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Granger causality in its linear form has been shown by Barnett, Barrett and Seth [Phys. Rev. Lett. 103,
238701 (2009)] to be equivalent to transfer entropy in case of Gaussian distribution. Generalizations by Hlaváčková-
Schindler [Appl. Math. Sci. 5, 3637 (2011)] are applied to distributions typical for biomedical applications.
The financial returns, which are of great importance in financial econometrics, typically do not have Gaussian
distribution. Generalizations leading to the concept of nonlinear Granger causality (e.g. causality in variance,
causality in risk), known and applied in econometric literature, seem to be less known outside this field. In the
paper an overview of some of the definitions and applications is given. In particular, we indicate some recent
econometric results concerning application of the tests in linear multivariate framework. We emphasize importance
of other variants of Granger causality, and need of development of methods reflecting features of financial variables.
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1. Introduction
Granger causality (GC) and transfer entropy (TE) are

two approaches to mutual causation. The transfer en-
tropy, TE, introduced by Schreiber [1], builds on the
concept of (Shannon) entropy, but aims at detecting
dynamic causation links between a pair of variables.
The Granger causality, GC, aside of TE, tends to be
used by researchers in climatology, physiology, neuro-
physiology, multimode laser dynamics, analysis of causal-
ity in cardio-respiratory interactions, etc. (see [2], p. 5),
partially due to equivalence of the GC and TE con-
cepts, proved by Barnett et al. in [3], and by Hlaváčková-
Schindler et al. [2]. Let us emphasize that the equiva-
lence was shown only for a linear GC test, and originally
only under assumption of Gaussianity. Later Hlaváčková-
Schindler [4] extended the analysis for some probabil-
ity distributions typical for biomedical phenomena (log-
normal distribution, Gaussian mixtures, generalized nor-
mal distribution, Weinman exponential distribution).
Barnett and Bossomaier [5] show TE and GC equivalence
for the vector autoregressive model also under assump-
tion of Gaussianity. This does not cover other concepts of
Granger causality, and does not necessarily cover all dis-
tributions used in applied financial research and practice.

The concentration on the linear form of the GC
(and the Gaussianity assumption) in biomedical appli-
cations seems to be somewhat misleading. First of all,
the Granger causality concept as described in papers
by C.W.J. Granger is richer than that (covers linear
and nonlinear causality, causality in spectral domain,
causality based on information concepts), and has several
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important generalizations. Second, the question of sta-
tionarity and nonstationarity, and of proper choice of
distribution has been learned by econometricians the
hard way. This is especially important for financial time
series — underestimating or overestimating particular
values due to a wrong choice of probability distribu-
tion for the model can lead to losses or to inefficiency.
The proper choice of the distribution is especially crucial
for risk assessment and volatility forecasting by financial
institutions.

Hlaváčková-Schindler et al. [2] in addition to entropy
and mutual information measures, describe multivariate
GC in vector autoregression model framework, nonlinear
GC tests, and nonparametric GC measures based on cor-
relation integral, but still do not cover the GC-TE equiv-
alence in the general sense. On the other hand, econo-
metricians use both linear and nonlinear GC tests, and
tools based on mutual information, entropy etc. It seems
that absorption by econometricians of methods aimed at
detecting causality, developed in the field of neurophysi-
ology etc. is stronger than that of methods developed in
econometrics (especially of nonlinear Granger causality)
in the other direction.

2. Typical features of financial variables
Financial variables have specific features, which led to

development of particular modeling tools from the field of
financial econometrics. Let Pt denote price of a financial
instrument at time t. Most financial variables of interest
(stock indices, exchange rates, stock and options etc.)
are nonstationary. Their returns, defined as difference
of natural logarithms of prices, rt = ln(Pt) − ln(Pt−1),
are stationary in mean, but typically show changes of
volatility in time (termed volatility clustering). Changing
volatility is modeled e.g. with ARCH or GARCH-models,
the first equation of which describes (and forecasts) mean
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of the variable, and the second equation describes de-
pendence between changing volatilities with use of condi-
tional variance of the first equation. The ARCH (“autore-
gressive with conditional heteroskedasticity”) model was
introduced by Robert F. Engle [6] in 1982; GARCH (gen-
eralized ARCH)— by Timothy Bollerslev [7] in 1986, and
many more detailed GARCH-type specifications have
been introduced by various authors to cover specific fea-
tures of financial instruments and particular markets.

