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The local versions of H?{R") spaces at the origin
by

SHANZHEN LU and DACHUN YANG (Beijing)

Abstract. Let 0 < p £ 1 < ¢ < oo and & = n(L/p — 1/g). We introduce some
new Hardy spaces HKJP(R™) which are the local versions of HP(R") spaces at the
origin. Characterizations of these spaces in terms of atomic and molecular decompositions
are established, together with their yp-transform characterizations in M. Fragier and B.
Jawerth’s sense. We also prove an interpolation theosrem for operators on H K, 77 (R™) and
discuss the i R’r?‘p {R"}-boundedness of Calderén-Zygmund operators. Similar results can
also be obtained for the non-homogeneous Hardy spaces H K 'P(R™).

0. Introduction. The Herz spaces turn out to be very useful in the
study of the sharpness of multiplier theorems on H? spaces (see [1]). The
purpose of this paper is mainly twofold. First, we shall give a decompaosition
characterization of Herz spaces in terms of blocks, where the definition of
a block is a modification of the original one due to M. H. Taibleson and
G. Weiss [12]. Next, by means of the grand maximal functions of C. Fef-
ferman and E. M. Stein [3], we define some Hardy spaces associated with
the Herz spaces and establish their characterizations in terms of atomic and
molecular decompositions. The last fact shows that the Hardy spaces asso-
ciated with the Herz spaces are just the local versions of the standard Hardy
spaces HP(R") (0 < p < 1) at the origin.

In §1 we introduce the definition of a central (p, ¢)-block and formulate
a characterization of the homogeneous Herz spaces KgP(R") in terms of
decompositions into central (p,q)-blocks, where 0 < p £ 1 < ¢ < oo and
a=n(l/p—-1/g).

In §2, using the grand maximal function G(f), we define the Hardy
spaces HK &P(R™) associated with Kg»?(R™) as follows:

HE®?(R™ = {f € §'(R™) : G(f) € K&P(R™)}.

Tn addition, we establish their characterizations in terms of decompositions
into central (p, ¢)-atoms and central (p,q, s, g)-molecules. Here, the notions
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of central {p, ¢}-atoms and central (p, ¢, s, 2)-molecules are modifications of
the standard (p, ¢}-atoms and (p, g, 8, £)-molecules.

In §3, using the atomic and molecular theory of the spaces & K&"J’(R”)
established in §2, we give their p-transform characterizations in M. Frazier
and B. Jawerth’s sense (see [5] and [6]).

In the last section, §4, as other applications of §2, we prove an interpola-
tion theorem for operators on K R’;”’P(IR”). We also study the boundedness of
Calderén-Zygmund operators on HK ¢ F(R™). More interesting applications
will be discussed in another paper.

It should be pointed out that we have similar results for non-homoge-
neous Herz spaces KF(R"™),

1. Herz spaces. Let 0 <p<l<g<ocand a=n(l/p-1/g).
DerFiNITION 1.1, (a) The homogeneous Herz space is defined hy
K3?(B) = {f € L, (R*\ {0} « | £

I‘(;"”(H&“) < OO},
where

Hf”}‘c;m(mn) :ﬁ{ i ( f |f(x)|qdm)20/q2km}1/?

K= —00 Ak
and A = {z € R" : 251 < |a| < 2F].
(b) The non-homogeneous Herz space is defined by
KPP(R™) = LY(R™) N K&P(R™),
Moreover,
|1z 2 mmy = [ filLagreny + 1/ ]l zom gy
where [|f||ze(n) = (fin |£(2)]9 de)'/2.
DEFINITION 1.2. A function b(z) on R™ is called a central (p, g)-block if
it satisfies
(i) suppd < B(0,r), r > 0,
(1) (1Bl zagmny < |B(0,7)| 9177,
where B(0,7) := {2z € R": |z| < r}.
DEFINITION 1.2". A function b(z) on R™ is called a central (p, q)-block
of resiricted type if it satisfies '
(i) suppb € B(0,7}, r > 1,
(i) 1Bll Loqrmy < [B(0,m)[Ma=1/z,
Note that the definition of a (1,¢)-block was first introduced by

M. H. Taibleson and G. Weiss in the study of a.c. convergence of Fourier
series (see [12]). : :
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We now can formulate a decomposition theorem for Herz spaces in terms
of central (p, g)-blocks. :

THEOREM 1.1, Let 0< p< 1< ¢g< 0o and a = n(l/p —1/q). Then the
following two statements are equivalent,

(1) f € Kor(R™).

(2) f(2) can be represented as

flz) = i Akby(z),
k=1

where each by is a central (p,q)-block and Tor AP < oo Moreover,
[l o gny ~ mECT, [AelP)2, where the infimum is taken over all block
decompositions of f.

For non-homogeneous Herz spaces, we have a similar result.

THEOREM 1.1, Let 0 < p <1< ¢ < o0 and o = n(l/p —1/q). Then
the following two statements are equivalent.

(1) f € KpP(R™).

(2) f(z) can be represenied as

Fm) =" Aebi(a),
=1

where each by is o central (p,q)-block of restricted type and Yor | Akl < 0.
Moreover, || fll e @mny ~ inf(3, [Ar[P)'/7, where the infimum is taken over
all block decompositions of f.

We only prove Theorem 1.1. The proof of Theorem 1.1’ is similar.

Proof of Theorem 1.1. Suppose f & K;*P(R”); without loss of
generality, we can assume f(0) = 0. For k € Z, set Ay = {z e R* : 2¥~1 <
lz| < 2%} and xi(z) = x4, (2), where x4, (z) is the indicator function of
Ap. Write

flx) =" fla)xu(z)
keZ
F@)xr(z)
VB0, 2)[T5174]| F i | nagamy

> 1B(0,25) M| £x | Lo
kEZ

DY b (2),

kEZ
where Ay = [B(0,2%)[**~Y9)| )| pogn) and

_F@)xr(z) _
| B(0, 2¢)[V/2=1/4 Fxel| poqmey

bi(z) =
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It is easy to see that suppby C B(0,2") and ||bg||agr) < |B(0,2%)|V/e-1/p,
Thus, each by(z) is a central (p, ¢)-block, and

( i |)\k|p)]/p=C( i zk'rm(l/p”l/q)p“kal

h=-00 ke=—o00

= || fllggmmny < 00

o ) L/p
La(Rn)

