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(b) AT maps 8, one to ome onto (85)';

(c) A(85) = 8, and AT(8) = (8)';

(@) () 3ty =0 implies t, =0 for each 4, (i) AT is one to one

i=1
on 8L, (iii) A7 (8y) is closed in (8p).

Proof. (a) < (b). This follows from (a)<-(e) of Theorem 1 and
Lemma 2. This statement is Theorem 3.2 of [3].

(a) < (¢). By (e) of Theorem 1, A (8;) = (8)) if and only if @ is
pasic. In the proof of Theorem 2.1 of [3] it is shown that A(8}) =8,
if and only if # is fundamental in X.

(a) <> (d). Thisfollows from (f) < (a)in Theorem 1 and from Lemma 2.
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On the characterization of sequence spaces
associated with Schauder bases

by

W. RUCKLE (Bethlehem, Penn.)

1. Introduction. An F-gpace which has a Schauder basis is esgentially
a space of sequences ([9], . 207). This paper discusses the question:
What kinds of sequence spaces are associated with a Schauder basis of
a locally convex F-space? The chief results are contained in Theorems
3.1, 3.2 and 3.3. They are correspondences between (a) Schauder bases
and y-perfect FK-spaces (b) unconditional bases and a-perfect FK-spaces
(¢) symmetric bases and o-perfect FK-spaces. (See 2.1 and 2.2 for defi-
nitions of y, a and o-perfect.)

1.1. Definition. An F-space is a complete linear metric space.

A sequence y = {®;, ®s,...} is a basis for the F-space X if each
point # of X has a unique representation

oc
(1.1) o= )t
=1

where (#;) is a sequence of scalars.

The sequence y is an wnconditional basis if the convergence in (1.1)
is unconditional.

In the sequel we shall limit our consideration to y a basis for a lo-
cally convex F-space.

Tt is known ([9], p- 207) that the linear functionals defined by

oo
fn( ti@'i) =1n
i=1
are continuous. Thus if the linear space of sequences
oo
8= {(ti): Ztimi converges in X}

qe=1

is given the identity topology with respect to the isomorphism

(1.2) Dt (t).
=1
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8 is an FK-space i.e. an F-gspace of sequences on which the coor-
dinate functionals s —s; are continuoug ([9], p. 202). Under the equi-
valence (1.2) #; corresponds to e;, the sequence which has a 1 in the 4-th
coordinate and 0’s elsewhere. Consequently, whenever we are to con-
sider a locally convex F-space with a basis, we may assume it is a locally
convex FK-space with basis & = {e;, €,,...}.

1.2, Definition. A sequence y is a symmetric basis for a locally
convex F-space X if the topology for X is determined by a sequence
{p1y ps, ...} of seminorms, each of which have the property:

]
n
(1.3) sup sup pk(Zaiﬁ(w)m,,(i))< co for all zeX.
z el i=1

1<n<oo

Here & ranges over the set of all permutations on the natural num-
bers and {f,} denotes the sequence of continuous functionals biorthogonal
to %.

Condition (1.3) corresponds to the condition (SB,) of Singer [8],
given for Banach spaces. The following lemma is a generalization of
his result (SB,) = (SB,) for a Banach space. We shall prove the converse
of this Lemma at the end of Section 3.

1.3. TmymA. If {w,} is @ symmetric basis for the locally convex F-space
X, then every permutation {tm} of {®m.} is a basis for X equivalent
to {m,}. :

Proof. A basis {,} of an F-space X is equivalent to a basis {Yn}
of a space Y if

[o+] o«
Ztimi converges in X °Et1yi converges in Y.

=1 i=1

This condition holds if and only if there is a topological isomorphism
T from X onto ¥ such that Tw, =y, for each n [13.

In this case if the topology on X is given by & sequence {pr} of semi-
norms which satisfy (1.3) the mapping

T (Z"’ k) = j Ulla)

i=1 i=1

is an isometry for each permutation sz on the natural nwmbers.