The GARCH family models originally estimated by the
maximum likelihood method with assumption of Gaus-
sianity of error terms, prove to give more accurate results
if non-Gaussian, often skewed, probability distributions
are applied, especially for daily and higher frequency data
(see Alexander [8]).

Returns of financial instruments typically have skewed
and leptokurtic distributions. According to Mandelbrot,
who first noticed volatility clustering in financial returns
time series [9], returns should be modelled with use of
Pareto-Lévy processes†. In finance and in econometrics
returns are most often described with use of the follow-
ing distributions: Gaussian mixtures, t-Student, or more
complicated: general error distribution (GED in short) or
generalizations of the last two (see Osińska [12], pp. 170–
172). The GED (General Error Distribution) has been
introduced in [13] by Subbotin, and later generalized by
Theodossiou [14] to a Skewed GED. The reason is that
some stable distributions are not suitable for statistical
testing of an econometric model, and that more complex
distributions are intended to better reflect actual features
of financial variables. The skewed generalized t distribu-
tion can be expressed as (see Osińska [12]):

fSGDT(x) = C
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†Description of the Pareto-Lévy, or stable distributions can be
found in Feller [10], Vol. II, Chapter VI. S.T. Rachev, among others,
is a strong proponent of Lévy distribution (see e.g., [11]).

The GED probability density function is (see Tsay [15],
p. 122):

fGED(x) =
ν exp(−0.5|x/λ|ν)

λ2(1+1/ν)Γ(1/ν)
, (2)

where Γ(·) is the gamma function, and λ =
[2(−2/ν)Γ(1/ν)/Γ(3/ν)]1/2. This distribution has heavy
tails when ν < 2 and reduces to a Gaussian distribution
when ν = 2.

To illustrate discrepancies, especially in the tails, be-
tween Gaussian and the empirical distribution of the
daily returns of the USDPLN exchange rate and the
WIG20 returns, see Figure for daily quotations from
stooq.pl (Jan. 4, 2000–Oct. 31, 2014)‡. The results of the
Granger causality test (based on the VAR model) for the
two variables [16] show that during crisis, Oct. 01, 2007–
Feb. 27, 2009, the null hypothesis of no causality from
USDPLN to WIG20 is weakly rejected, the same for
causality from WIG20 towards USDPLN. The results
change somewhat after the crisis. Neither the returns nor
the error terms of the VAR models are Gaussian.
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Fig. 1. Comparison of the quantiles of daily returns
with theoretical Gaussian distribution.

In order to be aplicable in financial econometrics, ques-
tion of TE and GC equivalence should include general-
ization to the types of distributions typically applied in
financial econometric research.

In this paper, examples of causation inference in the
case of realistic data models will be reviewed, and the
possible directions for improvement will be discussed.

‡QQ-plot is a graph of percentiles of the empirical versus the-
oretical distribution.
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3. Granger causality and transfer entropy
— two approaches to mutual causation

Causality is usually posed using two alternative scenar-
ios: the autoregressive, spectral based, causal Granger
predictive modelling (Granger [17]), and the information
theoretic oriented, Kullback–Leibler (K–L) divergence
based, Transfer Entropy formulation (Schreiber [1]).
Both measures aspire to infer and quantify mutual di-
rectional causation, between coupled variables, or among
multiple variables.

There is a need to precisely analyse possible equiv-
alence of the two methods especially for complex phe-
nomena where the observations and models are usually
distributed following non-Gaussian statistics and pos-
sess intra-and inter-observable non-linear correlations.
As empirical distributions of financial time series differ
significally from the Gaussian distribution, in order to
apply TE methods to such data we need to address the
question of equivalency of the GC and TE approaches
for such skewed and leptokurtic distributions. First we
try to clarify concepts of the Granger causality, as de-
fined and tested in econometric literature, next we show
that concepts based on information theory, such as mu-
tual information, entropy and transfer entropy are known
and used by econometricians to address causality in risk
and in volatility, among others. Next we shall analyse
reasoning shown in the papers by Hlaváčková-Schindler
et al. [2, 4, 18] and Barnett, Barrett, Seth [3, 19], to
check intuitions behind their proofs of the linear GC and
TE equivalence.

