Theorems of Saks’ type for abstract polynomials

by
J. ALBRYCHT (Poznai)

TUsing the method of my previous Note [1] I wish to give the gen-
eralization for abstract polynomials of some results obtained by Ale-
xiewicz [2]%). Because of the close connection of this Note with the paper
2] I use throughout the definitions adopted there.

1. In particular (7,E,u) denotes a measure space on which u is o-
-additive and u(T)<oo. L denotes an arbitrary linear get and X an ar-
bitrary separable F-space. ¥ denotes an F-space, elements of which are
functions from T to L. Denoting by ,, for every yeX and eeC, the
function defined by egquations

) dfor iee
® 1 0 elsewhere,

we suppose the following postulate to be satistied: if y¢¥ and eeC, then
Yo6Y; if ye¥ and eeC, then |ly.{<lyl;

(z) if ¢,6€ (n=1,2,...) and u(e,)—0, then [y,[—0.

B denotes an analytic set (Kuratowski [3], p. 360) in ¥ which satis-
fiey the following condition:

(B) if yeB and ¢eC, then y,e¢B.

‘When the set B is also linear, we suppose that the additional condi-
tion to be satisfied: if y,eB and y;eB, then ycuheBg)' U(x) will stand
for a polynomial operation of degree m from X to Y.

It is known [4] that we can represent the polynomial operation
U(x) in the canonical form

@ Ua) = 3 Us(o)

1) I express my indebtedness to Professor A. Alexiewicz for kindly placing
the manuscript of [2] at my disposal.

2) The symbols | J,M,\ denate set-theoretical union, product or difference of sets
respectively.
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where U, (x) is a homogeneous polynomial of degree m, moreover

m

(2) Ui(@) = 3 a, U (v2)
»=0

with a;, independent of U and «.

2. The Mazur-Orlicz theorem for a sequence of polynomial operations
([5], Theorem VII, p.185) and postulate («) implies the following

LummA 1. The operation U (w),, €€, is continuous in the space
X x(T,C,u).

‘We shall denote by P(B,h,e) a set of elements « for which the opera-
tion U(z) has the following property: there exists a set ecC such that
,u(h\e)<e and U(x),eB.

It is easily seen that (in analogy to [2]) the following lemma always
holds: '

LevmmA 2. For every he€ and e>0 the set P(B,h,s) is analytic.

LeMMA 3. Let B be a Unear and analytic set in X. If the set P(B,h,¢)
is of the second category, then the set P(B,k,(m-1)) is residual.

Proof. Since the set P(B,h,z) is analytic and is of the second cate-
gory, there exists a sphere K (0,7) with centre 0°) and radius # in which
this set is residual. Therefore K (0,7)\ MCP(B,h,e), where M denotes
a set of the first category. Setting

m
N=EM",
k=0
we see (as in [1]) that if weX, then kweX(0,7)\ N for ¥ =0,1,...,m,
and therefore KCK(O,r)\MCP(B,h,e). This shows that if weK, then
there exists a set ¢,e € such that u(h\e)<e and U(ys), eB for »=0,1,
m

E=K(0,7/m)\ VN,

...,m. Therefore if xeK and e=(e,, We have
v=0

p(h\e)<(m+1)e and TUyle)eB for k=0,1,...,m

(thig is the immediate consequence of (2) and condition ().
Since the set B is linear and (1) holds, we see that if weK, then
nweP(B,h, (m+1)) for n=0,1,2,... Hence we finally obtain

X— 6 N = G nE CP(B,h,(m+1)e).
n=0

n=0

3) In the contrary case it is sufficient to consider the polynomial T (#)="T (x+x0).
4) kM denotes the set of elements kx where well.
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3. Using the above Lemmata we can prove by the same method
as in the paper of A. Alexiewicz the following
memorEM 1. If the set B is linear and analytic, then there exists a de-
composition T=e|Jh and a residual set B in X such that
(a) for every ® and every e>0 there emists @ set ¢’ such that u(e\e)<e
and U(x),.eB;
(b) for every xeR and every set W' Ch of positive measure U (w)€B.

TagorEM 2. When the set B s analytic and satisfies the following
condition:

from y,eB (n=1,2,...) and ¢= Ue,, results 1, B,
Ne=

then there exists a decomposition T=e|Jh and a residual set RCX such that
(a;) Ulw)eB for every ,
(as) U(x)eB for every zel and every set B Ch of positive measure.
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On the estimation of the norm of the n-linear
symmetric operation

by
J. KOPEC and J. MUSIELAK (Poznah)

Let X and ¥ be two Banach spaces. An operation. U(z,...,%,)
from X x...xX to Y is called n-linear if it is linear in each variable z;

n
separately. It is called symmetric it U(2y,...,2,)=U(®,,...,2,,) for every
permutation zy,...,m, of the numbers 1,...,n. The operation U (x,...,%,)
being n-linear and symmetric, we call the operation U (z)="U (z,x,...,®)
the power of degree n; U(@y,...,»,) is then called the primitive (or polar)
operation of U(x). Between the norms of these operations an inequality
sup || Uy, ., %)< Bysup | U(#)]]
LTS MRS i<
holds, with B, depending only on n. A. E. Taylor') has shown that B,<
<n"/n!. We shall show that this estimation is the best possible.
Let X=L, Y=R' (the space of reals), 4= (k—1)/n, k/n) (k=1,2,
...,m). Let us consider the operation
Uwyyeoom)= Y [z, @) db... [a, () d,
(1yeytn) AL dn
the summation being extended over all permutations w,...,m, of the

numbers 1,...,n. This operation is obviously n-linear and symmetric.
‘We shall prove that

”’n
(%) sup (U (@, @)=~ sup||U (@)
[ BT AT (RS

Let
llaesl| = [ |, ()] BT

1y A.E. Taylor, Additions to the Theory of Polynomials in Normed Linear’
Spaces, The Tohoku Math. Journal 44 (1938), p. 802-318, theorems 2.5 and 2.6.
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