qgg.l)1a* !g:l Tlld 920 (axim:‘. This implies that
("m‘ mult;ip]ica,;jon? Lhis proves that , is a ring under convolu-
" Bvery témpered distribution is a derivative of 6 order & of -
m?l?;oug. fl}nqt‘ion J bounded by a pO]ynomiz;‘ll“a;/(?n)og(;;’ﬁ'(i)(;;’l".lf[‘ll.? ;/'FJL-? n? (1”;
i);ilioi?rfaf'mg functi(?n, theq 'l:l}e produet u(—m)g(x) 18 integrable and
o uentloutmn f*g 'exllsts. Thlg is a particular case of Theorent 2, Sub-

quently, there exists also the convolution f® (g, . 4M), where
%:1? ;a;‘i, dg;;tal"g l‘tﬂ.vl)ldly Qecreasing functions. In other worl:ln, if S is a tem-
tion 1 1;: ptan and g a rapidly‘ decreasing distribution, the convo-
g exists. Tt follows also easily that, it f, g, b are temnpeved distri-

butions, two at least o i i .
—f *(g’* 7). st of them heing rapidly decreasing, we have (f*g)*h

icm
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6. We are coming now to next important case in which the existence
of the convolution f*g of two distributions is ensured: we shall make no
regtriction on the growth of distributions, but some restriction will be
imposed on their carriers.

@Given any subset ¥ of R? and a positive number «, we shall denote
by ¥, the a-neighbourhood of Y, i.e., the set of all points zeR* whose
distances from ¥ are less than «. Evidently, the mneighbourhood Y, is
always an open set.

We shall say that two subsets ¥ and Z of R? are compatible, iff the
intersection (— 1Y), ~ Z, is bounded for any fixed number « > 0; here,
by —Y¥ we understand the set of all #¢R? such that —we¥. Evidently,
we may also say that the sets ¥ and Z are compatible, iff the intersection
Y. ~ (—Z), is bounded for any fixed number «; thus, the relation of
being compatible is symmetric. The definition of compatible sets may
also be formulated as follows: the sets ¥ and Z are compatible iff, given
any number a > 0, the set of points whose distances from —¥ and Z
{or from ¥ and —Z) are less than o is bounded.

Tvidently, if one of sets ¥ or Z is bounded, then ¥ and Z are com-
patible. Another example: if @ > a for v¢¥ and w > b for zeZ, then ¥
and Z are compatible.

If Y and Z are compatible, then so are the sets ¥, and Zg, no matter
what are the positive numbers « and §.

THEOREM 3. If ¥ is the carrier of o distribution of finite order f = ®,
where F is a continuous function in RY, then for any given o >0, f con
be represented as a finite sum of derivatives of continuous functions whose
carriers are in Y,.

Proof. Let ¢ be a smooth function which admits the value 1 on
Y. and vanishes outside ¥,. Then the agsertion follows from the identity

fmprti = 3T (1n () @mme.
ismsk m

TemoreM 4. If f and g are distributions whose carriers ¥ and Z are
compatible, then the convolution exists as am drregular operation.

Proof. We shall first assume that f and g are continuous functions.
Then the sequences f, = f*6, and g, = ¢* d, converge almogt uniformly
to f and g respectively. Since ¥ and Z are carriers of f and g, we have
fu(—@) = 0 outside (—Y¥), and gn(z) = 0 outside Z,, where a = supay.
Thus, if ¢ is a positive number, the product falew—1)ga(t) vanishes for
t¢(—Y)pra n Z,. This implies that the products fn(w—1)gs(t) converge
to f(z—t)g(t) uniformly for |z| < ¢ and every teRY as m — oco. This
implies that the convolutions

(6) FO g = [P @—1) gl (D)t
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exist for every %, 1, and that, for & = I == 0, thiy sequence converges
uniformly in |g] < ¢ a8 m ->oco. Since ¢ iy arbitrary, the assertion ig
proved for continuous f and g. If f and ¢ ave distributions of finite
order, then the assertion follows by Theorem 3.