Conversely, suppose f(z) = ¥ o Axbi (), where eacl_l bi(z) is a central
(p, g)-block and 3 7o | |A]* < co. We want to prove f € KPR, Suppose
suppby C B(0,7) and 2N < r < 2N+ for some Ny € Z. For § € Z, we
have

HfXjHL‘?(HEn) = ”(Z)\kbk)x_j| Latkny < Z Ak| - N1bex; Loy
’ kEZ ke
Therefore,
— o : , 1/
]|f[|K;k,p(Rn) ={ Z 9in(l/p .L/q)p||ijH1£q(Rﬂ)}
j=—o0
= j 3 ok pyL/p
S{ Z 29n(1—~p/q)( Z |)\k:|"|bk9€j||bcr(lmﬂ)) }
j=—00 h=—og
> ; o 1/p
<{ 32 20 (S bt ) )
J=—m h=—n0
oo Np+1 ] 1/1?
:{ Z ]A,CIF( E zm(l-p/q)kuxjﬂlzq(w))}
k=00 J=—o0
| S r Nen(l—p/g) Ly
<ol D0 Dl belfagn, 2000}
k=—00
SC{ Z |/\ki?’rﬂ(l/Cl‘lfp)jl,rﬂ'a(lmp/q)}l/p
. ozt
> Ly
=cf 3 I} <00,
C k=—r0

that is, f & K§=p (R™). This finishes the proof of Theorem 1.1.

2. Hardy space associated with Herz space. As in (3], let G(f)(z)
be the grand maximal function of f(z) defined by

(@) = suwp [6%(1)(@)],
o PEAN. _
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where Ay = {¢ € S(R") SUP| o) g)<n [2°DPd(2)| < 1} and N > n + 1,
dulz) = t7"¢(aft) for t > 0 and ¢35 (f)(z) = SUP|z—y| <t [ {F * @) (W)

DEFINITION 2.1, Let 0 < p < 1 < g <ooand o =n(l/p-1/g). The
Hardy space HK &P (R™) associated with KP(R™) is defined by

HEKPP(R™) = {f € 8 (R™) : G(f) € KSP[R™)}.

Moreover, we define Hf”HKg.D(W) = |fG(f)l|K;,p(Rn)‘

-

For the non-homogeneous case, we have

DEFINITION 2.1, Let 0 <p <1< ¢ < oo and & = n{l/p—1/q). The
Hardy space HKXF(R™) associated with K2P(R"™) is defined by

HEPPRM) = {f e SR : G(f) € KIPR™)}.
Moreover, we define Il ar s geny = Gl ic2m mn)-

Remark 2.1. Let 1 < g<oo Whenp =1 and a = n{l -~ 1/g), the
spaces HEP(R") and HEXP(R") are respectively the space H A7 (R™)
introduced by Chen-Lau in [2] and Garcfa-Cuerva in [7] and the space
HE,(R") introduced by the authors in [10] (see also [9]). Moreover, in [9]
the authorg show that

HEPHRY) = HESHR™) 1 LIR™).

Now, we turn to the atomic decomposition of the space H K§‘=P(R”).
The following definition is a modification of the definition of the standard
(p, g)-atom.

DEFINITION 2.2. Let 0 <p <1 < ¢ < co and fix a non-negative integer
s = [n(1/p - 1)]. A function a(z) on R™ is called a cendral (p, g)-atom if it
satisfies

(i) suppa < B(0,r), r >0,
(il) I!(LHL(](]R{“) i |B(0,‘T‘)J1‘/q“&1/p,
(ili) [ a(@)e®de =0, |af € s.
DEFINITION 2.2/, Let p, ¢,s be as in Definition 2.2. A function a(z) on
R™ is called a central (p, ¢)-atom of restricted type if it satisfies
(i) suppa C B(0,7), r 2 1,
(i) [lallzagrey < [B(O,7)[He=p,
(i) oo a(z)2%dz =0, |o| < 5.
Now, we can state our atomic decomposition theorems for Hardy spaces.

TugorEM 2.1 Let 0 < p £ 1 < ¢ < co and o = n(l/p — 1/qg).
Then f € HEJP(R™) if and only if f(z) can be represented as f(z) =
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Yoy Akai{z), in distributional sense, where each ap is a central (p,q)-
atom, and Y _peq |Ar|P < 00. Moreover,

' it P\ P
“f”H;'c;"P(uan) ~ inf (Z | Akl ) ;

k=1
where the infimum is token over all atomic decompositions of f.
Proof. We first verify the necessity. Suppose a(x) is a central (p,q)-
atom. It is enough to verify that [ G(a)|| ko gy < ¢ where ¢ is independent
of a. Let suppa < B(0,r) and 2% < r < 280+ for some ko € Z. Write

o0
HG(G‘)“:I;'{?:FUW.‘.) = Z 2;“1”‘(1/‘”—1/[1)?1”G(a)x.k‘”iu([[{n)
k=—o0
ko3 o0
= Z et Z s -|-I2.
k=—co k=ko+44
For I;, we have
ko+3
I < cflalff, gy Z okn(1=p/q) < cpnll/a=1/Blpghon(1-2/1) = o < co.
k=—co

In order to estimate I, we need a pointwise estimate of G{a)(z) on Ay
for k > kg + 4. Suppose ¢ € Ay and

for some m € NU {0}.

) <p<
ntm+l P nEm
Let P, be the mth order Taylor expansion of ¢. Let x € Ay and [z —y| < ¢.

Then we have
[l () n(2)

o x ¢ )(y) ="
B

4 Z mtl ¢
<1 f la{z)| ¥ 1+ [y — 02| Jt)yrrm+t dz
B
m 1 |
< cR[ laz)| - |21 * AT dz, 0&(0,1).

Since = € Ay for k = kg + 4, we have |z| > 2. 2%+, From jz ~ y| < ¢ and
2| < 28071, we deduce that

T4y =02 2 e —yl+ |y — 0z 2 |2| - |2| = |z!/2.
Thus,

|(a* ¢:) (w)| = W_%lmrmﬂ f la(2)ldz < ¢
. an

Qko(m-l—n—i—b—n/p)
|m1n+m+l

icm
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Therefore, we have

2kn(m+n+14~n/p)
Glae) < 2T

From this, we deduce that

0
I SC2£‘.u(’m+n+l—n/‘p)p Z okn(1-p/q) aknp/q

h=lg -4

where ¢ i3 independent of «. This finishes the proof of the necessity.

