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derivation with D(z} a function of bounded variation on [a, 1] forall 0 < a < 1,

Suppose that the coniinuity ideal is 1{D) = M,, 1 for some 1 <k < n Then

there exist discontinuous linear functionals oy, ..., ¢, on C'[0, 1] such that
1 n—1

> TN =Wa-, (N7,

(n—1)1 ;. 252,

where T is a continuous linear map from C*[0, 1] to L (0, 1) which is completely
determined by D(z) and g,

D(f)=T{/)}+ feMy,,

Proof. Since L {0, 1) = L,(0, 1) for p = 1, we can consider D as a deriva-
tion from C"[0, 1] into L,(0,1). By Theorem 3.5 we can write

1! .
DN =TW+g—g5; Z CTHWa () S &M
* j=n—k
so that
1 Lo . .
TN =D~y Z (T WanilNe, [eM,.

Since all the terms on the left-hand side are in L0, 1), T(f)eL,(0, 1) for all
feM,,. Let yeL (0, 1) be in the separating space S(T} of T. There exists
Fu=0in C"[0, 1]and T(f,)—yin L,(0, 1). By Theorem 3.5, T is a continuous
linear map from C"[0, 1] into L, {0, 1}, so that T(f,)-+0 in L,(0, 1). Thus
¥y =10, and we conclude that T is continmous. This completes the proof.
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On the integrability and L'-convergence of
double trigo:metric series

by

FERENC MORICZ {Szeged)

Abstract. We study double cosine and sine series whose coefflicients form a null sequence of
bounded variation. In particular, we consider the special cases where the double sequence of
coefficients is monotone decreasing, or convex, or quasiconvex. We are mainly concerned with the
following problems: (i) the series in question converges pointwise, (i) the sum of the series is
integrable, (iii) the scries is the Fourier series of its sum, (iv) the series converges in L'-norm.

Among other things, we extend the classical thecrems of Kolmogorov and Young from
one-dimensional cosine and sine series to two-dimensional ones in an essenfially more general
setting. Qur basic tools are Sidon type inequalitics.

¢. Introduction. The following theorems are well known for one-dimensional
cosine and sine series.

TueorEM A (Kolmogorov [6] and see also [11, Vol. 1, pp. 183-184]). If
{a;: > 0} is a quasiconvex null sequence, then the cosine series

(©.1 ' fa,-+ Y a;cos8jx
J=1
converges, except possibly. at x = 0, to an integrable function f(x), is the Fourier
series of f, and the partial sums converge in L'(0, my-norm to f if and only if
g;lnj—-0 as j—co.
THeOREM B (W. H. Young [10] and see also [11, Vol. 1, pp. 185-186]). If
{a; j= 1} is a monotone decreasing null sequence, then the sine series

o)
(0.2) Y, a;sinjx

=1
converges to a function g(x) at every Xx, tnd. g is integrable if and only if
Z(aj—aj+ )Inj < oo. If this condition is satisfled, then (0.2) is the Fourier series
of g, and the partial sums comerge in L'(0, m)-norm fo g.

In this paper we will extend these results to two-dimensional trigonometric
series (see Corollary 3 in Section 2 and Theorem 5 in Section 6) in an essentially
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204 F. Moricz

more general setting. Qur basic tnols are Sidon type inequalities. To reveal the
essence, here we formulate tw. special cases (as to the more powerfuyl
inegualities, see Lemmas 3 and v in Section 7): There exist positive constants
C and C such that for all doubl sequences {ay} of real numbers, and for all
nennegative integers m, n we h ve

m n

©3) (1Y ¥ auDx)D()|dxdy < Cim+1){(n+1) max max |agl,
0a

Osjsm 0<h€n

j=0 k=0
nom m n

0.4) 1Y ¥ apDix)D;y)|dxdy < Cmn max max jklay,,
00 j=1k=1 1S/Sm 1<ksn

where D, is the Dirichlet kernel (see (1.5) below) and prime means derivative.
The first of these is the extension of the celebrated Sidon inequality from
one-dimensional to two-dimensional trigonometric polynomials, obtained
carlier by Telyakovskii [9] using a different method.

In the sequel, we will study double cosine and sine series whose coefficients
form a null sequence of bounded variation (see (1.2) and (1.3) below). In
particular, we will consider the special cases where the double sequence of
coefficients is monotone decreasing, or convex, or quasiconvex. We will mainly
be concerned with the following problems:

(i) the series converges pointwise,

(i) the sum of the series is integrable,

(iif) the series is the Fourier series of its sum,
(iv) the series comverges in ['-norm.

1. Cosine series. We consider double cosine series

.. aa 0
(1.1) _ Y Y Adagcosjx cosky

: J=0 k=0
on the pos1t1ve quadrant T? = [0 n] % [0, n] of the iwo-dimensional torus,
where 4, =1 and A;=11if j=1; and the real coefficients ag form a null
sequence of bounded variation, that is,

(1.2} ay—0  as max(j, k)— oo,
>} [+4]

(1.3) 2 2 ldag] < o
j=0 k=0

We remind the reader that the differences 4,,a; are defined for all pairs of
nonnegative integers p and g as follows:

Ay 0y = (_1)i+l(€)(?)aj+i,k+z (. k >0).

i

IeY
1=

i 1

0
Then the following recurrence relations hold: Apo i = ay,
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Apg @y = 4 Ap-100r16 (P2
_Ap,q-_laj,k+1 (q = i)