4. Diversity of Granger causality concepts

First the notion of Granger causality needs to be clari-
fied. It can be understood as improvement, by use of past
values of one variable, of forecasts of another, but has also
other interpretations. The Granger causality ([17, 20])
was intended by Granger as a more general notion based
on two assumptions: “that for a time series, the cause
preceded the effect and a causal series had information
about the effect that was not contained in any other se-
ries according to the conditional distribution”§. Granger
himself devoted several articles and book chapters to is-
sues of causality and its role in economic analysis and
forecasts. Aside from the linear time-series approach
to causality, Granger [17] discussed spectral approach
as early as in 1969¶. In financial analysis, nonlinear
causality concepts and tests (e.g., risk causality, causal-
ity in variance) are becoming more and more important.
The concept of the Granger causality is more complicated
than the simplest linear version.

The general definition of the Granger causality in mean
is the following (Osińska [12], pp. 40–41). Let F(Y |X)

§See [21] pp. 69–70.
¶See e.g., Osińska and Stawicki [22] for an example of empirical

application of causality across spectral frequency bands.

denote a distribution of Y conditional on X, and let Jt
define a set of all information avaiable at time t; Jt \Xt

— all information at time t aside from the information
contained in Xt. If for all forecast horizons k
F(Yt+k|Jt) = Ft(Yk+1|Jt \Xt) (3)

then Xt is not a G-cause for Y .
To make this definition operational, the set of avail-

able information has to be described more precisely. Usu-
ally, for weakly stationary time series Xt, Yt, past ob-
servations of the variables are taken into account. Let
X−t = {xt−1, xt−2, ..., xt−k, ...} (past values of theX vari-
able) and similarly for Y . Let Jt be a set of information
(σ-algebra) based on the past values of X and Y . If a
variance of prediction error for a predictor based on all
the information differs from that for the predictor based
on all information but the past of X,

σ2(Yt|Jt) < σ2(Yt|Jt \X−t ) (4)
then the X is said to Granger-cause the Y .

The instantaneous G-causality means that Y can be
predicted better with use of the past and current value
of X than without them:

σ2(Yt|Jt ∪Xt) < σ2(Yt|Jt \ (X−t ∪Xt)). (5)
This definition can be implemented in framework of

a linear regression model or multivariate vector autore-
gresion model. In the papers of Barnett et al. [3] and
Hlaváčková-Schindler [4] (who follows their notation)
namely this linear version of GC is compared to the trans-
fer entropy approach.

4.1. Test of significance of (lagged) predictor

The test procedure is the following: run a regression
of Y on its lags and lags of X, and check whether lags
of X are significant (i.e. their parameters are different
from zero).

yt =

k∑
j=1

αjyt−j +

k∑
j=1

βjxt−j + εt, (6)

where: yt — observations of a variable of interest; xt−j
— observations of causal variable; αj , βj — parameters
of the regression; εt — error term. The restricted version
of the (6) model with the null restrictions imposed is

yt =

k∑
j=1

αjyt−j + ηt. (7)

The null hypothesis H0 : βj = 0 for all j = 1, ..., k corre-
sponds to lack of G-causality from X to Y , the alterna-
tive H1 : βj 6= 0 for some j ∈ {1, ..., k} means that the X
Granger-causes Y . The joint significance test is applied,
either in the form of χ2 or Fisher F distribution∗∗. This
is called the Granger test of the Granger causality.

Let σ̂2(ε) and σ̂2(η) denote estimators of error term
variance for (6) and (7). The Wald test is computed as

∗∗See e.g. Feller [10], Vol. II, chapter II, sect. 3, for description
of the both statistics.
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TW = T [σ̂2(ε)− σ̂2(η)]/σ̂2(η), (8)
the likelihood-ratio test as

TLR = T ln[σ̂2(ε)/σ̂2(η)] (9)
and the Lagrange Multiplier test as

TLM = T [σ̂2(ε)− σ̂2(η)]/σ̂2(ε), (10)
where T — sample size; the TW is preferable; for small
sample, the F-form of the tests (right-hand side expres-
sions are multiplied by (T − k)/q, instead of T , where k
— number of restriction, q — number of parameters of
the model) has better properties (see [12], pp. 77-78, 84).