Now, we turn to the proof of the sufficiency. Let f € &' (R™); we con-
sider its regularization. Suppose ¢ € C2R™), ¢ 2 0, frow(z)dz = 1
and suppp C {z € R™ : |z| < 1}. Set py(z) = 2mp(2'z) and fO(z) =
fxeuy(x) for i € N and f € 8'(R™). Then the (*°-function F9(z) is said
to be the regularization of f € S'(R™) realized by wiiy(z). Tt is well known
that limy_,e f( = f in distributional sense. In addition, let ¥ be a radial
smooth function with suppy ¢ {z: 1/2 —e < |z] < 1 +e}, 0 <e<1/2,
andt}[:(f) = 1if1/2 < [z} < 1. Define 95 (z) = ¥(2*2), k € Z. It is easy to
see that

SE(mantly ¢ < %

supp iy C Ay = {z:2%1 _0ke < x| < 2F + 2Fe}
and ¢r(z) = 1if 2 € Ay = {z : 2671 < |z] < 2%}, Evidently, 1 <
Y onen Yr(z) < 2 for each 2 # 0. Let
aute) = P Dyeattel). 720

Then ¥, Pr(z) =1, a 7 0. We denote by P, the class of all real pelynomi-
als of degree m. Let Pqu')(m) =Py (f(")@k)(m)xgk (z) &€ Py, be the unique
polynomial satisfying

J {79 @) P (2) - P (2)}a% da = 0,

H ki3
Write

I9) = 31O @)0u(@) - B @) + 3B (@) = 2+ 50
k k
i)

For 5%, set ot (@) = FO (@) (z) - P,Si)(:c) and

_ % (@)
c1|B(O, 2R )1 /r=1a R G )Xl pagre)

lo| < [n(1/p—1)] = m.

af (=)

where ¢; is a constant to be determined later. Then supp a,(:) < Ek C
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B(0,2%*1), and

DO .
3 Mad (@),

k=—o0
where A, = ¢2kn(1/p=1/0) Eki—; G )]

Next, we estimate i|gjc |zogrn)- To do this, let {f : [I| < m} be the
orthogonal polynomials restricted to Ay with respect to the weight 1/ |Ak,i
which are obtained from {z“ : |&| £ m} by Gram-Schmidt’s method, that
is,

.L' R’")'

(k) = f

Z

(70;1 :[:) dg = éu,u

It is easy to see that for ¢ € Ak, we have

S (F08, )l (@),

[H}<m

P (@) =
On the other hand, from ﬁ%&] fzk (,ofj(m)(pﬁ(m) dx = 6,,# we deduce that

f‘ﬂy(zk . )(’0“(2.& y)dy = bup.
A1 A
1

That is, ¢5(2"'y) = wi(y). In other words, f(z) =
& € Ay. Thus, |F(z)| < c, and for z € Ay,

(2% -Vg) for

PP (@)l < = [ |19 (2)bu(a)] de.
IAkl Eﬂc
Therefore,

3 ¢ i [i /g
108 ey < £ 9Bl + ([ 1RO (@) do)

. A
i € i 0
U O Pelaageey + 2  f 1708 o) 21 .
k Zk
o k1L
S AlfPBplzammy S Y 1G5 pon-

i=k—1

From this, we obtain
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1
| B(0, 2K |1/p—1/q"

16| ogeny <

L ()
Thus, a; ) is a central (p, ¢)-atom supported on B(0,2%5*1). Moreover,

(30 W) =ef 3 gt (5 Gl zeen) )

k=-o0g k=00 =gl
N 1/p
<e{ 3 20D G 2, }

h=—o0
= CHG(.f)HI:{,‘;"P(R“),
where ¢ is independent of ¢ and f.

Now, we decompose 2(’) Let {¢f : |If < m} be the dual basis of {z=
|a| € m} restricted to A with respect to the weight 1/] 4|, that is,

<T/)£1 . ‘A I fz'a":bl w)da"‘““sal
We can prove that if ¢ (2)

= E]u|§’m ﬁiuwyi then q'bf“ (ﬂ})
In fact, il we let 9 (z) =

Tijem it (), then

Cﬁl = <'§bi'a199u = <¢z ’ Z 161101 Z Bm 'l:bla = fl-

= E|V|Sm Bhek(z).

ler| S || <m
Thus, for z &€ ,ka,
P = 3 (f e elobia) = 3. (199, Y Bt )okie)
|| <mi [v)|<m |[{|<m
= > (9,20 3 gk = 3 (198, 2l (a).
4| <m |t <m [t<m

Next, we want to prove that [¢F(z)| < 2% for z € Ay. In fact, if we
set ={x:1/2-¢ < |z| £ 14+¢}and {&: || € m} is the dual bams of
{x™ ¢ || € m} restricted to E with respect to the weight 1/|E|, then, from
the equality

5[(,\: = J -T Fdr = IE[ fzklolwh(zky)ya d'y)

A

we deduce that e;(y) = 2*yf(2*y). In other words, if ¢ € A, then ¢:(z) =
2=l (:/2%). Thus, if # € Ay, then [f(z)| < 27*, Therefore,
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=S PO (@) =3 S (f P8y, a i (@)x g (2)
& ko t<m
¥ (z)x g, (%)

= 3 (] e agetaa) TR

[ljl€m & R
(Y [
H|<'m I\ g0 R
(«pf(m;(,“(m) w‘““(mx;w(m))
x o =
| Ak | Ageet|

ZEh i)

z) P (@) d’B)

From
f ( Z ;(x) ):n dz = Z f &;(x)a do ~ c2Fnokll,
Je=—oa j=—o0 AJ
we deduce that

k
i ff(“(rc)( }: dsj(w))ml dm‘ < MG (@)x 50 o002y ().