The next simple observation will be useful on many occasions: If (1.2} is
satisfied and for some p, g >0,

quﬂ.]k 0 (j, k = 0),
‘{-p and 0‘<\‘h“~<~CI:
Aprg Gy = 0 (. k=20,

p—1.q%%—

Aoy = 4,515

then for all 0 < p,

Consequently, the sequence {4, , a;} is monotone decreasing in both j and
k provided either p, < p and q;, <g or p, <p and g, <gq.
We denote by

m n

> Y AjAyapcosjxcosky

j=0k=0

Smn(xa y) = (mz nz= O)
the rectangular partial sums of series (1.1). Performing a double summation by
parts vields

nt

14)  Smlx, y) = i T DD ds1ap- Y. DD A10asmes
J=0 k=0 4]

=

n

Z DY) 01 Gt 1+ Gt 11 D (X) D, (),
k=0
where D, is the Dirichlet kernel:
1 = sin(m-+$)x
== X = ——— = 0).
(1.5) D, (x) 2—{—1;1 Cos jx Ssinlx (mz=0)
Since (DX} <7/2x) m=0; 0<x<m) by (£13), forall O <x, y<m,
2 21D (X)Dk(y)AllaJki < 00.
j=0 k=0
y (1.2),
(1.6) Aioljnrr =, A1185,
k=nt1
whence, by (1.3),
m o0 [+7]
(1-7) E |Aloaj’n+1i s z Z ) IAnajk]—a-O as n— oo,

j=0 =0 k=n+1

This implies that, for all O <x,y <=

E Dj(x)Dn(y)Aloaj,n-!-l“’O as H*—'OO,
j=0
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uniformly in m. Similarly, vor all 0 <x, y &=

i Dm(x,] ' }k(y)
k=0

Aglam+1’k—’0 as m— oo,

uniformly in a, and a4 . 0 D, (X) D, (¥) =0 as max(m, n) - . Consequently,
series (1.1) converges to th2 function f defined by

m

(1.8) Slx, v i > D

0

XD (¥} Ay ap

for all 0 < x, y <= in the sense that s,,(x, ¥)— f(x, V) as min{m, n)— cc.
Motivated by (1.4), we introduce the modified rectangular partial sums
U, Of series (1.1} defined by

(1.9 thynlx, ¥) = S, V= 3, D{(x)D, (1 A100)041

i=0
- Z D, (x)D (v Ao, Ot 16— O 1,0+ 1 2 O D ().
k=0
It will turn out that the u,,, approximate [ better than s, since they converge

to f in I[*-norm when s,,, may not.
According to (1.4) and (1.9),

(1.10) U (X, ¥) = Z Z Di(x)Dy(v) Ay .

Another representation for u,, can be obtained by performing two single
summations by parts:

): Z (Z Z Auﬂu)ljikcoijcosky.

J=0 k=0 i=}f [=Fk

umn(xa JV)I

We note that for one-diménsional cosine series analogous modified partial
sums were introduced by Garrett and Stanojevi¢ [3].
Our first main result is the following.

THEOREM 1. If a double sequence {ay} satisfies (12) and for some p > 1,

amt e

= 411800+ Y, 2727 ¥
m={

j=am

(1.1 o, Miﬂjn“’]”p

2rtleq

sY Ry

fe=2%

(411 ﬂ0k|p] 1

L2mbleg gntlay

o3 [+ ]
+3) remtemen ¥ Y et < oo,

m=0 n=0 j=am k=2n
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then
(1.12) Ity — fI =0 @z min{m, n)— co.
Here ||| denotes the two-dimensional [*(TZ)-norm. Later on, |-| will

stand for this norm or for the one-dimensional L' (T)-norm, T = [0, n]. It will
be clear from the context what the case is.
As a by-product of the proof, we can get

13, % 2iDy0)

Here and in the sequel, C,, ép, C?*, etc. denote positive constants depending
only on p and not necessarily the same at different cccurrences.
We draw three coroliaries of Theorem 1.

Anajk“ <C, e, (mnz0;p>1).

CorOLLARY 1. Under the conditions of Theorem 1, the sum f of series (1.1) is
integrable and (1.1} is the Fourier series of f.

COROLLARY 2. If a double sequence {ay} satisfies (1.2), (1.11), and

(1.13) 111(”+2){|Azoao,n+1|
o0 2m+1_1
+ 3 227" Y, |drodiaiPP#} >0 as n—oo,
ym=0 j=2am
(1.14) 1n(m+2){[A01am+1_o|
oo gn+l_q .
+ 3 227" Y osane i1} 20 as mo oo
n=0 k=2n
for some p>1, then
(1.15) Ismn—f =0 as min{m, n)— o
if and only if '
(1.16) ppln{m+2)n(n+2)—0  as min{m, n)— .

We note that Theorem 1 and Corollaries 1 and 2 can be considered the
extensions of the corresponding results of Fomin [2] from one-dimensional to
two-dimensional cosine series.

2. Special cases of condition (1.11). By Holder’s ineqﬁality,

(21) Jﬂpx é'52?1112 (0<p1 <P2)

Putting p, = 1, it follows that if (1.11) is satisfied for some p > 1, then {as} is of
bounded variation, i.e. (1.3) is also satisfied. On the other hand we can easily
see that for all p> 0,

3 ~ Stndia Mathematica 98.3
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! oG
(22) % é ‘gfw = IA 1La00|+ Z 2m n’llﬂx i/‘lllajol
m=0 zm.sj<2m%1
o
+ Y2 max |4yl
0 2"6k<2ﬂ+1
Led]
+ ¥ ¥y 2"t max max Ay dyl

m=0 n=0 Zayrg_,'{zmwl ngpacanl

Following Nosenko [8] and Telyakovskii [9], a null sequence {a;] is said
to belong to the class & if there exists a double sequence {¢5} of nonnegative
numbers such that

o oo
YN e < 0.