In this framework, instantaneous Granger causality
can be tested: the current X is included on the right-
hand side with a parameter β0, the null hypothesis cor-
responds to βj = 0 for j = 0, 1, 2, ..., k. For example,
Malliaris and Urrutia [23] analyzed daily closing data
for index returns of the main stock exchanges (Sydney,
Tokyo, Hong Kong, Singapore, London and New York),
to study potential dependencies between the markets be-
fore, during and after the crash of October 1987. They
test G-causality and instantaneous version. The null hy-
pothesis of no causality cannot be rejected for the pre-
crash period; for the month of the market crash, the χ2

test statistics increased, indicating dependence. They de-
tect bidirectional causality between New York and Lon-
don, New York and Hong Kong, London and Singapore,
London and Tokyo, London and Sydney, Hong Kong and
Sydney, and Tokyo and Sydney.

Barnett et al. [3] start with a linear regression of the
“predictee” variable on its lags and lags of “predictor”.
They use the ratio of the residual variance of errors in
the restricted equation to the residual variance of unre-
stricted equation. In this they follow Geweke [24], the
same formula as in (9).

4.2. The Sims test of the Granger causality
Let us briefly mention another kind of linear test:

Sims [25] definesX to be strict exogenuous relative to Y if
the linear predictor of Yt based on past and future values
of X : ..., xt−1, xt, xt+1, ... is identical to the linear pre-
dictor based only on current and past values of x, and has
shown those two definitions to be equivalent. The Sims
test of G-causality from X towards Y is performed as a
joint significance test of leads xt+1, xt+2, ..., xt+k in a re-
gression of X on current value and lags of the Y variables
and leads and lags of the X variable. Chamberlain [26]
extends the Granger and Sims causality definitions using
conditional independence instead of linear prediction and
shows that Granger and Sims definitions of causality are
equivalent.

4.3. Testing G-causality in VAR and VECM framework
— stationary vs. nonstationary series

Next approach is to check causality for multivariate
variables. Let Y denote column vector of variables
of interest: Y = [Y1, Y2, . . . , Ym]T . The vector autore-
gressive model (VAR in short), a generalization of the
ARMA models of Box and Jenkins [27], is build as
an autoregression of a (column) vector Y on its lags:

Yt = A0 + A1Yt−1 + ... + AkYt−k + Et, where Y —
vector of variables of the model, Ai — matrices of pa-
rameters, k — number of lags, E — (column) vector of
error terms, Et = [ε1t, ε2t, . . . , εmt]

T . The model can be
estimated with maximum likelihood method.

For stationary Y , the test of non-causality can be per-
formed in the context of bivariate VAR as the Wald
test of joint insignificance of all lags of one variable in
the equation explaining another. It can be generalized to
VAR with three variables, in which we test GC from X
to Y and vice versa, with Z as exogeneous regressor.

For nonstationary variables, the accepted practice is
first to check whether there exists a linear stationary
combination of the Y1, Y2, . . . , Ym variables, so-called
cointegrating relationship which corresponds to a stable
dynamic long-run equilibrium relationship (see the fa-
mous paper by Engle and Granger [28], and Johansen [29]
for the appropriate tests)∗∗. The VAR regression should
then include (stationary) terms corresponding to such a
relationship. For a bivariate case, suppose that ût cor-
responds to a cointegration relationship between the two
variables, then the model appropriate for GC-test has the
form:

yt =

k∑
j=1

α1jyt−j +

k∑
j=1

β1jxt−j + γ1ût + ε1t, (11)

xt =

k∑
j=1

α2jyt−j +

k∑
j=1

β2jxt−j + γ2ût + ε2t, (12)

where α1j , β1j , γ1 — parameters of the first equa-
tion, α2j , β2j , γ2 — parameters of the second equation.
The null hypothesis β1j = 0 for j = 1, 2, . . . , k corre-
sponds to lack of causality from X to Y , and the null hy-
pothesis α1j = 0 for j = 1, 2, . . . , k to lack of G-causality
from Y to X.