B JEnee00

In addition,

Ep)x~ (z e (z "
r ( )fAk( ) W (2)xg, (@) <@t 3 (o)
Al |Ak+1| j=k~1
Thus,
SR = Y A
‘ Hi<m
fo-2 | |
= Z Z{C:Z Z HG(f)XkHL“(R")}iB(O,zk-l'd)li/j’)'"l/q

< & Fe=k—1
| hio)
x s
[ B(0, 25| r=Va{ey 3750 (|G Xk Lagrn }

= 3> et (x)

itl<m k

where ¢5.i5 a consta.nt to be determined later.
k ,
Note that: [h{)]lzeany < e2 5 1G(Fxellzagen. It s casy to see

icm
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that a,(z) s a central (p, g)-atom with support in A,UAL,; c B(0, 28+2) and
k

o = CzIB 0, 2’“"‘1)\1/3’ Ve ;+Z L IG(F)xkl| Lo mny, where e is a constant

independent of 4, f, & and I. Moreover,

k-+1

ifp " 1/p
(Zym ) < ¢ { Z gkn(l/p—1/q)p ( Z [1G( f)XLHLan) }
iyt Fom 00 j=k~-1
<c{ i zkn(l—P/q)nG(f) ks }1/3’
i W Xk Le(Rn)
= C”f I“f:‘wz(mn) < 00,
So far, we have proved that
)= 3" hel(a),
=~

where n,l(i){:c) s a central (p,¢)-atom supported on A; U A4, C B(0,2%2),

Ap is independent of ¢ and

.
(2 10P) ™ < ellGU) gmiany < o0,
!

where ¢ is independent of § and f.
Since
sup of s < [B(0, )12,

the Banach-Alaoglu theorem implies that there exists a subsequence {a o )}
of {aO 71 converging in the weal* topology of L¥(R™) to some ag € L‘J(IR")
It is easy to verify that ag is a central (p,g)-atom supported on B(0,22).
Next, since

S lai™ Nneey < |B(O,2%)| /71,

?‘LD

another application of the Banach-Alaoglu theorem yields a subsequence
{ a(f”“ '} of {a(,_"'”")} which converges weak™ in L9(R™) to a central (p, ¢)-atom
a; with support in B(0, 2%). Furthermore,

sup [|a%3 o) < B0, 2)[YeVP.

tng &

bnmlmly, by the Banach-Alaoglu theorem, we get a subsequence {a( n-s) }

of {cz ) } which converges weak™ in L4(R") to some a—_; € LYR"), and a4
is a Central (p, g)-atom bupported on B(0, 2) Repeating the above procedure

for each 1 € Z, we can find a subsequence {g, rL’)} of {al( )} converging weak™®
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in LI{R™) to some a; € LY(R™) which is a central (p, ¢)-atom supported on

B(0,21+2), Using the usual diagonal method we get a subsequence {i,} of

natural numbers such that for each I € Z, lim, o agi") = q in the weak®
topology of L9(R") and therefore in 8'(R™).
Next, we shall prove that

(2.1) F=> N

l=—po

holds in S'(R"). To do this, take any ¢ € S{R"); noting that supp a(“)
Az U AH-l C AL UA U A1 U Ao, we have

(:6) = lim (70, 9) = lim [ 5™ Naf*(2)¢(a) da

R® I=—00

= lim Z f Z /\gagi")(as)qﬁ(m)dm

k=—o0 4y l=—00

1

= lim Z [ S0 a6l (e)p(s) de

koo A I=ke2
o0 k+1

—hm 2 3 [ e e

On the other hand,

lim f Z Mai™ (2)¢(x) d

k1 —o0
koo R® [=—k;

= im 3 [ e e)ee i

Tog b 2 {=—ks R™

by +2

= Qim 37 % [N (e)d(z)dz

ky oo i=—hy k=I—1 A

k142 k41

= k}gnm Z Z f)\;a,(i“.)(m}qb(x)dsc

ks—ro0 k==—ko—1i=k— QAk

oo k+1

=Y 5 e

k=—oco I=k—2 A,

icm
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Thus,

fqﬁ——hm Z)\lfali (x)¢

lz%oo

m{l/p-1)]. If1 <0, then we have
@{z) da:’ ‘ _!: afi”)(m) (¢(m) - Z DT;!EO) mﬁ) dm‘

18| <m
<c f ) ()] - |z™ ! dz < cltm+D) f |a(z”)(m)|dm
< 62"‘ (1) ”ai%u)HLQ(Rn)Qm(lwl/Q)

Rﬂ
< czl(m-{-l—'n{l/p——l)) <ec< oo,

Recall that m =

zu
J

where c is independent of 1. If [ > 0, then,

) ol = ) ) — D%(O)mg -
[R[ ) (@) () da| S (6@ S T ) }
<e [lef(@)] o™ de < @™ [ ja{*)(2)|de
R™ R™

< 2llm=r(1/p-1)] < ¢ & oo,

where ¢ is independent of . Therefore,

[ af*)(z)é(z) da

BR"

|)\[r < Cl)\ll.

Note that
[ev] o l/p )
S (X AP) T S dllG)lige e < oo
I=—c0 l=—c0

By Lebesgue’s dominated convergence theorem, we get

Z 11m Al fa,, (m z)dz = Z Al fﬂz x)o{z) dz

l-'—co I=—00 R™
This means (2.1) holds in d13tr1but10nal sense, and the proof of Theorem 2.1
is finished.
Similarly, we have

THEOREM 2.1'. Let 0 < p <1 < g < o0 and a =n{l/p—1/q). Then f
HEKXP(R™) if and only if f(z) can be represented as f(z) = S e Akax ()
in distributional sense, where each ay is a central (p,q)-atom of restricted
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type, and 3 1oy [AklP < co. Moreover,

£l 5227 ieny ~ inf { ( i |/\Jﬂ|p) 1/1)};
k=1

where the infimum is taken over all atomic decompositions of f.

Remark 2.2. Let 0 <p <1< g <ooand a=n{l/p—1/g). Suppose
w € S(R") with f,. ¢{z)dz = 1 or ¢ is the standard Poisson kernel. Recall
that i{z) = t7"p{z/t) for t > 0. Then for f € S'{R"), the following four
statements are equivalent.

(1) f € HE>P(R).

(2) ¢1(f){z) = supyso |(f ¥ 1)) € KPP (RY),

(3) 0y ()(@) = UPly_y1ce I(F + 00} (1) € KEP(RT),

(4) For N 2 1, 0% 4 (1)(®) = supjy_y e [(f = 0)(0)] € KEP(R™).

Similar conclusions are true for the spaces HK &P(R?). They can be
proved by a method similar to the proof of Theorem 2.1 (see [7]).

As in the theory of H?(R™), we can establish molecular decompositions
of HK2P(R™).

DEFINITION 2.3. Let 0 < p < 1 < g < 0o, fix a non-negative integer
s > [n{l/p —1)], and let & > max{s/n,1/p—1},a = 1 — I/p + ¢ and
b=1-1/q+e. A function M & LI(R™) is called a central (p,q, s, g)-molecule
if it satisfies

(1) Ry(M) = [|M15 (e || |21 M () o tdy < o0,
(2) fyn M(z)2%dz =0, |a| < 5.