2. Preliminary results. A coordinate space or sequence space is a set
8 of scalar (real or complex) sequences which is closed under coordinate-
wise addition and sealar multiplication. We denote the sequence whose
i-th term 18 s; by (s;) or simply by s.
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2.1, Definition. For a subset T of a coordinate space S,

7%, the a-dual of T ig the set of all s such that Z |8;1;| converges
=1

for each ¢ in T. n
° T7, the y-dual of T is the set of all s such that sup | 3 sifi| < oo

==l
for each ¢ in T. .
T°, the o-dual of T is the set of all s such that i§|3itn(§)| < oo for
each teT and each permutation z on the positive integers.

In particular, we write s* for {s}* where s is a sequence y = a9 g.
The y4-dual of T is a coordinate space for y =a,y,0and I° c I° c T7.

9.9. Definition. The sequence space § is y-perfect if 8 =8

= a O’) .
K It’i)s”&lways true that 8% 2 §; for the case y = a, see [4], p. 197.

2.3. LEMMA. If S is y-perfect, then
' 8 = ~ {s¥:5e8%.

Proof. By definition T* = ~ {s*: weT} so that the first equality
follows when T is replaced by §*.

2.4. Lmyvma. If {8,} is a fomily of g-perfect sequence spaces, then
N 8, is y-perfect (x = a, v, 0).
’ Proof. It suffices to show that (M8, 2 (Q S,)¥*. Since {DS,, c 8,
for each u, (N 8.)* 2 LS, 8o that (ﬁﬂu)"" c (Lﬂ)Sﬁ)". Also E}S,’i o 8%

" » ”
for each p so that (U 8%)* ¢ 8§ for each. Therefore,
'3
(N8* s NBEF = M8
» B u

because S, is y-perfect for each u.

2.5. Definition. The sequence space S is normal if for ea,.eh sel
and each bounded sequence (a;), (a:8:)e8. 'The sequence space 8 .1:{E sy;r;l,s
mefrio if for each seS and each permutation z on the positive integ

(su(i))fs- . ) ]
2.6, LuMmA. If § is normal, 8 = 8% if 8 48 symmetric, 8° = 8.
Proof. If § is normal, and te8”,

n
sxg;p 1 2 8y

i=1

< o

for each s in 8. By definition ([s;%/ls:ti]1ss) is in 8 so that gllsml < oo
for each s in §. Thus §” < §°.
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Suppose S is symmetric, te8° and # is any permutation on the posi-
tive integers. For each s in 8§, (s,-1)eS 8o that

[} (=]
2 lgn”l(i)til = 2 ls‘itn(i)1 < co.
i=1

d=1
The opposite inclusions have already been noted.

2.7. LevmwmA. If S is a locally conves FE-space which contains & and
t 48 in 8, there is a continuous Uinear functional f on S such that f(e;) =t;
for each .

Proof. For n =1,2,... define

n
F,,(s) = 2 t,;'S‘i.

fe=1

Then for each 4, lim #,(e;) = ¢, and for each s in &,

. {Fp(s):im =1,2,...}
is & bounded set. Therefore, by [3], I1.1.18,

F(s) = UimFy(s) = ) tis;
n i=1
is continuous on the cloged linear span of & in §. By the Hahn-Banach
t}\eorem ([3], 11.3.10), F' can be extended to a continuous linear func-
tional f defined on all of §.

' Let @ = {@i:¢=1,2,...} be an increaging sequence of seminorms
which determines the topology of an FK-space § with basis & ([9], pp- 216,
217). A new sequence of seminorms » = {P;:4 = 1,2, ...} may be con-
structed by means of the relations

00 ' n
(2.1) P; 8;¢;} = sup Q;
(2 fv) nPQw(ZSNj)-

F=1 J=1

Each seminorm is monotonic with respect to &, i.e.

n Nl
Pi(g; s,e,) <P¢(g; sje,)

for each .

" @2.8. Lmuma. The topology defined by m on S coincides with that defined
o t]?rgkof. The topology induced by = on § is evidently stronger than
h?. induced by &. It is routine to verify that § is complete with this
stronger topology. Thus the topologies coincide ([9], p. 199, Cor. 1).
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2.9, Definition. A sequential semimorsm (s. s.) is a function, P,
from s, the space of all sequences into E* which satisfies the following
conditions:

(a) P is an extended seminorm, ie. P can assume the value co and

(i) P(as) = |a|P(s) for each scalar a,

(ii) P(s+1) <P(s)+P ().