" It remains to consider the case, when we do not assume thai fand g
are of finite order. If |#| < o, then as before the products Jnl®—1)g(1)
vanish outside (—¥),pq ~ Zs, but we cannot assert that tho sequonce
converges uniformly. Let @ be a smooth funetion, equal to 1 on the inter-
section (—¥)z40 » Zye and vanishing oubside (— V)agraa A Hggo Lot Fess 102
G =02, fo =J*08y, Jn = §*8,. Then we havo '

(7) ﬁz(m‘"‘t)@w“) == fo (0 1) g (1)

for o <e and te(—¥)ponZ,. On the other hand, we have
Ju(@—1)Fu(t) = 0 for |o| < ¢ and 8¢~ Y)ora ~ Zq, which can be proved
by the same argument as for f, and g,, for the carriers of f and 7 are
included in the carriers of f and g respectively, Thus (7) holds for every ¢
provided |z| < ¢. Hence ’

@) Jo¥n = Fu*fn  for lw] < o.

.Since f_and g are of finite order, the soquence fi, * g, converges digtri-
butionally in R%. By (8), the soquence Ju*gn convergoes distributionally
for |z < o. Since ¢ iy arbitrary, it converges distributionally in RY and
the proof is complete. '

The preceding theorem can be completed. by the almost obvious
Statement that the earrier of the convolution f*g is included in the set
Y+Z which congists of elements o = Y+2 such that y«Y¥ and zeZ.

Note that, letting n - oo in (8), we obtain incidently

frg=Ff+g tor |al <.
This remark will be useful in the proof of

; THEOREM 5. Let f,,. and gy be sequences of distributions such that o —>f
and gy, —> g. Let the cfwme.ws of fu b6 included in a set ¥ and the carriers of o
o another set Z which is compatible with Y. Then forgn -+ frg. |

Eequi’;ct; s(f}.o :z:rﬁrsh hism%me‘that Ja and O are continuous and that the
the yoducte ges; 08t umff)rmly. If g is a positive nupber and o] < o,
oo produ con,,(m-— %gn(t) vanigh for't Dot belonging to (—¥), ~ % and,
o 1 converge to f(w—1) ¢ (1) uniformly for lw] < ¢ and ¢eR% Ilence,

© preceding proof, we conclude that the convolutions f,, g, exist
and converge to f+g almost uniformly in R? "

If the
re ate orders k and I guch that P = Fuy G == g, By and @y

being conti i -
g nuous and almost uniformly convergent for n — oo, then the

assertion follows by Theorem 3.

e ©
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Consider the general case. Let ¢ > 0 and let 2 be a smooth function,
equal 0 1 on (—X)y 00 ~ Zy and vanishing outside (— )50 ~ Zso-
Let f,, = fof2 and F, = g, 2. Then

(9) Ju*fn :fn*ﬁn for 2] < o,

by the remark just before Theorem 5. Since the sequences f, and §, are
convergent and their terms have their carriers included in a common
bounded set (carrier of ), there arve orders & and I such that F = f,
and @9 = g,, T, and @, being continuous functions, convergent almost
uniformly for n —» oco. Thus, by the preceding result, f,* g, converges
in RY% By (9), the sequence f, * g, converges in |¢| < g. Since p is arbitrary,
fu*gn converges in RZ

We shall prove that the sets X and Y are compatible, iff
(*) veX, ye¥, |2+ |y| = co implies |x+y| — oo.

In fact, assume that X and Y are compatible and z,¢X,y,eY,
||+ |Yn| = 00, If |yt Yu| - co does not hold, there is an increasing
sequence of positive integers p, such that |z, +yp,| < M. The distances
of —ay, from —X are 0, and the distances of —a,, from ¥ are less than .
Oonsequently, all @, are contained in a bounded set, for X and Y are
compatible. Similarly, all y,, are contained in a bounded set. This contra-
dicts |on] -+ |yn| = oo.

Now, assume that X and ¥ are not compatible. Then there is a se-
quence g, such that the distances of 2, from —X and Y are bounded and
[¢s] = co. Thus there are sequences —a,e—X and y,e¢¥Y such that
[#ntwn] < M and |2,—Yn| < M. This implies that [¢,] — oo, |ya| = oo
and |@,+yn| < 2M, which proves that condition (*) is not satisfied.