As in [11], we can prove

THROREM 2.2. Let p,q,s,e be as Definition 2.3. Then f & HI{';”H"’(R“)
if and only if f(z) can be represented as

5 =
Flo) =3 N Mi(z),
: k=1
where each My is a central (p, q, 5, €)-molecule, and 350, [Ax|P < co. More-

over,
1/ ez () ~ mf{(i Mkl”)l/p}=
kml

where the infimum is taken over all molecular decompositions of f.

- For the space HEP(R™), we have a similar molecule decomposition. -
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DerINITION 2.3, Let 0 <p <1 < g < o0, fix a non-negative integer
s 2 [n(1/p—1)], and let & > max{s/n,1/p— 1}, a = 1 1/p + ¢ and
b=1-1/g+e. A function M € LY(R") is called a central (p, g, s, £ )-molecule
of restricted type if it satisfies

(1) 1M ogrey <1,

/b l—a/b
(9) Ro(M) = | M5 el M (&) 5554 < o0,
(3) fan M(2)zdz =0, |o| <s.

Theorem 2.2 is still true if we replace the space HK &P(R™) and the
central (p,q,s,¢)-molecules respectively by HEFP(R™) and the central
(p, 4, s,e)-molecules of restricted type.

8. The p-transform characterizations of HK oP(R™). To establish

the p-transform characterizations of H K g'?’(Rn), we need to introduce the
definition of a variant of a tent space. Let ¥ € Z and K € Z". Define Q. x
={z=(r,..,2,) ER" : 2%z — K € [0,1)"} and D = {Qux : v € Z,
K € Z"}. For a complex numerical series 8 = {3(Q)} gep, we define

U e

{QeP:3(Q)#0}

@@= 3 18@re)" and suwps-

2EQED

DEFINITION 3.1. Let 0 < p < 1 < ¢ < o0, & = n(l/p — 1/q) and
B = {8(Q)}oen. Then the tent space associated with K2P(R™) is defined
by

TP (R = {8 s(6) € Koo (™)),

In addition, we define Hﬁ]iTK;,,p(mn) = Hs(,@)HK?,p(mn).

Similarly, we can define the space TK?(R™) by replacing Kq""P(R“) by
KF(R™) in Definition 3.1. n

Let 0,9 € S(R™), supp@ Usuppy C {§ € R" : 1/2 < [¢] < 2
PO ()] 2 e > 0 3/6 < [¢] < 5/3, and },5 P(27E)%(27€)
(€ # 0). Further, write ¢, (z) = 2"(2"z), ¥,(z) = 2""(2"z), wq(z)
Q1" /2p(2"z — ) = |Q|'/*pu (z ~ zq) and Po(x) = |Q| 7/ p(2"z ~ K)
Q1?4 (x — xg), where v € Z, K € Z"™ and zg = 27" K. It was proved in
[4] that for f € §'(R™),

—

[]
juny

I

Fl) = (f,po)vole).
Q

Now, we can state our result in this section.
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THEOREM 3.1. Let 0 <« p £ 1 < g < o©
as above, f € S'(R™), and f(z) = Y o(f o
statements are equivalent.

(1) f € HKS®(R™).

(2) There is a constant cg € (0,1] such that for any @ € D, there ezists
a dyadic cube R(Q) C Q with R(Q) € D and |R(Q)} > ¢y|Q)| satisfying

/ .
W) = (2 120 PR xe@@) € koo,

oo, o = n(lfp~1/q), o, ¥ be
Q)g. Then the following four

QeD
® 5@ = (X 1t ea)lfel xa@) € Ker@y).
QeD
@ 6e) = { (X (hwall- 1B wva)(@)) ) € Ko,
vEZ QET

where @, (z) = @, (—2) for each v € Z.

Moereover, the relevant norms are equivolent.
Similarly, Theorem 3.1 holds if we replace H K O‘=1"(R”) and K “P(R™) by
HK}PR") and K2?(R™) respectively.

In order to prove Theorem 3.1, we must first establish a central (p,¢)-
atom-sequence decomposition characteriza,tion of the space T'K?(R").

DEFINITION 3.2. Let 0 < p <1< ¢ < oo and & = n(1/p—1/q). If there
exists a cube R with center at the origin such that R > supp 8 and

(X sararew) ™| < e

then 8 = {ﬂ(Q)}_er is said to be a central (p,g)-atom-sequence, and the
smallest cube R as above is called the base of 3.

THEOREM 3.2, Let 0 < p £ 1 < g < oo and a = n(l/p ~ 1/q). The
followmg three statements are equivalent.
(i) f & TEr(R).
(i) There is o constant co € (0,1] such that for any Q € D, there emists
a dyadic cube R(Q) C Q with R(Q) € D and |R(Q)| > ¢o|Q| satisfying

= (3 B@PIe X)) € KgrRn),

QeD

(iil) There are a constani ¢y > 1, a sequence {85135 oo Of central (p, q)-
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atom-sequences ond a sequence {A;}52_ . of numbers such that

1/p
supp 3; C 1@, B= Z)\jﬁj and (Z ])\j]"") < 00,
€T JEE
yTn) ER™ 1z <27, i=1,...,n), j € &
In addition, the norms [|[:'iH,”{u 2 () ]|g||Kw(Rﬂ) and inf{ (3|3 [P)M/7}

are mutually equivalent, where the infimum is taken over all central (p,q)-
atom-seguence decompositions of 8.

where Q; = {z = (x1, ...

Proof. Note that o(x) < s(8)(). From this, (i} obviously implies (ii).

Now we prove (ii)=>(iii). For k € Z, define I', = {Q € D : R(Q) C @y,
R(Q) N Ay # 0}, Evidently, {Fk}k——m is a disjoint division of D. From
|R(Q)} > ¢o|@| and the fact that R(Q) and @ are dyadic cubes, we easily
deduce that there is a constant ¢; independent of k such that @ C ¢;Qy, for
each @ € I, Set

M= a2 00| (57 15Q)PIQ niay @) xas(a)

QeD

LQ(Rn)’
where ¢ is a constant to be determined. Define 3y = {81(@)}qep by
1
(@) = {)‘k 8(Q), Qe

0 otherwise.