(b) P(é;) < oo for each 1.

n
(¢) P(s) = sup P( s:6;) for each sequence .
n i=1

An s. 8. P is a sequential norm (s. n.) if in addition

(d) P(s) = 0 implies s = 0.

An §. 8. P is balanced if

(e) P(s) = sup{P(am): |ag| <1 for each }.

An 5. n. P is symmetric if

(f) P(s) = P((8ac»)) for each permutation x on the natural numbers.
9.10. LevmA. If {Py: ded} is o family of s. s, then P defined by

P(s) = supPy(s)
2

is an s. 5. providing that P(e;) < oo for each 4. If each P, is balanced (sym-
metric) P is balanced (symmeiric).

Proof. All of the properties (a)-(f) of 2.9 are preserved by suppre-
mums with the exception of (b) which holds by hypothesis.

Tor an s. s. P let Sp denote the collection of all s for which P(8) < oo.
Define a topology on Sp by means of the geminorm P and the coordinate
geminorms

Bulsy =1lsxl, *=1,2...

2.11. Lemma. With the topology defined above Sp is an FE-space
and is a basic sequence in Sp.

Proof. It is evident that Sp is a linear space; it is a metric space
since the determining family is countable ([9], p- 217).

‘We show that Sp is complete. Let {s™} be a Cauchy sequence in Sp.
This means that {s™} is a Cauchy sequence with respect to the semi-
norms P, B, H,, ... Thus for each 4, {s(} is a Cauchy sequence of sca-
lare and so

§; = lims{™

n

exists for each 4. Then
LmB,(s—s™) =0 for each
n
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is evident. If n, m > N implies P(s™—s"™) < & we have

k
P31 sMe) < e
=1
for each % so that
I3
P (2 [s§— Si]ei) e
=1
for each k. Thus from (¢) of 2.9
Ps™M_5)< e
for n> N. This implies that seSp and that
limP(s—s™) = 0,
n

The continuity of the coordinate functionals on Sp was established
above.

Finally note that the operators

Fals) = D sies
=
are uniformly bounded on Sp and that
HmF,(e;) = ¢,
n

for each i. Thus by [8], IL.1.18,

§ =1limF,(s) = Zsiei
K i=1

exists for each s in the closed linear span of &.
sequence in Sp.

2.12. Lemma. If P is am s. 8., Sp is y-perfect.

Proof. This was Proved in [5] for a speci

E pecial case of P and 8. n. T

Same proof holds for P an arbitrary s. n. e

Assume Pley,) 0 and Plen,) = 0 for ¢ = 1,2,.
the sequence (k;) terminates then Sp = s,
If the sequence does not terminate define

Therefore, & is a basic

.. In the case when
which we know is y-perfect.

N(s) = supP (ansieki).
n i=1

Then it can be directly verified that N i i
of all b pop oo B8 o at N is an 5. n. and that Sp congists

: 13 Skys --.) €8y, Therefore, ¥ consists of all s for
which (si,, 51, ...)eSY 50 that Sp is y-perfect because Sy is y-perfect.
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2.13. LemmMA. Let @ = {P;: i =1,2,...} be a sequence of s. s. such
that Pi(s) = 0 for each i implies s = 0 and let

8, = (M 8p,.
=1

Then Sg ts a y perfect FK-space with the topology determined by ®.
The sequence & 18 basic in Sy. If each P; is balanced, & s an unconditional
basis. If each Py is symmetric, & is a symmetric basis.

Proof. By [9], p. 205, Theorem 3, S, is an FK-space with the
seminorms @ v {Fy: kb = 1,2, ...}. But the seminorms By, k = 1,2, ...,
are not necessary since if P;(e;) >0

k k-1
By (8)P;(ex) = Pj(sner) <P,-(2 Sie'i) +P; (Z Siei) < 2F;(s).
1=1 =1

That & is basic in S, can be shown either directly or as in 2.11.

The space Sp is y-perfect by 2.12 and 2.4.

