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A note on parabolic fractional and singular integrals®
by

C. SADOSKY (Buenos Aires)

Introduction. A. P. Qalderén and A. Zygmund have considered
in [3] singular integral operators given by convolution with kernels that
are homogeneous of degree —n and have mean value zero on the n-dimen-
gional unit sphere, and they proved that, under suitable conditions,
these are continuous operators from IP to L”, 1 < p < oo, where the
norms are taken with respect to the Lebesgue measure do. Assuming
this result and the boundedness of the kernel on the unit sphere, Stein [10]
completed it by proving that the operators are continuous from
I? to IP with weighted measures |o/’dw. (This was known for » =1,
see 1] and [B]).

The purpose of thig paper is to obtain an analogue of this last theorem
for parabolic singular transforms that we introduce in § 3. (See theorem
3 (*) below). We use a different method of proof. For this we define in
§2 a ‘“parabolic” fractional integral operator and prove some of its
properties of continuity, which may be of independent interest.

1. Preliminaries. We begin with some notation and basic defini-
tions.

In the following we shall denote by (@,1) == (B1y «evs Tny By (y,8) =
= (g -++y Yn, 8) points in the Buclidean (n--1)-dimensional half space
B, = B, {0, o). I” will be understood as IP (B;,,), the class of com-
plex valued measurable functions flz, t) defined on Ef,; such that [[fll,
= ([f(z, t) dodt)'’” is finite. An integral without specification of the
domain of integration will be understood a8 being taken over the entire
B},,. C with various subscripts will stand for a constant, not necessarily
the same at each occurrence, depending only on the variables displayed.
Dependence on the dimension, though, will not be indicated.

We introduce the metric [z, 1] = (|a|*"+*)""", where m is a fixed
positive integer.

* This research is a part of the author's Ph. D. thesis, University of Chicago,
March 1965. R
(*) This result was announced in Notices, Amer. Math. Soc. 12, mo. 1, 65T -45.
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A linear operator 7', defined on functions is I”, is said to be of type
(»,0), 1 <p,q < oo if there exists a constant C,, such that vuil
< Opgllfllp, independently of f.

For an (n-+1)-tuple P = (i, Py, ..., Pny1), a Imixed or vectorial
norm. P is defined as

Ifllp = (f (/ ([ £ 22y, 1 do """ o, .a) "

(see [2]). We say that an operator T is of wvectorial type (P,Q) for P
= (D1) Pay ovvs Pua)y @ = (@15 Gy +ovy Gupr)y 1 < 5y fi <o i =1,2,..,
n+1, when ||[Tflly < Crpqllfilr, independently of f.

The distribution function of f is defined by D(f ;@) = Dy(a) = (Le-
besgue) measure {(%,1): |f(, )| > a}, a > 0. Dy(a) is non-increasing and
continuons from the right. The non-increasing rearrangement of f onto
(0, c0) is then defined by f*(v) = inf{a> 0:Dy(a) <7}, 7> 0. )
is also continuous from the right and has the same distribution fune-
tion as f.

A sublinear operator T, defined on functions in I?, iy said to be
of weak type (p,q), 1 <p < oo, 1 < g < oo, if there exists a constant
Cpg such that Dy(a) < Cpg(||fllp/a)? holds independently of f.

As '

sup a(Dy(a))"" = sup 7 (r),
>0 >0

the weak (p,g) condition of an operator T can be gtated as

Sup THTNH*() < Opglfllp-

In the following paragraph we shall use a property of f* that we
are going to prove next.

Lmwea 1. (fg)* (4 7,) < f*(w2) g% (za).

Proof. By definition, f*(z,) = inf{a: Dy(a) <7}, ¢*(zs) = inf{B:
Dg(p) <w} and (fg)*(r,+7,) = inf{n: Dy (n) < v, 7o) As the distri-
bution functions are non-increasing, if a > f*(r,), then Dy(a) < 7y, and
it §>g"(z), then Dg(B) <z, But {lfg| > ap} < {If] > a} v {lg] > B
80 Dyy(af) < Dy(a)+D,(B).