Then, obviously, 8="3 . .. AtBk, supp fx C e1Qy, and (7o 1A |2)/®
= czﬂal\ Feoor(rey 10 the following, we need to estimate

I( X

We first point out that if Q € I'; and R(Q) ¢ Ak, then R(Q) € {Qunx :
K e {~1,0}"}. Let {Ry,...,Riy} (ip € 2") denote all the different R(Q)’s.
Obvmualy, {Ry } 2., are mutually disjoint. We have

8@ xe@) |

La(R™)

H(Q - QIFlQl lXﬁ'(ca)(w)) ];(Rn)
= [ (T H@Pa na @) do
A Qeln
+ I(Z 13(Q ARl 1XR(Q)(:I:))
Qr-1 QE,

The gecond term is
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T 2 I8

Qr-1 =1 R(Q)=

QPRI Yn ()} do

-Z( > |

i=1 R(Q)=R;

e Ne>

S@PIR) R Qs

BRI B

i=1 RQ) R%
<a [ (3 18QPQI xa @) .
A Qel
Therefore,
P 1/2)a
H(ng QP @ ®) [}, e
<(itea) ( 3 B@QPIQI a2 ))Q/zd:c,
Ay Qe

where ¢; is a geometric constant. Note that |R(Q)| ~ |Q]; using the propo-

sition in [6], we know that there exists a geometric constant ¢4 > 0 such
that

Iz Iﬁ(Q)Fin‘lm(m))lﬂl

Qer;

=37 (ng BRI xa() |

Le(Rn)

La(R™)

cwor(
QET,

< ea(l +eg) 1/”‘ H( Z 18(Q )|2|Q’—1XR(Q)("‘7))1/ XA (T )I

Qely

BRI xaey(@))

Le(Rm)

L9 (Rm)

< |Cle11/q—1/p,

where we take c; = ¢ M- 1/%4(1 + e3)V9. Thus, B = {Gi( @)loep is a
central (p, q)- atom—sequence This proves that (i) implies (iii).

We still need to prove (iii) implies (1). Without loss of generality, we
can suppose ¢; = 1. That is, 8, is a central (p, g)-atom-sequence with base
Q;- We want to prove that [|s(8;) lzop(rn) < ¢ < oo with the constant c
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independent of 3;. Obviously, supp s(3;) C @y, and therefore, we have

||3(ﬁj)||K§-P(Rn :{ Z okn(l/p— llq)p( f 1s(8 (m)lqdw)P/Q}l/P

1/p
< 1s(89) |y Z gm0/}

k=—co
1

S m]:/p——lfq . 23'"-(1/10‘"1/4) S e < 00,
J

Moreover, by the generalized Minkowski inequality, we get

@@= (L] > |10 xe) "

QE'D j=—o00
< 3 I IB@PIQ xele) @)= 3 Inls(e)e)
J=—00 QeD J=—0a

From this, we deduce that

=] 1/
s(B)lzrny < { 30 IS cnggmy )

j=—co
< ¢f T AP < oo
j=—o00

That is, (i) holds, and we have proved Theorem 3.2.

Similarly, we have the definition of a central (p, g)-atom-sequence of re-
stricted type:

DeriNITION 3.2, Let 0 < p <1l <g<ooand @ =n{l/p—1/q). If
there exists a cube R with side length > 2 and center at the origin such that
R o supp 8 and

|( 3 ls@rier (@) il

QeD

< |R|MeA/p
La(Rn) ~ ’

then § = {3(Q)}gep is said to be a central (p, q)-atom-sequence of restricted
type, and the smallest cube R as above is called the base of 3.

The conclusion of Theorem 3.2 also holds if we replace the spaces
TK &P(R™) and K, ~P(R™) and central (p, g}-atom-sequences by TK 7P (R™)
and K2vP(R™) and central (p, g)-atom-sequences of restricted type.

Now, we turn to the proof of Theorem 3.1. - :
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Proof of Theorem 3.1. The equivalence of (2) and (3) is proved in
Theorem 3.2. (1)=>(3) is essentially Proposition 2.1 of [9]. There, we only
gave the proof for p =1, 1 < ¢ < 0o and o = n(l — 1/g). But, it is parallel
to generalize Proposition 2.1 of [9] to the case of 0 < p < 1 < ¢ < o0 and
a=n(l/p—1/¢). We only need to note that if 0 < p < 1, then the atom
has vanishing high order moments.

We still need to prove (3)=+(1), (4)=>(2) and (3)=>(4). We first show (3)
implies (1). Suppose (3) holds and let s(Q) = (f, ) and s = {s(Q)}gen.
Using Theorem 3.2, we know that there exist a constant ¢; > 0, a se-
quence {s;132 _., of central atom-sequences and a sequence {A;}%2_  of
numbers such that supps; C c1Q;, 8 = 3,05 Aj8; and || S( f)”Ka 2 (Rmy

(322 o [A4]P)HP. Without loss of generality, we can assume ¢; = 1. Set

j=—00
Di={QeD:QC Qi Q& Qi)
By the lemma of [4], we have

F2) = S s(@bal@ = 3 A (Y =

Q f=—00 QeED;

Write 5,(z) = 3 _pep, 3i(Q)¥o(x). By Theorem 2.2, to prove f € HKXP(R™),
we only need to verify that s;{z) is a central (p,q,s &)~ molecule where
> [n{l/p — 1)] and £ > max{s/n,1/p ~ 1}.
Obviously, we only need to prove that

(@q(z ))

1 b
Ro(si) = |l8ill Fagremy 56 (2) |22l oty < € < o,

where a = 1—1/p+g,b=1-1/g+= and cis independent of s;. Set p = nb.
We first estimate ||s;(z)|x[*]l Lo (rn). In fact,

Iss(@) o1l 2oy = ([ lss(a) el do)

3Q:
1/¢
([ lm@lleprde) " =14 1.
R™\3Q,
For Iy, by the results of [5] or [6], we have

I < e Qu™|si(z) M zagzemy

< elQut I 3 1s:(@

QeD
< C{qule/q_l/” — cJQ.la'

IR xa()

Le (Rn)

Oun the other hand, since ¢ € S(R™), we have |[vpo(a)| < c2vn/2/
(14 |2%2 — K])*¥, where the side length (@) of @ is 27¥. In the follow-
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ing, we take L > n/g+ u. If £ & 3Q; and Qc ’Dh there exists a geometric
constant ¢ > 0 such that |2z — K| = 2¥|z — 27K| > ¢2"|z|. Therefore,
[gz)f < 2“2 /(2¥L |z|E). Thus,