Suppose each P; is balanced. Let s be in the closed linear span of
& and let (a;) be a sequence with |a;] <1 for each 7. Then for m =1,
2,...,m>m and each k,

Pk(ﬁ aisiei) < Pk(isiei)

=M 1=m
so that > s;e; converges unconditionally to s by [2], p. 59 (1)(d).
=1

If each Py is symmetric, & is a symmetric basis by Definition 1.2
since we have already seen that & is a basic sequence.

For a given sequence " we can define three sequential seminorms
which we shall employ in the next section:

4

n
Pi(s) = sgp l Zsm-

=1

Pis) = D lsitil,

i=
Pi(s) = sup {Z]sitﬂ(i)lzaz is a permutation on the nabtural numbers}.
=1

Note that P§ is obviously balanced and that P{ is obviously symmetric.

2.14. LeMMA. The space of all s for which P}(s) < oo is 1. The space
of all s for which P§(s) < oo is t*. The space for all s for which P{(s) < oo
is m (bounded sequences) if t is funitely non-zero and ¥° if ¢ has an infinite
number of non-zero coordinates.
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Proof. The first two statements are obvious. The third is not diffi-
cult to obtain and discussed in [6] and [7].

3. The main theorems. In the following three theorems we shall say
that a space of sequences S is associated with a basis if the correspondence
(1.2) exists between a space with basis y and 8.

3.1. TeEORBM. 4 coordinate space 8 is associated with & basis of
a locally convew F-space if and only if 8 is the closed linear span of & in
a y-perfect locally convex FK-space T. The space T is equal to 8.

3.2. THEOREM. A coordinate space S is associated with an uncondi-
tional basis of a locally convex F-space if and only if 8 is the closed linear
span of & in an o-perfect locally convex FK-space T. The space T is equal
to 8.

3.3. THEOREM. A coordinaic space S can be associated with a symmetric
basis of & locally convex F-space if and only if 8 is the closed linear span
of & in o o-perféct locally convexr FK-space T. The space T is equal to 8.

Proof of Theorem 3.1. Suppose § is associated with a basis of
a locally convex F-gpace. Then the correspondence (1.2) shows that §
can be regarded as a locally convex FK-space with basis &. According
to 2.8 the FK-topology of § can be given by an increasing sequence of
seminorms {p,, p,, ...} Which are monotonic with respect to the basis
&. For each &, we can extend p; to the 5. 8. P, by

Py(s) = E‘:;Ppk (é Sm) .

By 213, T = {ﬂspi is a y-perfect FK-space with the topology
=1

determined by {Pp:k =1,2,...}. Since P; restricted to S is py, S is
a closed subspace of T. Since & is fundamental in 8, § must be the closed
linear span of & in 7.

In order to prove that T = 8% it suffices to show that & = T".
That §” = T7 follows since § < T. Assume uef8”; then by 2.7 there is
a continuous linear functional ¥ on T such that F(e;) = u; for each 1.

n
For each seT' the set {3's;e;:m =1,2,...} is bounded because
T=1

n

pk(Z&;ei) <pr(s) for each n.
1=1
Therefore,

{F(iélsm) imo=1, 2,...} = {é:sim:n =1,2, }

is a bounded set so that ueT?.
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It remains to show that if 7' is a y-perfect FK-space, & is a basic
sequence in 7. Let {@;: 7 =1,2,...} be an increasing sequence of semi-
norms which determine the topology of 7. For each « <77 define the s. s.

n
Puls) = S%p|gsiui ,
and let % be given the FK topology discussed in 2.11. By 2.3, T
=n {u': ueT?} so that T < »* for each ueT®. Thus the topology of
T is stronger than that of «” ([9], p.204) which implies that there is a
number k, > 0 and a seminorm ¢; such that

(3.1) BPL <Qult),  teT.
For ¢ =1,2,... form the collection
2; = {k,Pl: ueI; |, P (1) < @Qi(t) for each ¢ in T}.

If Q; # 0, then Q;(e;) # 0 for some j so that 2; will contain the non-
zero seminorm Q;(e;)Py..

Let P; = sup2;. Then & = {P;:4=1,2,...} is a countable collec-
tion of s. 8. by 2.10. If @;(z) #0, Pi(z) % 0 so that S, is an FK-space
by 2.13. Since P;(t) < @;(¢) for teT, Sg 2 1. On the other hand, by (3.1)
for each » in 77 there is P; and k, such that

Ty Py (1) < Pi(d), teT,

which means that u* = Sp,. Hence Sy = T Consequently, @ determines
the FE-topology for T by [9], p. 204, so that & is a basic sequence in T'
by 2.13.