Recently it was shown by Toda and Yamamoto [31]
and Bauer and Maynard [32] that in case of possibly non-
stationary variables it is advisable to apply overparame-
terised VAR model to the pair of variables in question,
namely: to choose number of lags, k, in the VAR model
according to the Akaike (or Bayesian Schwarz) Informa-
tion Criteria, and estimate the VAR model using k + r
lags for both variables, where r denotes maximum inte-
gration order for the variables††. The Wald test statistics
is then applied only to the first k parameters of the lagged
causal variable.

5. Entropy and information-based measures
of dependence

In discussing potential transfer entropy and linear
Granger causality equivalence, we should bear in mind

∗∗Bossomaier, Barnett and Harré [30] describe briefly Granger
causality test in the context of the VAR model (they suggest to
apply local linear approximation to a nonstationary series).

††A variable is integrated of order r, if it is nonstationary, but its
r-th differences are stationary. Order of integration is the minimum
number of differences required to achieve stationarity, see [28].
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that there are several measures and definitions of entropy,
starting with the Shannon definition, Rényi entropy and
others. All can be used to construct measures of mu-
tual information, slightly differing in properties; however
the Shannon entropy, H, seems to be most widely used.
Hlaváčková et al. [2] write: “Besides Shannon and Rényi
entropy, other entropy definitions (Tsallis, etc.) are stud-
ied in the mathematical literature, but Shannon entropy
is the only one possessing all the desired properties of an
information measure.” (p. 6). Jizba et al. [33] note that
the Rényi transfer entropy is not generally positive, and
the Rényi entropy emphasizes only parts of the probabil-
ity density function.

The measures based on information theory are known
to and applied by econometricians. Bruzda [34] de-
scribes conditions formulated by Granger, Maasoumi and
Racine [35] for the ideal measure of functional depen-
dence of two stochastic variables:
1) Is well defined for discrete and for continuous vari-
ables;
2) Is normalized to [0, 1] or [−1, 1] interval, and for in-
dependent variables is equal to 0;
3) If there is a measurable function f : Y = f(X), then
an absolute value of this measure = 1;
4) For Gaussian bivariate distribution of (X,Y ), the mea-
sure is either equal to correlation coefficient ρ or is a sim-
ple function of ρ;
5) Fulfills conditions of a distance;
6) Is invariant to continuous and strictly monotonous
transformations of variables.

Let S be a discrete random variable, taking val-
ues s1, s2, . . . , sm with corresponding probability pi, i =
1, 2, . . . ,m. The (Shannon) entropy is an “average amount
of information gained from a measurement of one partic-
ular value” (see [2]):

H(S) = −
m∑
i=1

pi log pi, (13)

next the joint entropy H(X,Y ) of two discrete random
variables is defined as

H(X,Y ) = −
mX∑
i=1

mY∑
j=1

p(xi, yj) log p(xi, yj), (14)

where xi, i = 1, . . . ,mX — values of the (discrete) vari-
able X, yj , j = 1, . . . ,mY — values of the (discrete) vari-
able Y , p(xi, yj) — the joint probability thatX is in state
xi and Y is in state yj . The joint entropy is expressed in
terms of conditional entropy H(Y |X):
H(Y |X) = H(X,Y )−H(Y ). (15)

In the discrete case the conditional entropy is equal to

H(Y |X) =

mX∑
i=1

mY∑
j=1

p(xi, yj)p(yj |xi), (16)

where p(yj |xi) denotes conditional probability.
The mutual information (MI in short) between two

variables is defined as (see [2, 36–38]):
I(X,Y ) = H(X) +H(Y )−H(X,Y ). (17)

Mutual information is the mutual reduction of uncer-
tainty of one variable by knowing the other ([2]). It is
nonnegative, equal to zero only for independent variables.