<( ]2 3

RU\3Qy v=—il(Q)=2"¥

<> (J ((QZ 5(Qllva(e))) ol dz) "

v=—i RE\GQ;

sed (X lst@pe) Mt sy,
v=—i YQ)=2-7

si{@o(x } | 2[4 d:::)

where 1/g +
that

1/¢ = 1. Since s; is a central (p, g)-atom-sequence, it follows

1/q
( Z ]si(Q)iQ) 5czl’”(l/q-lﬁ)|Qi|1/61-1/p_

H@)=2—v
Therefore,

I < C;Qi|1/q—l/p+u/n—b/n+l Z grin-L) _ C‘Qifﬂ»/nﬂlqd/p = c|Q;]~.
To sum up, we have proved that
lIsi(@)[z]*|| zagrmy < clQul®.
Thus

Ro(s:) =

1—a/b
(A RS | e e

<o (X Is@Pilxa(x)
QeED

< ¢|Qq| W amUplafitall=a/d) — o o+ o

a/b !Q |a1 a/b)

where ¢ is independent of s;. This finishes the proof of .(3):>(1).
Now we prove (4)=(2). Set s(Q) = {f, vg)- Obviously, we have

)2 {2 Y (@) - w)@)

red Q
~{EfsQ)i (Y15 v)@R)}
vEL

Fix Q € D. Let I{Q) = 27* be the side length of Q. Then
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(v =) (@) = Wz J A2 y)(2te — K — 24y) dy

IQ
o FE(£)9(8) o
)

Therefore,
u+1 - )
SRS LINE 5(5)? (§)< -
L+l . N )
e Y | JB(5e)Feee
v=p-11R"

Without loss of generality, we can suppose that

J “"(f,,)w( )

Bn

Otherwise, [i. @ E}d)( ) dé=0. Then [ P(2"€)$(2"€) df=0 for each v € Z.

Therefore 32, ¢z fan P(2°€)9(27€) dé==0. That is, fgn 3, ep B(2°E)9(2°6) df

=0. But 3, ., B(27EN (2”5) d¢ =1 for E # 0. This is a contradiction.
From (3.1) and the continuity of S o_ | Jen ® e LB (£ 122V (€) dEI? at

z = 0, we deduce that there exist a constant ¢y € (0,1] and Ry € D with
Ry € {0,1)™ such that [Rp| = ¢ > 0 and

) | feE 7(£)1 ) j(6)

Therefore, if for p € Z and K € Z", we set Q@ = {z: 2¥z ~ K ¢ 10,1)"*} and
R(Q) ={x:2*z — K € Rg}, then |R(Q)| > ¢g|@| and

1

(3.) >

v==--1

>Cl>0.

> C1X Ry (SC)

#rl ~f ¢ . o 2

> | J 7 ) B e 2 euxn, (3 - K) = cnxman(a)
v=p—1"jgn

Thus,

1/2
G(AE) > a Y Is@PRI )@} = aW(f)(z).
QeD
That is, (4)=-(2).
Next, suppose (3) holds. We want to prove that G(f) € K P (R™). Set
s(Q) = {f,¢q). Using the same notations as in the proof of (3)#{1), in
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order to prove (3}=(4), we only need to show that

166z = [{ (2 1@ -G = wal(e) )]

vEZL Qe
< ¢ < 00,

K?:P(Rn)

where ¢ is independent of 7. Write

1G (s lGeerm i) =Y. 2 APYDP| G ) 44 [ o ggem
k=00
i+3 oo
= Z e Z...::Il—l-fg.
k==—00 k=i-+4

We first estimate Iy. Note that each g 15 a smooth molecule for @ up
to a constant which is independent of ( (see [5] for the definition). By the
proof of Theorem II B in [5], we get

I < CHG(SZ-)HE(W) f okn({l-p/q)
k=—cc
~ 2~ 1/2 ‘
< (S (X @@ v016)) g 270700
2 - L2 dr{l—
Sc“(@%@_ [s(@)FF|Q IXQ) o (1-p/a)
[

e oim(l-p/q) ..
S Qa7 mesoe

For Io, we first have the following fact: if » > —i~ 1, @ C @, and the
side length 1(@) of @ is equal to 27¥~%, 27 or 27%*!, then
. 2un/2
(3.2) H(&o * o) (z)] < CW
holds for # € Ay, k =2 i+ 4 and L > n/p.

We only prove (3.2) for I{Q) = 27%. The other cases are similar. Note
that o, € S(R™). Therefore, if 1(Q) = 27%, then

own ovn/2
|&u(z)| < LA AL [Yolz)| < e s~ KDL

When z € Ay, k > i+ 4 and Q@ C @, there is a geometric constant ¢ > 0
such that [2¥z — K| = 2|z — 277 K| > ¢2"lz]. On the other hand, we have
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(@ = ve)@) = | [ Bulo—Ehba(e) |
o

2un/2 Ll
< .
<] Trme-Rr Grpe v

¢
vn 2
D L (EA R

If |2¥z — K| > 2|¢ — K|, then
141272 — €| > 14 2%z — K|/2 > c2"|x].
If |2z — K| < 2|¢ — K|, then
14+~ K| = |2"z2— K|/2 > 2"|=|.
Therefore, if we choose L > n/p, then for 2 € Ay, k > i + 4, we have

21m/2 df
By * Yo}z < copprE S Mo lE—KNE
P i s &6~ KD
ovn /2 d¢
T eI f v N
200l e ripppamsp TR ED
povn/2
<
= wLigL
that is, (3.2) holds. Using (3.2), we deduce
L< Z 9kn(l-p/q)
k=i+4

—wt1

{1 ( Y I Y T @@ vow]) )

p=ei~l  p=—v—1 (=28

<ec Z gkn(1—5/q)
k=i+d
—v41

{I(Z SO Isd@l

pem—fml p=—r—1 1 Q)=2#

<e¢ E nkn(l—p/g)
k=i+d

@ rva)a))) da)"

~pienl

<> Y (X

()T )p/qgrl(n/2 =L)p—k(L-n/q)p+(i+¥)np/q
T op=—gel p=—u-l Q)20
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where 1/q + 1/¢' = 1. Because s; = {3;(Q)}gep is a central (p,q)-atom-
sequence with support in Q;, we have

1
Z ( Z 51 q)?/qSczmyﬂ.(l/Z—l/q)p|Qi|(1/q—]/'p)p.
pm—y=l Q)=
Therefore,
oo 1 1 oo
. v(n—L}p
e Z ML= [Q;[-7 Z 2 Se<oa

k=itd p=—i—1
That is, HG(Si)Hk,‘;sP(Rn) < ¢ < o0, where ¢ is independent of 4. Thus we

have proved {3)=-(4), which finishes the proof of Theorem 3.1.