=0 k=0

(2.3) ldi1aul < &g d1rap 20,

We note that the last condition here is equivalent to the condition
[ss] o . =) [=4)
Y eamo+ D, Pepant 3, 3 2" ey e < 00,

m=0 n=0 m=0 u=0

It follows from this and (2.2) that if {a;} €%, then o7, < o0, and consequently,
(1.11} is satisfied for all p > 0. Thus, the conclusions of Theorem | and of

Corollaries 1 and 2 hold true in case {ay}e&’; some of them were proved in
[8] and [9]. ‘

ExampLe 1. Define a sequence {a; j >0} by
dazm = [2"(m+1)In*(m+2)] 7"
da;=0

where da; = a;—a;,,; and let a;, = a; ;0. Then o, < o0 but {ay}é¢ .. This
example shows that & is a proper SubCl‘lSS of the double sequences {ay} for
which (1.11) is satisfied with p = 2.

ifm=0,1,.....

if 2" <j<2"*! for some m> 0,

We remind the reader that a double sequence {a;,} is said to be quasiconvex if

o0 o
(2.4) Y. G+ D+ D)dyay < .
=0 k=0
By setting gy = ) 2..; ¥ %, |d22a,,), it is not hard to verify that & contains all

quasiconvex null sequences,

We note that it follows from (1.2) and (2.4) that the single sequence
{a: j= 0} is then quasiconvex:

Z (+Dldzoamd <00 (k= 0).

Similarly, {a;: k >0} is also quasiconvex for each fixed .j =0
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As is known, {a;} is said to be convex if
{2.5) Azr8y = 0 (j,k=0).

It is a routine matter to prove that every bounded convex sequence is also
quasiconvex.

Before formulating Corollary 3 we make some preparations. Clearly, under
conditions (1.2) and (1.3), a;—0as j—> o0, and ¥ g |d, o0l < 0. So, the first
row in (1.1) {ie. when k =0) converges, except possibly at x =0

(2.6) Y, Ajapcosjx = fy(x), say.
j=0

Actually, we have dropped here the factor i, =% corresponding to k = 0.
Analogously, the first column in (1.1) (i.e. when j=0) converges, except
possibly at y=0:

{2.7) Z Agaorcosky = f,(y), say.

We denote by sil(x) and sP(y) the partial sums of series (2.6) and 2.7,

respectively. .

COROLLARY 3. If a double sequence {a,} satisfies (1.2) and (2 4), then the sum
f of series (1.1) is integrable and (1.1) is the Fourier series of f. If, in addition,

(2.8) Aspap 20, Adozag=0 (j,k=0),

then _
Hsmn _f" -0 as min(m, n)-> o0,
(2.9 - s —f =0 as m—co,
s —f1-—+0 as n—>oo,
if and only if
(2.10) Qe IN(m +2)In(n+2)—0  as max{m, n)— 0.

However, it is an open problem whether the equivalence (2.9)<>(2.10) holds
under conditions (1.2) and (2.4} (without (2.8)).

We note that if (1.2), (2.4), and (2.10) are satisfied, then each row and each
column in series (1.1) converges both pointwise (except possibly at x = 0 or

.y =0, respectively) as well as in I!'-norm. Furthermore, the equivalence

(2.9)@-(2.10) can be reformulated as the equivalence of the regular convergence
of (1.1) in LX{T?)}-norm with the fulfillment of (2.10). (Concerning the notion of
regular convergence, we refer to [4])
Corollary 3 is an extension of the famous Kolmogorov result (see {6] and -
also [11, Vol. 1, pp. 183-184] for the convex case) from one-dimensional to

. two-dimensional cosine series.
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It is of some interest to observe that (1.2) and -

(2.11) dyap 20, dpapz0 (k20

imply that 4,,ay is nonnegative and nonincreasing in both j and k. Thus; we
can conclude that .o, < oo in (1.11), ndependently of p, and Theorem } applies.
This means that Coroliary 3 remains true if (2.4) and (2.8) are replaced by (2.11),

3. Another sufficient condition for cosine series. The condition in question is

(3.1)

||'M g

Z Allﬂjkiln(j+2)1n(k+2) < 0,

which is clearly stronger that (1.3). It is routine to show that if (1.2) is satisfied

and
(3.2) . Allajk = 0 (J', k = 0),

then (3.1) is equivalent to the condition
0

w k
k
; k ;ﬂ l;k

THEOREM 2. If « double sequence {a;} satisfies (1.2) and (3.1), then the sum
I of series (1.1) is integrable, (1.1) is the Fourier series of f, and (1.15) holds.

(3.3)

'I"JB

_J_
14k

it

J

We note that if {a} is a convex null sequence, then (3.1) is equivalent to the
condition

oo

(3.4) Z {m+1)2mﬂllazm,g+ Z (ﬂ+1)2"A11a0,2n

m=0 =0

m=0 n=0

while (1.11), for any p > 0, is equivalent to the condition

(3.5) Z 2414 85m 0+ Z 2"4y1a9,9n+ Z Z 2"HNA | G g < 00,

m= m=0 n=0
It is striking that (3.5)_ is more general that (3.4). Thus, condition (1.11) is
stronger than (3.1) for convex null sequences.

On the other hand, for nonconvex sequences (3.1) may be satisfied, while
(1.11} is not.

ExaMPLE 2. Define {a;: j>0} by dagm=m

otherwise (cf. Example 1), and set a, = a,a,. Then (3.1) is satisfied, but (L. 11) is
not satisfied for any p > 1.