It can be normalized to give a mutual information co-
efficient (MIC in short), defined as:

R(X,Y ) = 1− exp (−2I(X,Y ))
0.5 (18)

for which (see Granger and Teräsvirta [36], Granger and
Lin [37]):
1) 0 ≤ R(X,Y ) ≤ 1;
2) R(X,Y ) = 0⇐⇒ X and Y are independent;
3) R(X,Y ) = 1⇐⇒ Y = f(X), where f is an invertible
function;
4) R(X,Y ) is invariant to data transformation, i.e.,
R(X,Y ) = R(h1(X), h2(Y )), where functions h1, h2 are
strictly monotonous;
5) for bivariate Gaussian process (X,Y ) with correlation
coefficient ρ(X,Y ), R(X,Y ) simplifies to |ρ(X,Y )|.
Both I(X,Y ) and R(X,Y ) can be applied to X = Xt

and Y = Xt−j , j = 1, 2, ..., to detect autodependencies
between a variable and its lags, not necessarily linear.
5.1. Example: R(X,Y ) applied to detecting nonlinearity

Bruzda [38] presents simulation experiment for
the nonlinear MA model, ARCH(2), GARCH(1,1),
GARCH-M, three variants of bilinear processes and two
variants of linear processes: Gaussian white noise and
Gaussian stationary AR(1) process. Her results are the
following: (1) The mutual information coefficient was able
to detect all cases of nonlinearity; (2) The maximum cor-
relation coefficient did almost as well, and was able to
detect nonlinearity in variance; (3) The entropy measure
could distinguish between GARCH-type nonlinearity and
bilinear nonlinearity. (4) For a nonlinear moving-average
process MA(1), both the mutual information coefficient
and entropy measure cut off after 1 lag, hence perhaps
can be used as a tool for detecting number of lags in such
a model.
5.2. Example: mutual information measures applied

to rates of return
Orzeszko [39] with use of the mutual information and

the mutual information coefficient for rates of return of
stock exchange indices, proves existence of some autode-
pendencies in rates of return for the BUX, DAX, CAC20,
DJIA, FTSE, HangSeng, Nasdaq, Nikkei, SP500, and
WIG20, MWIG40 and SWIG80 for a period 2001/01/02–
2011/06/30. The log returns were first filtered with an
ARMA-GARCH model with t-Student distribution, and
mutual corelation coefficients were applied (and checked
for significance) for both a series and model errors.
In some cases this indicated dependencies not explained
by the ARMA-GARCH model.

6. G-causality and transfer entropy
— equivalence only under Gaussianity?

Let us address the question of GC and TE equivalence,
starting with description of line of reasoning of Barnett,
Barrett and Seth [3]. First, they formulate the measure of
GC as the variance ratio of the restricted and unrestricted
linear model error terms, in our notation — equation (7)
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and (6), and the fraction similar to that in (9). Next they
extend this proportion to multivariate variables. More
precisely, for jointly distributed random variables X,Y
let Σ(X) denote a covariance matrix of X, Σ(Y ) for Y ,
and Σ(X,Y ) = [cov (Xi, Yi)] — cross-covariance matrix
for the two variables. They introduce partial covariance
matrix, Σ(Y |X) and show that under certain conditions
this equals the covariance matrix of the error term in the
linear regression of Y on X.

As a measure of Granger causality they use the ratio
of determinants of the two conditional covariance matri-
ces: in the numerator, the partial covariance matrix of Y
conditioned only on its own past (this corresponds to a
restricted multivariate model), in the denominator, the
determinant of the partial covariance matrix of Y con-
ditioned on its past and the past of X (this corresponds
to the unrestricted model).

FX→Y = ln

[
det(Σ(Y |Y −))

det(Σ(Y |Y − ∪X−))

]
.

If an additional variable, Z, is included on the right-hand
side of the multivariate model, the measure of GC from
X to Y conditional on Z becomes in this notation:

FX→Y |Z = ln

[
det(Σ(Y |Y − ∪Z−))

det(Σ(Y |Y − ∪X− ∪Z−))

]
,

where det(·) denotes determinant of a matrix, Y −∪Z−

— past values of the Y and Z variable, etc.
Following Schreiber [1], Barnett et al. [3] define trans-

fer entropy of Y to X as “the difference between the
entropy of Y conditioned on its own past and the past
of Z, and its entropy conditioned, in addition, on the
past of X”, hence the notation:
TX→Y |Z=H(Y |Y −∪Z−1)−H(Y |Y −∪X−∪Z−),

where H(·) denotes entropy and H(·|·) — conditional en-
tropy. They show that for multivariate Gaussian random
variable, its entropy is a function of natural logarithm of
the covariance matrix determinant, and that conditional
entropy H(Y |X) is proportional to the determinant of
the corresponding partial covariance matrix. Hence
FX→Y |Z = 2TX→Y |Z ,

where the first expression corresponds to the measure of
Granger causality, the second — to the transfer entropy.
Note that Barnett, Barret and Seth in this 2009 paper
do not cover other variants of entropy nor the questions
of entropy estimation.