4. Some applications. Using Theorem 2.1, we can prove an interpola-
tion theorem.

THEOREM 4.1. Let0<p1<p2<1<q<oo(p27£q),0<?1 <
rg <1, and p; <15, o; = n(l/p, —1q), B =n(l/r, - 1/q), i =1,2. If
a sublinear operator T maps HK"‘ wPi(R™) to HI{‘? "i(R™) fori = 1,2, then
T: HK””(R”) — I{Ké? T(R™), where

1 t 1-—¢ 1 i 1-1¢
=4 _?:—

P M Pz’

= — + , 0D«<it<],
™ Tz

(1 l) (1 1)
a=n{=-=), p=n(--2).

p q T g
Proof. By Theorem 2.1 and the definition of H K, oP(R™}, it suffices to

show that if f is a central (p, ¢}-atom, then
IGTE) gy < ¢ < 50,

where ¢ is independent of f and G(Tf) is the grand maximal function

of T'f.
Set

B

90 = 1 Pli

H——

L Tg

Suppose supp f C B{0, R), R > 0 and 201" < | B(0, R){f < 217 for some
{1 € Z. Moreover, write

[ ]
1T ) esr gny = > 2 QT x| oy
=2
Iy 00

= Z oo Z o=ty 0.

l=—o0 l==ly 41
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For Iy, note that r < ro; from Hélder’s inequality, it follows that

I n 1—r/rs (3 in(i—ra/q) o v /7a
ns{ 3y 2) (Y2 1GTF x| Prgeny)

=00 [=—00

< 621111(1—7*/7"2)”Tf“;lkgz,w (™)

< ¢/B(0, R)|Hu(1—7”/r2)-+~?(1/p2~1/19)'

< pghin(l=r/ra) ||f1|;m;2,p2(w)

For I, since r; < r, we have

I <2[1n(1 r/r) Z oln(l- Tl/Q)T/rlllG!(Tf)XAzHj[,lqg[é;l
=l 41

< 211““#/”)]|Tf”;rk51m rry = cg i) ”fHHK"1 3 (Rn)

< ¢ B0, R)|fott—r/ri+rl/p—1/p),

Since L = £ 4 L=t apd 1 = L 4

it
P 31 P2 r r rz ? we have

Therefore,
1
72 b2 P 1 b1

”G(Tf)HKﬁ TR Le< 00,
where ¢ is independent of f. This finishes the proof of Theorem 4.1.

Thus,

Let us turn to the boundedness of operators on Herz spaces. It was shown
in [8] that the Hilbert transform is not a bounded operator on K S P(R™),
where o = n(1/p — 1/¢). However, the space HK""T’(]R“) can be applied
to yield a substitute result (see [8] for the details). More generally, let us
consider the boundedness of Calderén~Zygmund operators on H K &P (R™).

DEFINITION 4.1. Suppose T is a linear operator which is continuous
from S(R™) into S'(R™), and there are a kernel K{z,y) defined for z # y in
R" and constants ¢ > 0 and 0 < § < 1 guch that

(4.1) K (z,y)— K(z,0)] < clyl®

EEEE; if 2[y| < |=l,

and for f, g € C§°(R™) with supp f M supp g = 0,
(4.2) (Thoy= [ [ K(z,1)f)g(z)dyda.
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If, moreover, T" can be extended to a bounded operator in LI{R") for some
g € (1,00), then T is called a §-Calderdn-Zygmund operator in LY(R™).

Using the atom-molecule theory of HEK, SP(R™) from §2, we can prove
the following theorem.

THEOREM 4.2. Let 1 < g < o0, 0<§ <1 andn/(n+6) <p<1. IfT is
a §-Calderén—Zygmund operator in LI(R™) and fR“ Ta(z)dx = 0 for each
central (p,q)-atom a{z), then T can be extended to o bounded operator in
HK[?"?’(R”), where o = n(l/p—1/q).

Proof. Let f be a central (p, ¢)-atom with support in B(0,r) (r > 0).
It suffices to show T'f is a central (p, ¢, 0,£)-molecule for some ¢ > 1/p — 1.
Leta=1-1/p-+e, b=1-1/g+ e Obviously, we only need to verify the
size condition for molecules, that is,

Ra(TF) = ITF | atam | 121 (TF) (@) [ Famy < € < o0,

with ¢ independent of f. To do this, we first estimate || |z|™(T f)(z)|| o ®n)-
In fact, we have

f T f ()| Vz|* de < cr”quTfHLq Rn) < crmapn(t/a=1/p)
|&| <27
= epna(l—1/p+e)

On the other hand, if |z| > 2r, from (4.1) and [, f(¥) dy = 0 it follows that
IT$ ()i = | J K dy| =| [ (K(z.9) - K(z,0)1@) dy
pn

f| |n+5|f )IdZUScr‘s"f"(lﬁ“llp)fm|w(n+6)_
-y

Hence, we get

f |Tf()|2|2|™? dz < epbatn(l-1/plg f |$i—-(N+6)q+an dr
|z|>2r jz|>2r
< rnali-1/pe),

That is, . :
I |x{”b(Tf)(m)HLq(Rn) < er(1=1/p+e)
Thus, .
—~afb b a{l—a/b
Re(TF) = IT A3ty | e (T ) @M pattny < ellFlageyr™e =2/

< crn(l/q——l/p)a/b na(l—a/b) _ ¢ < 00,

where ¢ is independent of f.
This finishes the proof of Theorem 4 2.
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More generally, using the atom-molecule theory of §2, we can get the
following theorem, whose proof is similar to that of Theorem 4.2; we ornit
the details.

THEOREM 4.3. Let 1 < ¢ < o0 and n/(n+m) < p < nfin+m— 1),
where m € N. Suppose T' sotisfies the conditions of Definition 4.1 with (4.1)
replaced by the following two conditions:

(4.3) - (0 K)(z,0)| =0 for|o| £m—1,
(4.4) (85 K ) (2, )] < clz —y|™™™
In addition, assume that [o, Ta(z)z*dz = 0 for each central (p,q)-atom

a(z) and for |al < m —1. Then T can be extended to a bounded operator
in HKZP(R™), where o = n{l/p—1/q).

Jor la| = m.

We point out that there are results similar to Theorems 4.1-4.3 for the
spaces HEP(R™).

Acknowledgements. We thank the editors for a number of valuable
comments which make the paper readable.
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