"3 if mz0 and Aa, =0'
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4. Sine series. We consider double sine series

4.1) gj

on T? = [0, n] % [0, ], where the real coefficients ay satisfy conditions (1.2)
and (4.3) below.
Following an idea of Kano [5], we represent the rectangular partial sums

apsin jx sinky

ni\ljs

m n
> Y apsin jxsinky
=1 k=1

SanlX, ¥) = (m,n>1)

of series (4.1} in the form

i 2": bp[cos jx]' [cosky]

j=1 k=1

Srm:(xa Y) =

where prime means derivative and

(42) : by = ag/(Gk) (. k=1).
We will assume that
(4.3) YooY jkldi1byl < co.

j=1k=1
This condition expresses a modified version of bounded variation, which seems
to be more appropriate for sine series than bounded variation in the ordinary

sense.
Perferming a double summation by parts we get another representation of

Sy as follows:

XD () 41 b+ Z DDA 10bjn+1

i=1

(4.4 Slx, y) = ; g

+ Z DL (x)DL) 401 Bt 14+ Dot 10+ 1 D () DR (V).
k=1
It is not hard to check that |[D(x}i< Cm/x* (mz1; 0 <x<m) Now,
a routine argument gives that if (1.2) and (4.3) are satisfied, then for all x, y,

>3]

> i ID5(x) Di(¥) 411 bal < co.

Jj=1 k=1

By (12), Asobjmss = Yi%ns1 A1y (cf. (16), Whenoe by (4.3),

(-]

Z ”|Amb1,n+11 z Z Jlelek]‘*O

i=1 j=1 k=nt+1

as n—>0o0.
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This tmplies that for all x, y

E Dix) D) A1objne1—0 as n— oo,

j=1
unifornily in m. Similarly, for all x, y
z D W) D801 b 1u—0  as m— oo,

uniformly in 7, and by, 4 n+1 Dn{x)D;(y) =0 as max(n, #)— co. To sum up, we
can write for all x, y,

(45 Y Y agsinjxsinky =Y. Y Dyx)Dy(0di1bp=y(x, y), say.

=1 k=1 J=1 k=1

Motivated by (4.4), we introduce the modified rectangular partial sums
U Of series (4.1) defined by
{46)  vmn(x, ) = Spalx, Y)= 3 DD A10b1041
=1
— Z Di(x

According to (4.4) and (4.6)

Dk (N Ao1bms 15— b 1n+ 1 Din(x) Do ().

(4.7} Upn(X, ¥) = Z 2 Dr(x Di(y Allbjk-
j=1 k=1

Another tepresentation for v,, can be obtained by performing two single
summations by parts which result in' '

m @ m r nt m
UpnlX, V) = Z Z (Z 2 411bi1)5i1'1jx sinky+ Z (Z AlOai,n+i)Kn(y)Sill.fx

J=1k=1i=} 1=k iy fiang’

FYA A018m+ 1 YR (X)SIN kY + Byt 1 net K K, (08

k=1 I=k
where K, is the cdhjugate Fejér kernel:
K, (x D 7 Vsing
while D,, is the conjugate Dmchlet ‘kernel: .
4.8) 2 sinjx = 4cotdx _M (m > 1).
25111 X

We note that for one-dlmensmnal sine series analogous modified partial
sums were defined in [7].
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Our second main result reads as follows.

TuroreMm 3. If a double sequence {ay) satisfies (1.2) and for some p > 1,

amEi_ | Aantlo

DI P D WD)

m=0 u=0 j=2m k=2n

49y # = JPRPA hpP P < o,

then

(4.10) It —gli =+0  as min{m, n)-+occ.

As a by-product of the proof, we can see that

HZ VD' (D A1 bal| € =1, p>1).

Jlkl

Cp.@p {m, nz=

We draw two corollaries of Theorem 3.

COROLLARY 4. Under the conditions of Theorem 3, the sum g of series (4.1} is
integrable and (4.1) is the Fourier series of g.

CorOLLARY 5. If a double sequence {au} satisfies (1.2), (4.9), and

) amE+i—1

4.11) nla(n+2) 5, 2727 Y, Fladiobimeal”}]'P =0 as n—oo,
m=0 j=2m
o0 zntl—1

4.12) mlnm+2) ¥, 2°[27" 3 KP|dos B s 14lP]H? 20 as m— oo
n=0 ke=2n

» some p > 1, then
A.13) vm—gl =0  as min(m, n)— o0

if and only if condition (1.16) is satisfied.

We note that Theorem 3 and Corollaries 4 and 5 can be considered the
¢ iensions of the corresponding results in [7] from one-dimensional to
iwo-dimensional sine series.

Finally, we compare conditions (1.11) and (4.9). To this end assume that

iy = 0 if min(j, k) =0. By (42),
Aqpa;
(4.14) jkdllbjk = Allajk+—}_£“:'_']’—i{il
Ag1 85+ 14 Aj+1k+1

(j, k= 1).

A1 TGl

Henge it follows that if (3.2) is satisfied, then O < 4, ay < jkd1,by and (4 N

implies (1.11).
The converse 1mphcat1on is not true in general.
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ExampLe 3. Let a;=[In(j+2)inln(j+4]7" (j=0) and let ay =aaq,.
Then {1.11) does held, while (4.9} does not hold for any p > L.
To be more precise, by (4.14), conditions (1.11) and (4.9) are equivalent for
some p > 1 provided
2wl ¥l

S Yeptty oy

m=0 n={) j=2am Jp== 20

{4.15) |7]4e

|A1061j,k+1

2mtl—1 20+l

AP D

J=am k=20

IA01“j-1~1,k|p]”p

amti] an+l—q

L2

J=am k== 2n

Now, assume that {1.2) and (3.2) are satisfied. Then (4.15), for all p >0, is
equivalent to each of the following conditions:

27 [ 15 117] P} < 00,

Y X {2 Aiolgm zn+ 2" Aoy Gom gn - Agm e} < 00,
m=0 n=0
o w {dioax  Agiau aj}
SR DRy L < oo,
j§1 k§1{ k J ik
and
[=4] [=+]
(4.16) Y 2 ag/(jk) < .
=1r=1

To sum up, under (1.2), (3.2), and (4.16), conditions (1.11) and (4.9) are
equivalent.

