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Some counterexamples to subexponential growth
of orthogonal polynomials

by

MARCIN J. ZYGMUNT (Wroclaw)

Abstract. We give examples of polynomials p(n) orthonormal with respect to a mea-
sure 4 on R such that the sequence {p{n, z)} has exponential lower bound for some points
x of supp pi. Moreover, the set of such points is dense in the support of e

1. Introduction. Let 4 be a probability measure on R with all moments
finite. Applying the Gram-Schmidt procedure to {z™} with respect to the
inner product (f,g) = [ fGdu we get a system of polynomials {p(n, z)}
satisfying

zp(n, @) = Appap(n +1,2) + Bup(n, ) + Aup(n — 1,2},
where A, > 0, B, € R.
In [5] J. Zhang has shown that for ), and §, asymptotically periodic
and A, bounded away from O one has
lim sup |p(n, z)]*/™ < 1

Tl OO
uniformly for « € supp p. Zhang’s proof is a refinement of methods used in
(3] where the case of convergent coefficients was considered (see also [1], [2]).
There were suggestions that asymptotic periodicity of A, and 3, is es-
sential in the result above, In [4] R. Szwarc has constructed examples where
for a point 2 n supp u,

(1) liminf |p(n, 2)|*/"™ > 1
Fle=k O
with A, and 8, bounded, A, bounded away from 0. One of his examples is

Ap o= 1/2,n >0, and 8, = 0 for n € N\ 4, where A is a lacunary subset
of M.
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In this paper we show that the set of points satisfying (1) can be dense
in the support of ;. Moreover, we are able to compute supp 4 explicitly,
Our results are the following:

THEOREM 1. Let {p(n,z)} be the system of orthogonal polynominls sat-
18fying
zp(n,z) = -é—p(n +1,z)+ bup(n, ) -+ %p(n - 1,z),

where

b, — O: nop S < N2k4-1,
" T, Nagtl SN < Nogro,

and ny = 28k > 0, ng = 0, and p be the corresponding orthogonality
measure. Then supp p = [—1, 1JU[r— 1, 7+ 1] and the set of points satisfying
(1), i.e

{z € supp p | liminf [p(n, z){*/" > 1},
is dense in supp p.

THEOREM 2. Let {p(n,z)} and p be as above, where
oo k=2
(j+1)2/, k=2j+1.
Then
limsup Ip(n, z)|™ < 1

n—+oo

uniformly for © € [m — 1,7+ 1] and the set of points satisfying (1) is dense
in [-1,1].

Acknowledgments. I wish to express my gratitude to Ryszard Szwarc,
who introduced me in the area of orthogonal polynomials, for his helpful
suggestions regarding this paper.

2. Some useful lemmas. Denote by p(n, ) polynomials satisfying
ap(n,z) = §p(n +1,2) + bup(n, z) -+ $p(n — 1, 2),

2
( ) P(—1,$)=0, p(O,m):l, _

where

b o= Tl Tk <N < Nk,
n
T2, Mokl SN < Nagta,

{nx} is an increasing sequence of integers, ng = 0, and 71, ry are real mum-
bers. We will write p(n) = p(n,z) for fixed z.
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With the polynomials p(n, z) we associate the Jacobi matriz J

by %
;b3
J= % b,

If the coeflicients b, are bounded then the orthogonality measure u coincides
with the spectral measure of .J, hence supp x and the spectrum o{J) are
equal,

Let

b= O

b=

Jop=

b= S R)=

It is well known that o(Jp) = [-1,1].

LEMMa 1. Let {p(n,z)} be the system of orthogonal polynomials satisfy-
ing (2), and

(3) lim sup(nog+1 — nak) = limsup{nagra — Naky1) = 00.
e () Ko 50

Then suppp = [r1 — 1,7 + 1] U [ra ~ 1,72 + 1], where p is the orthogonality
measure.

Proof Without loss of generality we can assume r; < ry. Hence we
have
Jo+rI ST < Jp+ral.
This gives supp it = a(J) C [r1 — 1,72 + 1]. From (3} we get
=1+ 1Ure —1rg+ 1] C o{J)

(for example the sequence z} € £2(N), a¥(n) = e™ 4 1y for ngy < 1 <
Nak+1 and O otherwise, is an approximate eigenvector corresponding to the
number ry 4- cos 4 € o(J)).