Condition (*) is more adequate for generalizations, when consider-
ing three (or more) sets. We shall say that three subsets X, ¥, Z of R?
are compatible,itfw e X,y e Y, 2eZ, |@|+ y| + |2| - coimplies |+ y + 2| - co.
Tvidently, if three sets are compatible, then each two of them so are.
Moreover, if X, ¥, Z are compatible, then the sets XY and Z are com-
patible; similarly X and ¥+Z are compatible.

TinorEM 6. If the carriers of distributions f,g,h are compatible,
then (f*g)*h = f*(g*h).

Proof. Let fy =f*0y, 0o = %0, and h, =h=4,. If the carriers
X, Y,Z of f, g, h ave compatible, then also the carriers of fn, gn, b are
included in compatible sets X,, ¥.,Z, and therefore are themselves
compatible. Thig implies that the convolutions [ful*|gal, (Ifal*gal) * [hal
and g, *h, exist. Consequently, we have (fy*gn) *hy = fu *(gn*hy). Hence
the assertion follows by Theorem 5.

Trom theorem 6 it follows, in particular, that (f*g)*h = fx(g*h)
holds always, if two of distributions f, ¢, h are of bounded carrier.
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7. We ghall still prove that the commubativity (f+g)#h = Flgn)
bolds also, if one of distributions f, ¢, % i8 of bounded carrier, Drovided
the convolution of two remaining ones exists. We have namely:

TeeoREM 7. If the convolution f+g emists and h is a distribution of
bounded carrier, then, in the equalily (f*g)*h == fr(g*h), all the couwold-
tions ewist and the equality holds.

Proof. The existence of convolutions (f*g¢)*h and g*h follows, ay
a particular case, from Theorem 5. Tt remaing to prove the exigtence
of f+(g*h) and the equality. Let Jn = (f*&,)%(g%8,). Then Ty, -» fry
by the hypothesis that fxg exists. Now, by Theorem 5 we have T
—(f*g) *h. Assume that % iy a continuous function. Then

Rt b == [(f8n) *(9 % 8p) 1% b = (f* En) *[(g % 0a) % D] == (% 8,) %[ (g *h) % 5,7

here, the second equality follows from the fact that fxé,, g*8, and b
are functions for which the convolutions (|f* 6| * |g * §,]) * |&] and (9%8,) *h
exist, and the last equality follows from the remark at the end of gec-
tion 6. Since k,*h converges, the convolution f *(g«h) exists, by
definition, and the equality (f*g)*h = f#(g*h) holds. I¢ % is not a con-
finuous function, then the assertion follows by Theorem 3.
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On the uniqueness of the ideals
of compact and strictly singular operators *
by
RICHARD H. HERMAN (Rochester)

The purpose of this note is to extend a result of [3]. In particular,
it is shown fhere that the ideal of compact operators is unique in [X7],
the bounded linear operators from X to X, where X =1Ip, 1< p < oo
and ¢,. An obvious question is do there exist other spaces for which this
is true ? We obtain a partial result in this direetion by requiring our space
to have two properties which Ip and ¢, enjoy. In addition, using one of
these properties, we show that the ideal of compact and strictly singular
operators agree. The phrase “partial result’’ is used since we eannot at
this time exhibit a space with the above-mentioned properties other
than Ip or ¢,. However, the proofs given here have the advantage of
treating all cases simultaneously, as opposed to what is done in [3].

We will assume that the reader is somewhat familiar with the theory
of Schauder bases in Banach spaces. Results used from this theory may
be found in [2].

1. Definition. {e;} is a Schauder basis for X if for each zeX,

£ = ) a;z; uniquely. In this case a; = g:i(a), gseX™.
1

2. Definition. {2} is said to be a block basis if
41
2 = Zd(r,;k)&,;, ay < g < ...
ap+1
If {e;} is a Schauder basis for X, then {2} is a Schauder basis for
8D {=i}, [11.
3. Definition. We will say that a Banach space X with a basis
has (+) if given a block basis {2}, there exists P: X — 5p {23}, P a pro-
jection. )

* This work was done while the author was an NDEA Fellow at The University
of Maryland.
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