5. Another sufficient condition for sine series. The condition in question is

(5.1) Y X |4 agfinGi+Dink+1) < oo,

i=1 k=1
which is essentially (3.1). Again, if (1.2) and (3.2) (for j, k > 1) are satisfied, then
(5.1) is equivalent to (4.16) (cf. (3.3)).

THEOREM 4. If a double sequence {ay} satisfies (1.2) and (5.1), then the sum
g of series (4.1) is integrable, (4.1) is the Fourier series of g, and (4.13) holds.

In the sequel, we compare conditions (4.9) and (5.1).
(a) If (1.2) is satisfied and {h,} is convex in the sense of (2.5), then (4.9) and
(5.1) are equivalent,

Il? fact, in this case (4.9), for any p >0, is equivalent to each of the
conditions

o oD

Yoy 22""‘+")A11b2ml2n <

m=0.n=0 ’
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and

o o0
(5.2) ‘ Y Y jkAp by < o

=1 k=1

On the other hand, {5.1) is equivalent to (4.16), which can be rewritten as’
Yoy i=i1by < oo, This is also equivalent to (5.2), due to (1.2) and the
monotone decreasing property of by in j and k. '

(b) Now assume only (3.2). By (4.14) and Holder’s inequality,

w 2nti-

aj+1.1+ 2 Z 1a1,k+1
j+1 n=0 k=27 k+1

o amti—g

4] Df)a
b Zj—:f=“11+ X

=1 k=1 m=0 j=am

M Fmtleq Znti—q
Tt k+1

+ e

mz=:o 'E‘O j=22"" kgﬁn (+Dik+1)
w 2mtlog /e

<ant ), 2’"‘“"”[ 2 (—ﬂif:l")]

m=0 j=am

21"5—1_41 1,p
Ly znu—up)[ ¥ (a_lmm)p]
ey van \ kt+1

o s {m+m(t—1{p) m it aj+1,k+! )F]IIP
+3 L2 L2 \GroeeD

Mm=0 n=0 jmam Jo== 21

< ayy +34%,.

This shows that (4.16) {or cqu.ivalently, (5.1)) is stronger than (4.9), at least in the

case of (3.2). ‘ o
() However, (4.9) and (5.1) are not comparable in general. First, in the case

of Example 2 in Section 3, condition (5.1) holds, while (4.9) does not hold for
any p > 1. Second, in the next example (4.9) holds for all p > 0, whllg (5.1) does

not,

ExamrLE 4, Let

r [ ,
J ponZm . 2m+ 1
-iﬁq.—m if 2 é] <2 3
pFmtm_j i 2 . m
if 277 g j 2P,
a}_ < 2m—1(22’"+m_22’"+1) J

0 if 227 g j 22
J ! if 27 < 227,

k22m+l+m—2m+1

for m=1,2,...; let a,= 1 for j<3; and let az = a;a;.
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It is not rard to check that ..11) and (4.12} are also satisfied for all p > 0,
while (1.16) *» not. According i+: Theorem 3 and Cor-llary 5, in this case {4.1) is
a Fourier sine serics, but its rectangular partial sums fail 1o converune in
LHT?*-norm,

6. Spe(:lal cases of condirions (4.9) and (.%; By Hélder's i juality,

B, < #, (0<py < p,). Putting p; = 1, we can see that the fuliidllment of (4.9)
for any p > 1 implies that of (4.3). On the other hand, w> can conel e that

o ot
=3y 3y 2" max max  jk|Ag byl

m=0 n=0 2"'&'J<l““12"$h<2"‘1
Following Telyakovskii [9], a null sequence {ay} is said to b ¢ to the
class §if there exists a double sequence {4} of nonnegative nuniiv . such that

2 [=¢]
Z Z jl’”ﬁjk < o

J=1 k=%

[Aibal € &4, .Allaj.k:’}/o:

{cf. (2.3)). Since the last condition here is equivalent to the condition

oxi

2 i 22{m+n}52
m=0 p=Q

it follows that if {a;} eS8, then 4, < oo, and consequently, condition (4.9) is
satisfied for all p > 1. Thus, the corresponding results of Telyakovskii [9] are
particular cases of Theorem 3 and Corollary 4.

Example 1 in Section 2 shows that S is a proper subclass of those double
sequences {ap} for which (4.9) is satisfied with p = 2.

Finally, we consider the special case where (1.2) and (3.2) are satisfied,
Clearly, the first row of series (4.1), apart from siny, is

L1l < OO,

oo

(6.1) b a; sinjx = g, (x), say;

and the first column, apart from sinx, is

o
6.2) Y apsinky = g,(y), say.

k=1
The ppintwise convergence of these series follows from the fact that their
coefficients form monotone decreasing null sequences.

THEOREM 5. If a double sequence {ay,} satisfles (1.2) and (3.2), then the sums
gs g1, 9, of series (4.1), (6.1), (6.2), respectively, are integrable i’ and only if (5.1)

is satisfied. If (5.1) is satisfied, then (4.1) is the Fourier series of g and (4.13)
holds.