Now if ry — ry < 2, then supp p = [r1 — 1,72 + 1]. Assume rg — ry > 2.
Fix x € (ry + 1,79 — 1). There exists a constant ¢ > 1 such that |z — ;| > c.
Note that p(1) = 2(z ~ bg) > 2¢ > ¢ = ¢p(0), so p(1) ~ ep(0) > 0. From (2)
we have

lp(n -+ 1)| + [p(n — 1)| 2 2¢|p(n)],

hence

[p(n + 1)| = elp(n)] 2 dp(n)| = lp(n = 1)| = elp(n)| — ¢*lp(n — 1)].
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By induction we get |p(n + 1)| — c|p(n)| = 0, hence [p{n}| > ¢*. Therefore

Vo€ (m+1m—1)  lim |p(n )l = co.
Hence (ry + 1,72 — 1) Neuppp = 0. a

Throughout the rest of this section we use the following notation:

4 rE=Te — Ty,

(5) w=ry+costy, o e&0,n],

(6) p(n) = p(n, ).

We assume that |r| > 2. Then there is a unique real number v satisfying
(7) sy v ) =rtcosy, > 1

LEMMA 2. Let r = ry — 1y be a transcendental number. For any ) € Qm,

p(ﬂ+ 1,@:) :,é ,y-—l

n(n, z)

Proof. By substituting 2’ == = — r; we can reduce ourselves to the case

r1 = 0, rp = r. Moreover, without loss of generality we can take + > (.
Assume now a contrario that we have equality in (8), i.e.

p{n1,r+cosp)  _
®) pln,r+cosy) ! 1

for some n and . From (7) we get

¥ =r+cos — /(r + costp)? — 1.

The left hand side of (9) is a rational function in r, as opposed to the right
hand side. Hence (9) cannot be satisfied identically.

We can transform (9) to a polynomial equation in r with algebraic co-
efficients because cos® is algebraic. This implies that r is algebraic, which
contradicts the assumptions. w

(8)

H

LEMMA 3. We have

(10)  p(n)
_ 7p(n2k) . p(n% - 1) Mg g1 ’}’p(mm - 1) - p(n%)
- 2 1 f)l "I’ b)
¥ oy ]
Jor ngp < m < nogry, and

(11) p(n)

_ Sin(n-ngy 41}y
sin nsi:fﬁ 1 p(n2k+1 _ 1)

= i "~ K
 Snlnrnsea iy s LY blnghe ), P # 0,7,

(m = noksa +1) p(nani1) — (0 — nas) pnogrs ~ 1), otherwise,

,T"'(”wﬂak)
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for nagr1 < n < nogga (Y and v are given by (5), (7). Moreover, if ¥ =
(g/qo)m, ¥ # 0,7, and gy | {Nakt2 — Nokr) for any k > ko, then for k > ky
and nigp < n < nopey one has

(12)  pin)

719('”'21\:0) o P(‘nzk” . 1) g 41 'Yp(nizk‘o - 1) - ,'[9(?12;@(,)
= M1 v + 2 -1

iy

v ,

where
b1

(13) Ty, = 7o = gk - Z (naie1 — ng)-

=k
Proof. From (2) we get
3p(n) +rp(n— 1) + §p(n — 2) = ep(n ~ 1) = (v +v7") +r1)p(n - 1),
50
(14)  p()={(y+vNp(n 1) —pn-2)
and
Ip(n) +rap(n — 1)+ p(n — 2) = zp(n — 1} = (rz + cos ) p(n — 1),

for nop < < Mapt1,

so
p(n) = 2p(n — L) cosy) —p(n—2)  for ngger < n < Nogpa.
Now we can get (10) and (11) by induction.
To prove (12) observe that by (11) we get
(15) plnag) = plngg-1),  plngg — 1) = p(nag-1 — 1),
for k > kp. Arrange the numbers n satisfying
N < Ngkge1 OF Mo <N K Nogyy for k> ko

into an increasing sequence. A number n will occupy the position 7 given by
. o) for n € nogy1,
e Zf;::c, (R2itre = n2it1) = My +ngg, for k > ko, nar < 1 < Mgt
Define a sequence #(n) by B(%) = p(n). By (14) and (15) we get