Then, it is Dy (af) <747, for all o, § such that o> f*(zy) and
# > g*(z,), and this implies (fo)*(t2+7,) < of for all such a,p. So
(f9)* (v1+ 1) <f*(751)g*("2)‘

2. Parabolic fractional integrals. In one dimension we know that
the fractional integral operator that we denote by H,, 0<y<]l,

+oo
(Hyf)@) = | F@) lo—yP=ay,
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is of type (p,7), where 1/p—1jr =y <1jp <1 (see, for instance, [12],
vol. II, p. 142) and of weak type (1, 1/(1—y)) ([11], Th. 6, p. 243).
Let us now consider the one-dimensional operator

+eo
(Tyuf) (@) = |0l ™ (H,,f) (@) = |21 [ f(y)lo—yl"dy.

Lemma 2. T,,, 0 <y <1, is an operator of type (p, p) for 1 < p < 1fy
and of weak type (1, 1).

Proof. It is sufficient to show that T,, is of weak type (p, p) for
1 <p<1/y and then apply Marcinkiewicz theorem [11].

Using the fact proved in Lemma 1 with 7, = 7, = 7/2 we have
(L, (v) < (v/2)77 (H, 1 f)*(¢/2) and

® upePT,uf)'() < g (1 ().
>0 >0

Taking into account that 1/p—y = 1/r and that H,, is of weak
type (p,r) for 1 < p < 1}y, inequality (1) becomes

sup (T, 1)* (v) < Opell flla

and the conclusion of the theorem follows.
In the (n+1)-dimensional case we define, for 0 < y < n+1, the
following ‘‘parabolic” fractional integral operators:

(Hf) (@, 1) = [ f(y, ) [@—y, t—s] """ ayds,
(va) (wy t) = [=, ﬂ_y(H'yf) ($1 1)
= [2, 817" [y, 8)[0—y, t—s]™" " dyds.

TawoREM 1. (a) The operator H, is of wvectorial type (P,R),
P=(p,...,p,D)y R=(ry...,r,7%), where 1/p—1jr = y[(n+1), 1/p—
—1/r¥ = y[m(n-+1) for 1 <p < (n+1)/y.

(b) The operator T, is of (ordinary) type (p,p) for 1 <p <1fy.

Proof. We have

g +m—y)2m
O [y — 91" 4o oA | — Y™ [ — 8O
1-7l(n+1)_ . ‘!wn__ ynll-y/(nﬂ)lt_ slx_.y/(n+1)m_

[o—y, t—sT™ >
= Op (w1 — 41|

‘Without logs of generality, we may.assume t;h_a,t f=0. Then H,f
iy dominated by the iteration of n-1 one-dimensional operators:

Hf) (@, 1) < OnH,mi1y1--- (0 times) ... Hyo iy 1 Hpmminyif @1y ooy &y 1)
”. ’ 7l(n+1),
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But under the conditions of the hypothesis the conclusion follows.
(b) As before, we have

[@, 1] = O (@]} . o [ - 27)7"
= Ol [P0 ey PO D D),
50 that
(Tyf) (w: t) < Om('mlry/(n“)yvl(n-l-l),) A (‘wn|~y(u'|-1)Hyl(n+1),1) X

X (t—y/(lmwl“I)Hy/m(n»pl),l)f(ml: <oy Dy, b)

for f > 0.

Combining what we know about the types of these one-dimensional
operators, we infer that T, is of type (p,p) for 1 <p < (n41)/y.

The properties of type of the parabolic fractional integrals given in
Theorem 1 are all that will be used in §3.

However, it should be noticed that the following proposition, that
ig the natural analogue of Sobolev’s lemma, holds:

TrroREM 2. (a) The operator H, is of type (p,q) where 1[p—1jq
= y[(n+m) for 1 <p < (n-4-m)fy.

(b) The operator H, is of weak type (1, (n-l—m)/(n—|~m—y)).

Proof. To prove (b) it is sutficient to consider fe L' such that ||f|l, = 1.
We now write [, ¢]™"""" = F(x,t)+G (x, t) where F(x, t) = [, $]™""™
if [#,1]>¢ and zero elsewhere and G(=»,1) = [=,t]"""""—F(, ).
Then FeL® and GeL'. 8o [|Fxf|e < | P and |G *F]l; < |G-

We choose ¢ in such a way that ||F|, = ¢~ ™" = y/2. But then
the set {|F«f| > «/2} is empty and as it is always {{H,f|>a} < {{F*f|
>af2} w {|G* f| > a2}, we obtain

2) D(H,f; a) < D(G x5 af2).