Proof of Theorem 3.2. Suppose § is associated with an uncon-
ditional basis of a loeally convex F-space. By Theorem 3.1, 8 has an
FE-topology in which S is the closed linear span of &. It is necessary
to show that 8 = 8. However, if seS and |a;] <1 for each ¢, then
(4:8;) 8 by [21, p. 59(1)(d), so that § is normal. According to 2.6, 8* = 8%
and since §* is also normal 8" = 8.

If T is an a-perfect locally convex FK-space we show that & is an

" unconditional basic sequence by an argument analogous to that in the

y-perfect cage. In this instance, instead of P} we use the s. s.

L3
Pg(s) = sup D [siu]
n =1
defined for each u in 7° Rach seminorm P; defined as a supremum of
seminorms of the form P2 will be balanced so that & will be an uncondi-
tional basic sequence in n Sp, = T by 2.13.
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Proof of Theorem 3.3. In the case of S associated with a symmetrie
basis of an F-gpace it is necessary to prove that 8§ = 8%, and this fol-
lows from 1.3 and 2.6.

If 8§ is a o-perfect FK-space, then either § = s in which case we
are finished or 8§ = m [4]. In the second case for each u in 8° define

o
Py (s) = sup {2 [tagey8il: @ is & permutation on the natural numbers}
7 4=l
and proceed as in the y-perfect case. The seminorms P; defined in the
course of the argument will all be symmetric by 2.10 so that & will be
a symmetric basis for its closed linear span by Definition 1.2.

The following is a generalization of (SB,) < (SB,) of Singer [8], 6
Theorem 5.3.

3.4. CoROLLARY. A basis {x,} of a locally convex F-space X is a sym-
metric basis if and only if every permutation {Z,m} of {,} is @ basis of X
equivalent to {@,}.

Proof. Without loss of generality we may restrict our attention
to & a basis for a locally convex space S.

The necessity of the condition was given in Lemma 1.3.

If every permutation of & is a basiz for § equivalent to &, then
se8 implies (8,4) 8 so that 8 is symmetric. Therefore, §° = 8 so
that, by 3.2 and 3.3, & is a symmetric basis for S.

2
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An example concerning reflexivity
by )

R. HERMAN and R. WHITLEY (Maryland)*

The spaces ¢, and ! not only fail to be reflexive but contain no infin-
ite-dimensional reflexive subspace [7, 12]. It is natural to conjecture
that each non-reflexive space contains an infinite-dimensional closed sub-
space with thig property; this conjecture is false. Here we give an example
of a Banach space which is not reflexive (or even quasi-reflexive [4])
yet has the property that each. of its closed infinite-dimensional subspaces
contains a subspace isomorphic to the Hilbert space 2. We also discuss
this type of non-reflexive space and show that it has some properties
in common with reflexive and quasi-reflexive spaces.

LeMMA 1. Let X be the quasi-reflexive space constructed by R.C.
James ([8], also see [9], p. 198). Ewery infinite-dimensional closed sub-
space of X contains o subspace isomorphic to 1.

Proof. Werecall that the space X consists of vectors z = (a4, a,,...),
 a sequence of scalars, where 2 is in X if and only if lima, = 0 and

n "
el = sup[ 0y, —ayy |2+ 0y, 7]
te=1

is finite, where the supremum is taken over all finite increasing (or one
term) sequences. The vectors z;, with a one in the ¢-th place and zeros
elsewhere, constitute a Schauder basis for X.

Using a theorem due to Bessaga and Pelezyniski ([2], C.2, p. 157),
each infinite-dimensional closed subspace M of X contains a sequence
{yn} which is basic ({y,} is a Schauder basis for its closed linear span
[#.]) and is equivalent to a block basis [z,], With respect to «n, i.e. each
2, i8 given by

41
2p = Z g @
1=gp+1
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and the second by National Science Foundation grant GP 5424.

Stuydia Mathematica, t. XXVIII, z. 3 5


GUEST