We note that under the conditions of Theorem 5, we also have [P —g, | —0
as m— oo, and ||si¥ —g,| —~0 as n— oo, where s¥(x) and s(y) are the partial
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sums of (6.1) and (6.2), respectively. Even, each row and «ach column in (4.1)
converges both pointwise and in I!-norm.

Theorem 5 is an extension of the familiar result of W. H. Young (see [10]
and also [11, Vol. 1, pp. 185-186]) from one-dimensional to two-dimensional
sine series.

7. Auxiliary results. We will need five lemmas whose proofs or references
are given in this section.

LeMma 1 (Bojanic and Stanojevié [11). If 1 < p <2, then for all single
sequences {a;: j 2 0} and integers m =1,

2m—1 2m—1
(7.1) | Y apf<Cim[m™ ¥ laf]"".

j=m j=m
The following more general inequality can be derived easily from (7.1) (see
e.g. [7, Lemma 6)).

LeMMa 2. If 1 < p < 2, then for all single sequences {a;} and integers m 2 0,

I Z a;D || <

Lemma 3. If 1< p <2, then for all double sequences {ad,,c j. k
integers m, n =0,

20413

2 lal 1y

=2t

7 {laol + Z 22

= 0} and

n

02 Zu=lY T an@D0)

< Cp(m—’rl)(n—i-l)[

Proof Let I, = [0, l/(m+1)], J,=[0, 1/(n+ 0y, CI,,=[0, n]\I, and
CJ, = [0, ®]\J, (m, n > 0). We split the double integral in (7.2) into four parts
as follows:

(73) Zm={f [+ [+ ]

T In Im €Iy Clm Jn

”—121+22+E3+E4, say.

m n

+ [ JHY 2 aaDyx)

Cim Cip Jj=0 k=0

Dk(y)|dx dy

First, using the elementary inequality

(7.4) D) <j+1  (j=00<x<m),
we get .
1 m

SmIDELD ZO Z (H;l (k+ lazl.

Hence, by Holder's inequality with exponents pand g =p/p— 1) we ﬁnd that
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7.5 5, < Cprlm+ D+ DI T T fap].

j=0 k=0

Second, appljing Fubini’s theorem, (7.4), and Lemma 1, we obtain

(Y apDy(y)|dy

Cin k=0

||M§

j Dx)dx §

<

=

Cin+ "] Z lapP]VP | (j+1)dx
j=0 k=0 Tm

_ CHint 1)t

Y, G+ Z laul?]"e.

m+1l 5%
Hence, by Hélder’s inequality,
n n
(7.6) 5, < Cpa[m+)(n+1)12[ 3, 3 lagl”]'.
i=0 k=0

By symmetry, we can deduce the same upper bound for I, too.
Third, using representation (1.5), we have

=11

Clm CJn

no & sin(j+d)xsin(k+4)y]
a; : .
LoD, an 4sindxsinky |

j=0 k=0

dxdy

m n ajkei(jx +ky)

o ,,=04sm%x'sm%y

<]
Chm CTy

By Holder’s inequality,

1/p
5, < _ dxdy
i C1, (sindx sindy)?

x[ J IZ Z a ei(Jx+k}J)Idedy:| q.

Cim CJy j=0 k=0

Hence, evajuating the first integral and applying the Hausdorff-Young
inequality [11, Vol. 2, p. 101] extended to two-dimensional Fourier series
(observe that q =2 due to the assumption 1 < p < 2) gives

(7.7) 24 < Cpallm+D)(n+1)]4e[ i Z laul”]'.

Combmmg (7.3), (7.5), (7.6) and its symmetric counterpart for Ly, and {(7.7)
results in (7.2).

Levyma 4 (Moricz ['77). If 1 <p <2, then for al! single sequences {a;: j 2 1}
and integers m = 1, _ :
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FARREE |

m
1Y D < Z PlafP]ye.
i=1

LemMma 5. If 1 < p <2, then for all double sequences {ay: f, k
integers m, n = 1,
(7.8) ”E Z ap D)D) < Emnimm) ™t TS Pk age] M.
f=1 k=l J=1 k=1

Pro of Without loss of generality, we may assume that m and n are of the

Cr Sﬂ: 22

= 1} and

form mo==2"—1 and n = 2°~1 with some integers u, v = 1.
Lot i, 12 1 and g = pip—1). By applying Bernstein’s inequality (see e.g.
[1l, Vol. 2, p. 11]), it follows from (7.2) that
2iee1 et 261 20—
|% % aDiaDif <27 % % aaD D))
jm;zb U e 201 J= 2071 p=19
20-1 2t~

SCPZ(”"”””'"”“)[ Z Z |ajk|p]1/r'

Jeaiol femptot
AL BT |

€4CI,2(””""[ Z Z j”k”|ajk|":|”1’.

Jm2i-l p=gi-1

Making use of the triangle inequality, then Holder’s inequality givgs

Cameq 2v-1 oo 201 2t—1
D3 Z ap DY) D] < Zl ‘ZIIIJ ; Z “JkD x) Dy
J=1 k= el w3
20l 2l

4C Z Ez(lH):’q[ Z Z kavm |p:|l/p

P jm2il =201
v 2‘ 1 21—t

<4C[Y T[T Y Y T FRla]

=] (= fmd w0 juzi-) g=gi-1
U V-1
£ I 2(ult:),fq[ z Z kapla fcln]l
Ju=i Lowi )

This is (7.8) for m==2"—1 and n = 201, ‘
On closing, we mention that (7.2) and (7.8) in the partwulgr cage p=2
provide inequalities (0.3) and (0.4) presented in the Introduction.