Algo it is
3 D(@*f;a2) < (2[a) |G * fll: < (2/a) [|F]y-

By the definition of @ its L'-norm iz equal to a constant times
Q" = g?lr—-n-m)

Replacing in (2) and (3) we obtain

D(H,f;a) < Crn @10~7=M)=1 — Onma("+'m)l(v—-n-m)

and this inequality is the weak type (1, (n-+m)/(n+m—7y)) condition
of the operator H,.

It may be proved in a similar way that H, is of weak type (9, q)
where 1/g = 1/p—y[(n+m) and 1 < p < (n+m) [y

Then (a) follows as an application of Marcinkiewicz theorem.
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The preceding theorem follows inmediately from the convolution
theorem for Lorentz spaces (see [8]). Essentially, the given proof contains
the same ideas that would be used to show that the result on Lorentz
spaces is applicable to this case (%).

3. The analogue of Stein-Babenko theorem for parabolic sin-
gular integrals. As an analogue of the singular integral kernels of
Calderén and Zygmund it is possible to introduce the concept of a para-
bolic kernel %(w,t), defined in H;,, with the “homogeneity” condition

(4) k(dw, ™) = A""k(w, 1), 1>0,

where m > 1 is a fixed integer [6].

B. F. Jones, Jr., considered the operators given as comvolutions
with the family of truncated kernels, that we are going to denote as k¥,
coinciding with %(x,t) for ¢ > ¢, and vanishing for 0 <t < ¢, and their
limits for ¢ — 0. He proved [7] that, under certain conditions of %(x, 1),
these operators are of type (p,p),1 <p < oo.

We shall consider the parabolic singular integral operators

()
(Ef)(w, 1) = limk,(, t)*f(, 1) = lim
&0

0 pyls]>e

k(w—y,1—s)f(y, s)dyds

that is, the limit of convolutions with kernels truncated in every variable,
ag to coincide with %(w,?) for [z, ?] >e.

In spite of the different ways of truncating the kernels, Jones’s
theorem holds for (5), since the difference between %, and kjf,,, that is
a kernel equal to k(w, t) if [,t] > ¢ and 0 < ¢ < &” and zero elsewhere,
is easily seen to belong to L', with L*-horm bounded independently of
e (see [9]).

Moreover, the hypothesis of the integrability of the kernel and its
mean value zero on the hyperplane ¢ =1, used in [7], are equivalent
to similar assumptions given on the set {(w,1): [#,?] = 1}. This is so
because

% (e, ©)) dodt

1<[z,f]<2
= [ @ 0ldedt+ [ ko, Odadi— [ [k(o, 8] dwdt
ek, [z.il>l [%]>2
0<i<a™ I<i<1 o<i<a™

(*) Using theorem 2, (b) of theorem 1 can be proved by the method used in
lemma 2, with the additional result of the weak type (1,1) of T, 0 <y < mn-m.
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and the last two integrals are easily seen to be equal, taking into aceouns
the “homogeneity” property (4) of k(w,?).

8o, it is natural to impose conditions on the kernel to be satisfied
on the set {(,?): [z,t] =1}

Remark. The hypotheses of [7] are not the more general under
which the theorem of type (p, p), 1 < p < oo, of the parabolic singular
integrals holds (see [4]). Nevertheless we shall not specify less restrictive
hypothesis here as in our main theorem we already assume the type
(p,p) of the singular integrals.

TrEOREM 3. If
(Ef) (@, 1) = lim

-0 [y i-8]>e

is such that |Eflly < Opllfllpy 1 <p < oo, and |k(a',¥)] < B whenever
[2,¢'] =1, then K i3 of weighied type (p, p), i.e.

ICES) (@, 8) (2, 1l < CopIf (@, ) [, 3]},
Jor —(n+1)fp < B < (n+1)/p’ (1p+1/p’ =1) where Cp; is a constant

depending only on k,p,B,m and n. If —(n-1) <f<0, K is of
weighted weak type (1, 1), ’

Proof. By the first hypothesis we infer that
[1&(f, 9y, sTF)Pdudt < OF [If (@, t) @, (P Pdwds.
Then, it will be enough to prove that
[1E(f, o)1y, s¥) — [w, tPE (f(y, s)) Pdods

is similarly bounded. Being &' = #/[x, t] and ' = t/[w, {]", we consider
the difference

|E(fly, )y, s7)— [, 1°K (f(5, )|
=| flo—y, 1=sT""k(@—y), (t—8))f(y, $)[y, s dyds —
—[ 12, P lo—y, 1= 81"k ((@—y)', (t—s))f(y, )y ds
=|[H@—yy, t—5))f(y, 8 [o—y, 1— 51" (Ly, s — [w, 1) dyds]
< [ Bif (@, )l 1y, sP|(ly, sP— [z, t¥) [y, 81| [w—y, t—s]~"~"dyds.