Hlaváčková-Schindler [4] turns to the question of an-
alytical expressions for entropy of several multivariate
distributions — aside from the Gaussian distribution, she
investigates generalize-normal distribution, the Weinman
exponential distribution and the multivariate log-normal
distribution, showing that for all three the equivalence of
FX→Y |Z and TX→Y |Z holds. The starting point is still
the linear version of the Granger causality. The proof
goes along comparison of the corresponding variances
and TE measure for a Gaussian distribution. More de-
tailed analysis — covering also nonlinear versions of the

Granger causality, and problems of estimation of entropy
measures — is performed in [18]. The starting point is
also the GC definition based on forecasting interpreta-
tion, and its linear test. Hlaváčková-Schindler next ad-
dresses question of several methods of entropy estima-
tion. In this chapter, she does not investigate question
of other multivariate distributions and their influence on
TE estimation, and on possible equivalence.

Hlaváčková-Schindler et al. [2] describe several other
measures of dependence, and variants of Granger causal-
ity measures (both linear and nonlinear). They note
among others, the notion of Granger causality based on
generalized correlation integrals, used to construct the
Hiemstra–Jones test [40] and its generalizations.

Barnett and Seth [19] build the GC measure in the
time domain as the likelihood ratio, i.e. again as ratio
of appropriate covariance matrices, but provide at the
same time tools for GC measure in the frequency domain.
Their MATLAB toolbox seems to be promising, however
does not include tools for Granger causality testing in the
nonstationary case of cointegrated variables. In Barnett
and Bossomaier [5] paper, equivalence of GC and TE is
shown. In addition, they mention that the VAR linear
model does not necessarily provide the best model for
a variable in question, sometimes diagnostic tools indi-
cate e.g., heteroskedasticity, thus suggesting the GARCH
models; they say: “Now it may be far from clear how one
should define a Granger-like predictive statistic for such
models”. In our opinion, the answer is to apply proce-
dures well known and often applied in financial economet-
rics — to estimate an ARMA-GARCH or similar model,
and then apply the GC measure to the residuals (as was
mentioned in subsection 5.2).

7. Concluding remarks
In the context of biomedical data analysis, the assump-

tion of Gaussianity and even stationarity may in some
cases be fulfilled, but it is not quite realistic in the case
of financial variables. If we take into account such fea-
tures and note that in general H(f(X)) ≤ H(X), with
equality only for Gaussian distribution; that estimating
of covariance matrix can be more numerically demand-
ing for data showing heteroskedasticity and long-term de-
pendence; that distribution of (error terms in models) of
financial returns are better approximated by asymmet-
ric distributions such as (1) or (2) — then we note that
the TE and GC in the context of linear models, does not
exhaust the topic of the Granger causality.

In our opinion, other variants of the Granger causal-
ity methods (nonlinear, nonparametric) developed in the
field of econometrics, deserve more attention outside of
this area. It seems that they are starting to appear re-
cently in neuroscience and similar journals.

For financial applications, TE and GC should be com-
pared also for (skewed and leptokurtic) distributions used
in financial returns modeling, such as skewed t distri-
bution (1), or the GED (2) of Subbotin [13] and its
skewed generalization of Theodossiou [14]. It is known
that with increase of observations frequency, the financial
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variables distribution similarity to the Gaussian distri-
bution decreases with increase of observations frequency
(monthly data can be described with a Gaussian distri-
bution, for daily data it would not work well especially
in modelling and forecasting such features as measures of
risk and volatility, needed to make investment decisions).
The more accurate choice of a distribution is crucial for
several financial decisions and forecasts.

Studies concerning the Shannon entropy representa-
tion for skewed distributions, as the one by Arellano-Valle
et al. [41], seem to be promising base for further research.
Also availability of software such as MATLAB software
by Seth [42] or [19] (and several packages in R) will be
helpful.

In addition, question of precision and robustness of
measures (depending e.g. on version of entropy esti-
mates) should be addressed in future research.
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