8. Proofs of the theorems and corollaries

Proof of Theorem L. By (2.1), condition {1,11) is less restrictive if p is
closer to 1. Therefore, we may assume that 1 <p<2.
By (1.8) and (1.10),

FO, 9) = thul, y) = ZZ D (x) Dy (y )Alla_ﬂn

ke
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where R,,, denotes the set o’ all lattice points (j, k) with nonnegative integer

coordinates j and k such it j=zm or/and k> n We may assume that

m,n= 1 and define the mugers M, N 20 such that,
(8.1) M <ML N g <2V

We represent R, as an infini.¢ disjoint union of (partly dyadic) reclangles and
estimate accordingly as follows:

2M+1_,;‘Nwi—1

82  [f-uml <] T % DDA az]
Jj=m k=n
AM ALy

+H Z D(x)Dy(v)4 uajoH
Jj=m

N—1 2M+1 1 e+t~ ]

+ Z H Y, Dix)Dy(
k=2¢

2Nl

I X DatDily

=h

_V)Allaij

=m

411510k”

-1 zu»l 1 3N+1-1

T Z “ kgﬂ Dj(x)D;;(}’)Auaij

u=Q _12“

2mti-]

+ ilrz D, (x)Do(y) 11 50|

u=M+1 j=am

qutt—1

+ i ” Z Do(x)Dk()’)Auaok”

p=N+1 k=2v

autl—q guri—q

YY S Y DD Auian-

(,0)eRM w1, N+ JT2 j=2¢

We apply Lemma 3 to obtain

0 2utl~g
”.fﬁ_umnn S- Cp{ Z, 2(u+1)(1—1,’p)[ Z |Allaj0|P]1/p
‘u=M J=2r
o 2Vl
+ E e+ 1)1 - IIP)[ Z |A”a0k|p]1/l’
v=N k=2v

uti—q zutl—g

+ Ez 2(u+u+2)(1'-1/p)[ Z Z

(uvyeRm N J=2u k=2v

|41 aul”]7}.

Now, (1.12) is an immediate consequence of (1.11).

Proof of Corollary 1. It follows from (1.12) that feL'(T?). Further-
more, it is a commongplace that convergence in ['-norm {the so-called strong
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convergence) implies weak convergence. Thus, by (1.9) and (1.12), for fixed
i1zl

4 T
83) [ [ /{x, ycosixcoslydxdy

[EN]

b1

Uy X, Y)COS ix cosly dx dy
l

n
C= lim - g
nmapee s 1]

H

lim {3 Ajgdpne;+ Z Ao\t g Ums 104 1) = i,

arn v {3y Plgaen

=y~

Here we have taken into account that the imit of each term in braces is zero,
thanks to (1.2), (1.7) and its symmetric counterpart for A4, a4z An
analogous argument works when i = 0 or/and [ = 0. These prove that (1.1) is
the Fourier series of [

Proofl of Corollary 2. Sufficiency. As is well known, there exist positive
constants €, and C; such that

(8.4) Ciln{m+2) € |D,| < C,ln(in+2)
(see eg. [11, Vol. 1, p. 67]). By this and (1.9),

(mz0)

(85) “.lll”""‘rrlrr‘l 3 ”.f"”"umn”+Czln(”+2)“ Z Djdl()aj.n+1“
J=0

n
+- C‘z lll(m “*‘2)“ z ‘DkA o18m+ 1,k||
k=0

F C3 |ty 1+ 1|10 (M +2) 101 (n+ 2).

Conditions (1.12), (1.13), (1.14) (via Lemma 2), and (1.16) imply (1.13).
Necessity. By (1.9) and (8.4),

(86) H ./."" Smn ” ; C% iam Lkl 1 ln(m + 2)11’1 (7’1’-+ 2)

- H‘f""'uum” - 111("14“2)”,'2 DJA 1084+ 1“
J=0

~Cyin(m+2)|| Y D4
K=0

and (1.16) follows from (1.12), (1.13), (1.14) (via Lemma 2) and (1.15).

Proof of Corollary 3. As we have seen in Section 2, it follows from (1.2)
and (2.4) that {a,}e &. Consequenily, o, < cv and (1.11} is satisfied for all
p> 0. The first part of Corollary 3 is a special case of Corollary 1.

Now we are going to prove the equivalence (2.9)<+(2.10) under condition
(2.8).
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Sufficiency. Under conditions (1.2) and (2.8), (1.13) is equivalent to the
condition

®
ln(n+2){A10a0_"+1+ 2 2mA10a2m},|+1}—\'0 as n—co,
m=0
This can be rewritten as

o
In(n+2) Y, A108ju+1 = Gon+yin(r+2)—0  as n—co,
j=0

which is a special case of (2.10). Analogously, (2.10) also implies (1.14). Thus, the
first relation in (2.9) follows from (2.10) via Corollary 2. Since each of the single
sequences {ay: j 2 0} and {az: k > 0} is convex by (2.8), the second and third
relations in (2.9) follow via the corresponding one-dimensional result [11, Yol.
1, p. 184].

Necessity. Applying the one-dimensional result just referred to, we conclude
from the second and third relations in (2.9) that

&.7)

as m— oo and n— oo, respectively. As we have seen in the proof of sufficiency,
these conditions ensure the fulfillment of (1.13) and (1.14). We can apply
Corollary 2, according to which (1.16) follows from (1.15).

Clearly, the couple of conditions (1.16) and (8.7) is equivalent, in the
monotone decreasing case, to (2.10).