§9, the theorem will be proved if we show that, under the stated
conditions, the operator

k(@—y,1—8)f(y, s)dyds

1<p<oo,

UF(z,%) = fF(y, 8) 11— ([=, t1/ly, s])ﬂi [o—y,t—e]"" " dyds
is of type (p,p) and of weak type (1, 1).

icm
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LEmMMA 3. Let
E(@,t;y,8) = [1—(,t)/ly, 8] |[o—y, t—s]""
be the kernel of the operator U, given by
UF(w,%) = [K(w,t;y,)F(y, s)dyds.

Then U is of type (p,p) for 1<p<oo and —(n+l)fp <f<
(n+1)[p" and of weak type (1,1) for —(n+1) < p<0.

Proof. We shall show that the operator U is dominated by a sum
of operators T'’s, that is, that its kernel K is dominated by sums of the
kernels of these operators.

First case. Let —p =y > 0. Then

w7y, 8T
T (@, P [o—y, t—s

K(z,t;9,9)

(I) Let [y,s] <2[x—y,t—s].
Let (2, w) = (#—y,t—8) or (@,1) = (¢-+y, w+s). Then

[y+=, s+w)l < ([y,s]+[z, w])v < 2'[y, sT+2"[2, wl”,
[+, s+wl—[y, s < (2'—1)[y, sT+2"[0—y, t—s]
’ < (@—1)2[0—y, t—sT +2'[0—y, 1—3T,

g0 that [z,t]—[y,sT <O lz—y,t—sT. Similarly, ecalling (2, w)
= (y—=, $—1) we obtain that [z, 17—y, 8T < 0,[w—y,t—s], which
implies K (2,;9,8) < O’,,[m,t]"'[m—y,t—s]‘("*m‘”. In this case‘?fli’
is dominated by 7T,F and so wil be of type (p,p) by the condition
yl(n+1) < 1/p that is satisfied by hypothesis, being equivalent to
B> —(n+1)[p.

(IT) Let [y,s] > 2[s—y,t—s]

It is true that [y, s]1> 2(x,¢]—2[y, s] and that [y, 8] > 2[y,8]—
—2[», t], 80

(6) 3y, 81> 200, 6] > [9,8] or §<I[o,i/H,8<i

By the mean-value theorem we have
[#,t7—1[¥, s = ([=, 11—y, sy Lé, C]v—l’
where (£, ¢) is intermediate between (x,t) and (y,s). From inequality
(6) it follows that
[z, 17—y, 8T < Oy[2—9, t—s][z, 2l
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which implies that

[, t]y~l [v—y,t—s]
[w, 1 [a—y, i—s]"*"

K(z,t59,8) <0, =0, [z, i]"l [y, t—g]~CFm=D),

In this case UF is dominated by T,F. This will be of type (p, p) it
y 2 1 because this implies 1/(n+-1) < y/(n+1) < 1fp. If y < 1 we bound
UF vy T,F:
[e—y,t—s] < [@, t]+2[x, 1]
80
[z, ﬂ""I[w—% t—s]
[#, ] [w—y, 1—s]"*"™

Kz, t;y,8) <0,

[w'_"’./J t_s]l—y
<0,
T e, P e —y, t— T ]

< Oylo, 8] [ —y, t—5]" O+,
In this case UF is dominated by T,P. So, UF is dominated by T, F

or by T.F4T,F.
Second case. Let now g > 0. We have

1UFll = s [Uf(, t)g(x, t)ddt

9] =1

Il

wup [ ([ 1~ (v, 01y, s1lt0—y, t—s1- "™ (y, s)dyds)g (o, 1) dodt

Il

sup [ 1(y, ) ([ L= (L@, 811y, 51—y, t—s]- 0+ (a, 1) dwdt) dyds.

The last bracket is in the conditions of the preceding case with
—{n+1)fp’ < —B < 0,thatis, 0 <8 < (n+41)/p’, which is the hypothesis.
So the conclusion follows.
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