PO) = (y 4+~ Bl ~ 1) = B - 2)
By induction we obtain
10z ) = BlBaky = 1) 5 fige,+1

3 Y
< -1
TP (Maky = 1) = P(Fzko) _(dimfine,)
2 i :
< —1

Taking into account that % = n for n < nygy4s and that H(7) = p(n) gives
the conclusion. m

form > ey

() =

+
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ProOPOSITION 1. Let o = (g/ga)m, ¥ # 0,7 and ¢,q0 € N. Assume
g | (Pog+a—nagt1) for all k starting from some ko. Then there are a constant

A > 0 and an integer N such that

(16) p(n)| > Aly|™  for N £ ngp <1 < nakq,
where
w1 k
M = min (n - Naj + Z (n21;+1 — 'I’Lz@), Z (TL;,M.H o 'n.gi]) .
ik FE

Proof. From (12) (Lemma 3) we get for na, < n < nggyy, £ > ky,

7 — p(ngr, — 1 i
(17) o)) 2 [0te) 2 2te = Dy
7p(n2ku . 1) _p(n%u) ~1Thg,
- P h’l 3
yé—1
where m,, is given by (13). By Lemma 2,
YP(Ngkg+1) — P(akg+1 — 1) 40
-1 '
Since |y| > 1 there exist constants B > 0 and kj such that
(18) lp(n)l > Bly|™,

where k > ky and nay <n < nggy-
From (11) we have for noz1 < 7 < Ry,

(19)  (p(n)|
plnae+r — 1) || plnoesr) . D il T
B sin |P(n2k+1 ~1) sin(n — nags1 -+ 1}9) ~ sin(n ~ ngge1) 9|

Examine now p{nap+1)/p(nger1 — 1). From (12) we have
Yo(Miakg4-1) = P{Paky a1 = 1) 1y
3 Y
e =1
'Yp(annq.j - '[) - p(n’2k0'{“l) =Tt
-1 7

for & > ko, n = nagy1, nogg1 — 1. Lemma 2 states that

(20) p(n) =

e

v’nEN 7p(n2k0+1) - p(”2ku+! - J) ?’E U,
so from (20) we get

(21) ' p(Nok11)

— as k — 00,
p(nap1 — 1) 7
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Now return to (19). We have assumed that » is transcendental, hence so
is . Since sin k4 is an algebraic number,

Vien ysinky —sin(k ~ 1) # 0.
Moreover, there exists a constant C' > 0 {depending on 1) such that
Veen  |ysinky —sin(k — 1)9] > C.
By (21) there exists ko such that |p(nog+1)/p(neses — 1) — | < C/2 for
k > ko. Hence for nopt1 < n < ngprn, k> ks,
p(n241)
p(ngks1 — 1)

sin(n — ngg41 + 1)¢ — sin(n — nog41 )
> |ysin{n — nggy1 + 1)¢ — sin(n — ngr41 )9

_|_paks) v
p(nag+1 — 1)

SIS

fsin(n = Nok+1 T 1)’1,5' >

By (19} we thus get
p(nar1 — 1) |C

>
pla)) > (P22 = DI
and by {18),
BC
22) (1> [ 22 o,
where ngp41 < N € Nagya, k > ki1, ke, and
k-l k
m=Nopy1 — 1 —ngg + Z(n2i+1 — Mgi) < Z (Mgig1 — n2q).
i=ko i=kq

Combining (18) and (22) gives the conclusion with

, BC
A =min (B, m ) and N = max({nap,, Mok, , Mok, )- M
PROPOSITION 2. Let nag, < n < nages. Then

(23) lp(n)| < M25* AR y™,

where
k1 k

m = min (n — nok + Z(nziﬂ — Ti2i), Z(n2i+1 - nzi)),
i=0 i=0
k ,72
M= ]___[O(n2¢+2 —noip1+1} and A= vpy
g
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Proof (10) gives
2.m —1r o -
U At At | Ty Ty
p(n) = “—,Y—;_?—P(n%) + BN
for nay < n < nopy1, where m = n —ngg. Observe that v2y
the same sign, so

plrgy — 1)

.

and 7™ have

2,.m —m 2
¥ 772:1 ‘5 7211 by
In the same way we get
pleliete L DR B S e
72 _ 1 — 72 — 1
Hence
(24) Ip(n)| < 7;’_:1 1‘ % ([ptnar, = 1)+ ().