Proof of Theorem 2. By (1.8), (3.1), and (8.4) we have fe L'(T?). By (1.4)
and (1.8),

tpoln(m+2)—-0 and aq.in(n+2)-0

F6 D =sm0) =TT DD Arsau— 3. DI, 0)souess

U k}eRmn
n
- Z Dm(x)Dk(y)AOIam+ 1,k—'am+ 1+ le(x)Dn(y))
k=0

where R, was defined in the proof of Theorem 1. Hence, by (84),

1f = Small < C3{ T3 141, gl n(j+2) Ink+2)
{1,k}eRmn

+ 2 4108041 In(j+2)in(n+2)
=0

+ Z iAOI Oy 1,klln(m+2)ln(k+2)
k=0

+lam+ 10+ 1]+ 2)In(n+2)} = C3(S, + 5,453 +8,), say.

By (3.1), §,—0 as min(m, n)—oo. Using (16), we get
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S, <ln@+2) Yy ¥ |4y agIn(j+2)

J=0 k=n-+1

<Y Y yephn(j+2)intk+2)—0 as n—oo,

j=0 k=n+1

independently of m. Similarly, S;->0 as m— oo, idependently of ». Finally,

Sy<In(m+2)nm+2) > ¥ |40,

J=m+ 5 kwnt)

(e =]
< Y ¥ jdyapn(i+2)1ak+2)—0
J=mtl k=n+t1
as max(m, n)— o0, Combining these estimates vields (1.15). Obviously, (1.15)
implies that (1.1) is the Fourier series of f.

Proof of Theorem 3. We may assume again that p < 2. By (4.5) and
4.7,

gx, P =tmal, ¥) = 3.3 DUX)D(M 1105
(J.k}eRmn

where this time R,,, is the set of lattice points (j, k) with positive integer
coordinates j and & such that j 2z m or/and k > n. The rest is similar to the
proof of Theorem 1, with the only exception that we apply Lemma 5 instead of
Lemma 3.

Proof of Corollary 4. It is modelled after the proof of Corollary 1. This
time (cf. (8.3)), '

4 nf
=5 [ § a3, p)sinixsinly dxdy
o
m n
w g+ 0 Z Ayobyy+ Aot b 1 xt Bt e 1)
I=t k=1

Proof of Corollary 5 It runs along the same lines as that of Corollary
2 with two modifications. First, instead of (8.4) we use the estimate

Cymin(m+1) < D]l € Comln(m+1)  (m2>1)
(see [7]). Second, we apply Lemma 4 instead of Lemma 2.

Proof of Theorem 4. It is similar to that of Theorem 2. But we have to
replace (4.4) by the following more common representation (as a result of
another double summation by parts): : - :

4 ~ Studin Mathomniica 98.3
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(88)  Spnlx. Y=

||M§

E Dk MNAiap— Z b (x D WA 108541
1 k=1

i=
Z (x)Dk(y Aoy Ot 10— Om+1, n+lD (x)Dn(JJ)

where the conjugate Dirichlet kernel D, is defined in (4.8). The same procedure
that resulted in (4.5) now leads to '

o

Z asinjxsinky= Y Y D) D0,()41 0k = g(x, y).

J=1 k=1

IlMa

Finally, 1nstead of (8.4) we use the estimate (see [11, Vol 1, p. 671)
{8.9) C,Inm+ 1)< D0 € Clnm+1)  (m=1).

Proof of Theorem 5. Sufficiency. This part is essentially a special case of
Theorem 4. Tt remains to prove that g, and g, are also integrable. For cxample
by (1.6) and (5.1),

Z |A10a11|ln(]+1 Z Z |41/ In(j+1) < 00

i=t j=1 k=1
and the corresponding one-dimensional theorem [11, Vol. 1, p. 185] yields that
g,eLM(T).

Necessity. Assume that g, g,, and g, are integrable. We rather use the
modified conjugate Dirichlet kernel defined by
1—cosmx

2tankx

(8.10) D¥(x) = (m

W

B, (x)—1isinmx = 1)

(cf. (4.8)). Clearly, D% is nonnegative, and if we substitute 5% for D, the
inequalities in (8.9) remain true. (See [11, Vol. 1, pp. 50 and 67].) By (8.10),
1y ¥ D

J=1k=1

S Y BBt ()Asnan+

j=1 k=1

(8.11) g(x,y) = F(x)(sinky) d1: ap

m

Z (sinjx)

j=1 k=1

+§]1_“ Z Z (sinjx sin ky)A”aﬂ,

. =1 k=1
= g% (x, ¥)-+h(x, P+ ha(x, ) +hs(x, 3), say.
y (5.1), h, is continuous everywhere. By (1.2) and (3.2),
[==] oo 2]
éji Z Z D_’f(x)dnajk == Z

F(x)410a; = gf(x), say
=1 k=1 j=

(cf. (1.6)). Furthermore, by (1.2), (6.2), and (8.1},

Hﬂ? (141, Qje

(8.12) By (x, YN
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(8.13)  g,(x)= ‘21 5}(3‘7)4100;1
=

Z F(x) Ao +4 Z sinfx) A 0a; = g¥(x)+hy(x), say.
F=1
Since h, is continvous and g, is integrable by assumption, it follows that g¥ is
also integrable. Combining (8.12) and (8.13) yields that 4, e L'(T?. In an
analogous way, we can deduce that h,eL!(T?).

To sum up, it follows from (8.11) that g* e L} (T?). The series defining g* has
nonnegative terms, and since the integral of D¥ over T is exactly of order
In(m-1) (see the remark made after (8.10)), we conclude that g* s I*{T?) if and
only if (5.1} is satisfied.
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