For ngpy1 < n < ngpye we have from (11) (note that [sinny! < n sint|)
[p(n)| € (n — nagt1)|p(nogr1 — 1)+ (n = naps + ip(nosg )

< (naer2 — nortr + D {|p(noper — |+ [p(nared)]).

Hence
(25)  |p(n)]
< (naks2 — nopg1 +1) ’YZ’Yi 7| " (p(nan — 1)) + {plnas)).
Combining {24) and (25) gives
PO € (ks =iy 4 1) | 1™ nas 1)+ Itz

for nop < n < nokiz, with m = min(n — nog, nagt1 ~— n2i ). Now we get the
conclusion by induction. m

Clearly the above two propositions can be proved for & = r( +cos 1 using
the same arguments. So set now r = 71 — ry. Moreover, define =, 0,y a8 in
(5), (7). In this notation we have:

PROPOSITION 3. Let qo | (naw-1 — ngx) Jor all k storting from some kg
and Y = (q/qo)m, siny # 0, g,q0 € N, Then there are a constant A > 0 and
an integer N such that

(26) Ip(n)} > Al¥™ for N < okl <N K Nakd,

where _
k-1 h

™ = min (n — M2kl t Z (n2i42 — Naiga), Z (naipe — szw«:l))-

i=kg e fog
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PROPOSITION 4. Let ngpyy < n < Nakts. LTheEn

(27) p()] < (Ip{na)] + Ip(no)|) M 24— A%y,
where
k—1 k
m = min (n —Nags1 + ) (Mipn ~ ngipa), > (naips — n2i+1)),
" i=0 p=0 ,
M = H(n2z‘+1 ~ng+1) and A== 727_ Il
dem]

3. Proofs of the main theorems

Proof of Theorem 1. By Lemma 1 we obtain suppu = [—1,1] U
[m—1,7w41]. Let £ = 7+cos e, where ¢ = (g/2%)m, v # kmand q,qo, k € N.
Observe that 29 | (ngg.5 —nggy1) for k > ¢5/2. By Proposition 1 there exist
a constant A > 0 and an integer N such that

[p(r, z)| > Ajy[™  for N < nog < 1 < nggya,

where
k—1 k

m = min (n ALY 222').

_ i=kq i
Hence [p(n,z)|1/" > AY/™~y|™  where
k=1 oo
221 p 1
!
m'> 3 223 T 1Y

‘5‘——-ko
So
— 1/n 1/12
liminf |p(n, 2){*/" > [y[*¥* > 1.
In the same way for z = cos (using Proposition 3) we prove
liminf [p(n, 2)|*™ > |42 > 1. u
=00 °
Proof of Theorem 2. Let z = cost), where ¢ = (g/2%)x, 2 =% kT

and g, g0, k € N. As above, 29 | (ng.1 —ngy) for k > qo/2. By Proposition 3
we get a constant A > 0 and an integer NV such that

Ip(n, z)| > Aly[™  for N < nogt1 < n < naggya,

where
k-1 k
m = min (n« (k+1)25+ Y G+12, 3 (j+1)2~‘").
j=ho+1 ekl
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Hence |p(n, z)[*/™ > AY"™|4|™, where

k1 . i
' G+12 1
m = _ Z (k + 2)2~+1 - o'
J=ko-1
So '
limiif Ip(n, @)™ > |42 > L.

Now let z € [7 — 1,7 + 1] and 1, v be as in (5), (7). By Proposition 2
we get

(28) [p(n, z)| < M2k"1A’“{7}”" for na, < n < nogrs,
where foee1 ks
m = min (nm k2"¢+22f,223‘),
=0 =0
B ¥
M= JE;(Z'?(J' +1)+1} and A= P '
Hence [p(n,&)/Y/" < MYG2)024)1/2" |y/m' where m/ = Z;‘an 2 < 2

Moreover, M < H?:o 9 (j+2) < 2¥° (k+2)!, so MV 5 1 Therefore
limsup lp(n, 2)]*™ < 1.
n—oQ

Observe that || is bounded away from 1 for all # € [rr ~ 1,7 + 1], 50 4
is bounded away from 0. Hence (28) holds with constant 4 independent of
z. So limsup,_ ., [p(n, )Y < 1 uniformly for & € [r — 1,7 + 1. w
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